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Wave functions for weakly coupled bound states
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An inhomogeneous integral equation has been derived for the bound-state wave func-

tions. Iterative solutions to this equation provide wave functions for bound states of
weakly coupled Hamiltonians in one and two dimensions.

I. INTRODUCTION

It has been observed' that a short-range attrac-
tive potential always produces a bound state in one
or two dimensions. This property has been investi-

gated in the weak-coupling limit, with the inten-
tion of obtaining perturbative expressions for the
bound-state wave functions and energies. In par-
ticular, Hausmann has analyzed the bound states
in one-dimensional, short-range potentials by using
the homogeneous Lippmann-Schwinger equation
for the bound-state wave functions. He showed
that for the one-dimensional Hamiltonian

V(x)~ —ax as x~+ ao,
—2

e=—(A+4a Rink, ) f dx V(x )+O(k ) . (4)

Several other significant results have been obtained
by Simon and by Klaus, in particular, about the
uniqueness of the bound states, from a rigorous
mathematical basis. In contrast, much less is
known about the bound state in two dimensions.
Apart from the original result of Landau and
Lifshitz, ' the only other results are those obtained
by Simon. For the two-dimensional Hamiltonian

1
H = —— +k.v(x),

dX

the ground-state energy E(A, ) is of the form

—e=A, f dx V(x)

+k f dx dy V(x)
i
x —y i

V(y)+O(A. ),
(2)

where e= [ —2E(A.)]', and the wave function is of
the form

t))(x)=1+Xf dx' V(x') ~x —x'~ +O(A, ),

apart from normalization. Here, A, is introduced so
as to keep track of the order of the perturbation,
and may be taken to be positive without any loss of
generality. These results are modified for long-
range potentials. For example, it was shown by
Blankenbecler, Goldberger, and Simon that if

H = —— + +XV(r),
dx dP

Simon showed that if

f ~

V(r)~' +d r &oa,

f (1+")'i V(r)
i
d r &, t )0

then a bound state exists for all positive A, , if and
only if

A, f V(r)d r&0.

No significant results are known about the corre-
sponding wave functions.

In two recent papers, it was pointed out that
the Noyes form of the T matrix was very con-
venient for the analysis of the bound states for
weakly coupled potentials in one and two dimen-
sions. It was shown that for Hamiltonian (1), the
ground-state energy is given by
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—e=k. f dx V(x)+I, f dxdy V(x)V(y) Ix —y I

+-.'&' f dx dy dz V(x) V(y ) V(~)(
I
x —y I

+ ly —~
I
+

I
~ —x

I

)'

+-,' &' f dx dy ««V(»V(y) «~) V(r)(
I
x —y I

'+6
I
x —y I

'
I
x —~

I
+3

I
x —y I

'I z —r
I

+6
I
x —y I ly —~

I I
Z —r

I
)+o(~')

Rnd foi thc Hamiltonian (5) onc has an asymptotic scrics

2m C
in[ —E(A, )]= 1 —A.—Vo+ g A,"D„, A, ~O

A, V,

Vc ——f V(r)d r,

p'~ d p'2
Di = —f V(r, )P(r„)V(r, ),

d P'i '''d P'~+i
2 . . . 2

D„=—f V(r~)P(rt2)W'(r2, r3)W(r3, r4) W(r„,r„+))V(r„+)),V7J
0

P(I;J ) = ln
2m- 2

W(r„,r„+,)= V(r„ ) V, ln—
I r„—r„+, I

—f d'r'V(r')ln
I

r ' —r„„I

and C=0.5772 is the Euler constant.
In the present paper, we complement the above results by obtaining the corresponding wave functions. In

obtaining the bound-state wave functions, one encounters two difHculties: Firstly, the wave function satisfies
a homogeneous integral equation which does not directly yield iterative, perturbative solutions. Secondly,
solutions of the type given in Eq. (3) are not truly perturbative since the perturbation terms are unbounded.
%C overcome the first difHculty by converting the homogeneous equation into an inhomogeneous equation
which allows us to obtain perturbative solutions by iteration. The second difHculty is overcome by essential-

ly separating out the asymptotic behavior and then carrying out perturbative expansions in terms of bounded
functions. The results discussed are valid for short-range potentials, though modifications required by the
special case of V(x ) ——x are also considered.

II. GENERAL RESULTS

We begin with the Lippmann-Schwinger equation for the state
I f)„

dk"
I
k ) (k

I
A V

I 1( )
q + ](2~)" E——,k'+iq

where E= —,q, and the corresponding equation for the T matrix,

&P I

T
I q) -=&@

I
~v

I @)
dk" (P IAVlk)(k I Tlq)

(2~)" E——,
'

k 2+i vy
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For analyzing the bound states, it is convenient to use the Noyes form of the equation which is obtained by
writing

(k
~

T
( q) =f(k,q)(q )

T
~
q),

where f(q, q)=1. This leads to

( [T~ )=
dk" (q [A, V [k)f(k,q)

(2 )"

(15)

with f(k, q) satisfying the integral equation

(k ~AV(q) f dk'" „„,(k (Av)q)(q (Av~k')
A, V, A, Vp

where Vo ——(q
~

A, V
~

q). The state
~
1() can then be written as

f@&=/q&+(q(T(q) f (2m)" E——,k +i7ft

f(k', q)

E——,k' +ig
(16)

(17)

The term which is of main interest, is the second term which apart from an overall constant is given by

f dk"
~
k)f(k,q)

(2~)" E ,'k'—+i—q

Substituting expression (16) for f(k,q), we get

~k&&k~~V~q& f dk" (k&&k(~V~y&
k~+i~ (2~)" E —k +i—

(18)

dk" (k)(k(kv~q)(q ~XV($)
(2n. )" gV (E——,k +ig)

One can now go over to the coordinate representation to get

P(r)= f d"r'g(
i
r —r'i )

e'"'"
Vp

II

+k f d"r' g(
~

r —r '~ ) —f d"r"g(
~

r —r "
~

) e' q ' " " " ' V(r')P(r'),
Vp

(19)

(20)

where n is the dimensionality of the space
(n =1, 2, or 3), and the Green's function g(R ) is
given by

The bound states correspond to the poles of
(q

~
T

~ q ) or the zeros of the denominator in Eq.
(22), i.e.,

dnk &i k ~ R
g(R)=

(2n)" (E , k +iri)——
(21) A, f d"r e 'q' V(r)P(r) =1, (23)

One can also write (q
~

T
~ q ) in terms of P(r ) as

1-Xf d"r'e ' ' V(r')P(r')

(22)

These relations [(20) and (22)] allow us to write the
complete expression for the total wave function

(r).

and their wave functions are given by P(r ) which
satisfies the inhomogeneous integral equation (20).
It will be shown that the bound-state wave func-
tions in one and two dimensions can be obtained
iteratively from Eq. (20), and their energies will be
determined from condition (23). In three dimen-
sions, though there are, in general, no bound states
in the weak-coupling limit, Eq. (20) may be useful
in obtaining low-energy states.
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III. BOUND STATES IN ONE DIMENSION

The Green's function in one dimension is

(24)eie )x (

lq

where q =(2E)' . However, we are still not in a
position to expand either the Green's function or

the bound-state wave function (}}(x) in powers of A,

since the coefHcients mill be unbounded functions.
To overcome this difBculty, we note that
P(x)-e'~~" ~ for Ix I

00, and therefore one may
consider instead an expansion for

t(x ) =iqe 't '" 'P(x ) .

Substituting this expression in Eq. (20), we get

t tl
iq( jx—x'

l
—lx l

+x') x -l l iq( le —x'
l
—j& l

+&'~ ~ " &q~ l& —&"
l
—l& l

+&") V(x+— dx 8 dx 8
Vo iq Vo

ge'q' j" l
" 'V(x')t(x'),

Vo —— dx V(x) .

Perturbative solutions can now be obtained by iteration. Iter'ating to first order in A, and retaining terms of
order (iq) and iqA. , me get

t(x)=)+is f d'(I» »'I ——I» I+»') + f d»'(I» —x'I —I» I+»')V(x') (iq ) , 2 V(x')

Vo 2 Vo

ti

+~(ie) f d»' (
I
x —»'

I

—I» I
+»') —f dx "( I» —x"

I

—I» I
+»")

Vo

V Ill

«(x') (
I

»'
I

—x')+ f dx"'(
I

»' —x'"
I

—
I

x'
I

+x"') +
Vo

The first two terms can be used in Eqs. (25) and (23) to get

iq=A, VO+A, f dxdx'V(x) Ix —x'I V(x')+0(A, ),
where iq= —( —2E)'~, in terms of which the expression for t(x) becomes

«»=i+~ f d»'(I» —»'I —I» I+x')«x')+-, l'Vo f d»'(I» —»'I —I» I+»')'«»')

+~' f d»'( I» —x'
I

—
I
»

I
+»') «»') f dx "(

I

x' —x"
I

—x'+x")«x")+0(~') .

The corresponding wave function is obtained from Eq. (25):

(30)

p(x)= —. e'e ~" ~t(x) .
lq

It is observed that for short-range potentials, the coefficients of A,
" are bounded functions.

The solutions for t(x) given in Eq. (30) require modifications for potentials with long range. %e will con-
sider only the special case of

V(x)~ —a
I
x

I

2 for
I
x

I
~ao .

Going back to Eq. (26), the leading term for t(x) is

dxt&iq( jx-x'j —jx j+x') +0(g)V(x')
—CO Vo

(33)
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which leads to
lfA, V(x')

t(x) =1+iq f „( (
x —x'

(

—
(
x

(
+x') dx'+O(k) .

0

The corresponding energy is given by iq = —( —2E)'

tg=AV 0+4K, (in')a f dx V(x)+O(A2) .

This agrees with the result obtained by Blankenbecler eI. al.

(34)

(35)

IV. BOUND STATES IN TWO DIMENSIONS

The Green's function in two dimensions is given by

g(
~
r; —r

~

)= ——Ko(2x'~')

1 XN co ~N
—,(lnx) g 2

—g 2 i'(n+1)
0 (n!) „0(n!)

where Eo is the Bessel function of the third kind for an imaginary variable,

x= —, ~E ~(r; —rj)

g(x)= 1(x) .1 d
I (x) dx

(37)

&n order to simplify g(R),R =
~
r; —rj ~, one notes the important property' that E(A, ) is exponentially

small for A, ~O, i.e., E(A, ) -exp( —1/A, ). %e then ~rite

g(R)= —e ' [ln( —,eR) —P(1)]——[e '"[»(—,eR) —P(1)]+Ko(eR)I,

where e=(2
~

E
i
)'~, and —P(1)=0.5772 is the Euler constant. Now consider the case where rj. is finite.

Then the second term is of the order of exp( —1/A, ) for r; & 1. For r; & 1, since the derivative of this term is
bounded, we can replace E. by r; with errors of order exp( —1/A, ). Therefore for r~ finite, we can write

g(R ) =—e '"[ln( eR )—P(1)]———[e '[ln( er; ) —P—(1)]+Ko(er;)) +0 (e
2

7T
2

%'e can similarly replace 8 by r; in the exponent of the first term, introducing errors of order exp( —1/A. },
so that we finally get for r~ finite,

(40)g(R ) =—e 'ln ———Kp(e'r; )+0(e ) .
—~r,. R 1 —1/A,

7T r;

In order that the expansion of the wave function 1s 1n terms bounded functions, we take out the asymptot

ic behavior of P(r } by defining

t(r)=e'"P(r) .

Substituting Eqs. (40) and (41) into Eq. (20), one gets

t(r, }=——[lnri+e 'Ko(er, )]+—f d r2(ln
~
ri —r2

~
)

Vo

+—f d ri ln —f d rz ln V(rz)t(rz)+O(e 'i
) .

r, r, Vo

(4&)
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%e iterate the equation, and omitting terms of the order exp( —1/k), get the asymptotic series

t(r~)= ——[I nr~+e 'Ko(er, )]+P(r, )+A. f d r2Q(r~, r2)P(r2)

+&2 f 12r2Q(r&, rr) f d r3Q{r2,r3)P(r, )+ . +x"fd'r, Q(rfyr2)

Xf d r„+,Q(r„,r„+,)P(r„+))+ . (43)

The bound-state wave function can then be ob-
tained from Eq. (41). It is important to observe
that the functions which are coeAicients of
k", n & 0, are not only bounded but go to zero as
r& ~ 00. This expression for t(r) can be used in

Eqs. (41) and (23), leading to the asymptotic series
in Eq. (9) for ln( —E).

Finally we remark that, in general, there are no

I

bound states in the weak-coupling limit for the
three-dimensional problem. However, the inhomo-
geneous integral equation (20) along with the
bound-state condition (23), may be quite useful in
obtaining solutions for moderate values of A, since
the kernel is a difference of two terms and there-
fore the iterative series may be expected to con-
verge fairly rapidly.
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