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Decay of unstable states in macroscopic systems
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A unified treatment of the total time regime of the decay of an unstable macroscopic state is
derived by functional integral methods. A new one-variable integral representation for the con-
ditional probability is obtained. Previous results with only a limited range of validity are con-
tained as special cases. Further, the evolution of initial states in the vicinity of the instability

point is studied.

The temporal behavior of fluctuations in a macro-
scopic system which is initially quenched to an un-

stable stationary state is one of the intriguing
phenomena in nonequilibrium statistical mechanics. '

Such processes are observed in many physical sys-
tems, e.g. , superfluorescence, the onset of laser ac-

tivity, spinodal decomposition, and also in many dif-
ferent fields, e.g. , chemical reactions, electronics, and
biology.

When a system is in an unstable stationary state
the decay is initiated solely by stochastic forces and
the fluctuations of the observables will rapidly grow.
At intermediate times the observables have changed
macroscopically and also the fluctuations are of mac-
roscopic order. In this time regime the stochastic
forces are small compared to the deterministic forces.
In the final time regime, where the system ap-
proaches the stable stationary state, the fluctuations
shrink to a finite microscopic level. There, we have
to take into account the stochastic forces properly
again.

Several approximation schemes for such decay
processes have been proposed. In the methods of
Refs. 2 and 3 the Fokker-Planck equation associated
with the stochastic process is solved for the initial
and intermediate time regime in different approxima-
tions, and the corresponding solutions are matched
together at a time to which was determined by fitting
the experimental data. In recent approaches ' the
separate treatments of initially linear and intermedi-
ately deterministic regimes are avoided. However,
these methods do not cope with the fluctuations in
the final time regime, where equilibrium is ap-
proached.

The purpose of this Communication is to present a
unified treatment of all time regimes of the decay of
an unstable stationary state by functional integral
methods. It turns out that some sort of approximate
kink solution dominates the functional integral in the
final time regime where equilibrium is approached.
By a careful treatment of the resulting quasisymmetry
mode a new integral representation for the condition-
al probability of the decay process is obtained. Previ-
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In the small-e limit the functional integral (3) is
dominated by the stationary points of S,
5$/5x, = —x, + V'(x, ) =0. These are the paths
x,(r) of a particle of unit mass moving in the invert-
ed potential —Vwith boundary conditions x, (0) =xi
and x,(t) =xi. The standard evaluation of Eq. (3) by
steepest descent gives

K =NiDetL(x, ) i
't'exp( —S,/~) (6)

where L (x,) = —d2/dr'+ V"(x,) is the second varia-
tion operator 5'S/5x, ' and N is an appropriate nor-
malization constant. The determinant in (6) is calcu-
lated for eigenfunctions [L(x,) —h„] x(r) =0 .with

ous results, being valid only at intermediate times,
are recovered by a saddle-point approximation.

To avoid unessential complications I consider the
stochastic overdamped motion in a one-dimensional
symmetrical bistable potential U(x) with minima at
x = +1 and a maximum at x =0. Hence, the deter-
ministic motion is given by x = —U'(x), x =0 is the
unstable stationary point and x = + 1 are the stable
points of the system. The dynamics of the stochastic
system is described by the Fokker-Planck equation
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where P(xf, t;x;) is the conditional probability with
the initial condition P(xr, 0;x,) =5(xf —x;). The dif-
fusion constant e is assumed to be small, ~ (( coo
—=

i
U"(0) [ and e « cot —= U" (I). The solution of

Eq. (I) is given by the path integral
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boundary conditions x„(0)=x„(t)=0. It can be re-
lated to the classical motion according to6'

N /ilDetL(x, ) l
=

Bxf
irpx, (0)

where E is the energy of the path x,(r).
The steepest descent estimate (6) of the path in-

tegral is accurate if the fluctuations around the classi-
cal path x, are small. To be more specific, Eq. (6) is

appropriate, if h.„»0(p) for all n. This condition
is generally fulfilled in the case of monostable sys-
tems but may break down for dominant trajectories
of bistable systems. In the latter case the minima of
the potential V(x) at x 0 and at x = + 1 are
almost degenerate in energy. V(+1) = V(0)
—(cpp+ tpi) a/2. Accordingly, a path connecting
x, =O( Je) and xi =+1+0(J~) is a kinklike solu-
tion with an approximate time translation symmetry. '
Related to this quasisymmetry there is a nodeless
mode xp(r) whose eigenvalue Xp decreases exponen-
tially with time to 0(p).'

The situation is somewhat reminiscent of the prob-
lem of tunneling between degenerate vacua in quan-
tum mechanics. ' The difference lies in the fact that
in our problem the degeneracy is removed by a term
of order ~ and that we aim at a result being a func-
tion of x&, xf, and t. Thus we are concerned with a
kinklike solution whose energy explicitly depends on
xI, xf, and t.

To deal with the quasisymmetry of the action we
consider a family of kinklike solutions x(r, tp) which
have fixed boundaries x(0, tp) =xi, x(t, tp) =xi and
where to indicates the kink position. These trajec-
tories are approximate stationary points of the action.
The center to of the kink represents a collective coor-
dinate' and serves the elimination of the quasisym-
metry mode xp(r) Then, t.he appropriate generaliza-
tion of Eq. (6) is given by

K = N dt's
exp( —S/p)

lDet'L (x) l' '

where S is the action of the path x(r, tp) and Det'
has the lowest eigenvalue omitted. In leading order
the measure of integration J is independent of to and
is given by

(8)

I' = [ U(x, ) —U(xf) ]/(2rr p)

At times

0 ~ t & t I(ncup /)p(/2 pp)i

the range xf =+ I + 0(Je) is insignificant to the dis-
tribution P(xf, t; xi=0(J~)) Thus, in .this time
regime the decay of an unstable stationary state is
adequately described by Eq. (6). Our general result
(8), however, also covers the subsequent time regime
t ) t„ in which the equilibrium distribution is ap-

proached around the stable sites +1 of the system.
Prior to the further evaluation of Eq. (8) we now

first consider Eq. (6). The well-known difficulty in
handling the problem of classical mechanics in Eq.
(6) for an anharmonic potential is avoided by a deter-
ministic approximation in that range where the
anharmonic terms are relevant. To be explicit, the
energy of the path x,(r) from x, =0 to xf & 0 is ap-
proximately determined by the expression"

Zft= dx[2(V +E)] '' —Oo(xr, 0) (9)

1

Op(zy) = J dx[ll/Up(x) l
—l1/U'(x) I], (10)

where Tp(xf) = t+Op(xf, 0). At short times,
0 ~ t ( (2tpp) ', Eq. (12) reduces to the exact solu-
tion of the harmonic problem U(x) = Up(x). At
times (2tpp) ' « t & t, one obtains from Eq. (11)

P (xf, t;0) = F' exp( —Fi) / Jm

F = ((up/p}' xf exp[ —pipTp(xf) ]
(12)

which is exactly the "scaling" solution of Suzuki. ""
Equation (12) describes the formation of the double
peaks of the distribution P(xf, t;0) in the intermedi-
ate time regime, where the system is controlled by
the deterministic forces and the stochastic forces are
negligible.

Let us next consider the further evaluation of Eq.
(8). Three remarks are appropriate. (1) Since we
now assume I x; I

~ 0 (Je) and I 1 —xi I
~ 0 (Kp),

both the harmonic regions of V around x =0 and
x =1 are relevant. (2) The path x(7, tp) is only an
approximate stationary point of the action. Thus, the
conservation of energy is violated as a function of the
kink position tp (3) Let Ep and .Ei be the energies
of the path x in the harmonic region around
x 0 ( V= Vp) and x =1 ( V- Vi), respectively.
Then, using the deterministic approximation in the
intervening anharmonic region of V, Eo and E~ are

where Vp=(UQ —pUp')/2 with Up = tppxis the
harmonic approximation of V about x =0. If it were
V = Vp, Eq. (9) would be exact. The additional term
Op(xf, 0) is the amount of time accounting for the
anharmonic deviation V —Vo. In the deterministic
approximation x,(r) =xq(r), where xq = —U'(xq),
Op is given by Eq. (10). As a consequence of the ap-
proximation (9), xt is restricted to 0 (xf ~ a and
0 (xf ~b(t), where 1 —a && 0(Je) and b(t) is
obtained from Tp(b) = t +Op(b, 0) =0. We finally
obtain from Eqs. (6) and (7)

tpp JG exp( —G)
~~l U'(x&) I

G = (tpp/p) xj/ [exp [2tpp Tp(xf) ] —1 ]
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obtained by inverting the expressions

"m
to= dx[2( Vo+Eo) ] '~' —00(x,x;)

t] = dx 2 V)+E) ' —0) xf,x

(13)

~here t] = t —to and x is fixed somewhere in the
valley of the inverted potential —V(x), x )0. Cal-
culating Det[L (x) ] and Xo(x) in the corresponding
approximation it turns out that Det [L(x)] is factor-
ized. ' Equation (13) assumes the form

C t ]./2

E(xf, r;xi) = exp( —S/a)
GEO 9E~

2 'tr E Qxr Bxf

(14)

R =calo(j' x;) +cal](1 —xf —I'y )

r = (1 —x~)x~' 'exp( —m, T)

(16)

where T= +f0 (0x, )0+8(txr, x ). In Eq. (16)
we have changed over to the integration variable

y =x~ exp ( —coo[ro+Oo(x~, 0) ] )

Here, the error caused by extending the bounds of
the integral to zero and infinity is exponentially
small. Note that Eq. (16) is independent of the in-
termediate point x, as follows directly by use of Eq.
(11). A similar expression holds for xf & 0.

The integral representation (16) is the main result
of this Communication. It is the semiclassical solu-
tion of the decay of the system which is initially in
the harmonic range around the instability point.
Fquation (16) covers the intermediate and the subse-
quent time regime where equilibrium is approached
separately at the sites x =+1 and x = —1.

By a look at Eqs. (6) and (7) this result can be inter-
preted as a folding of two kernels,

E=]t d«x(r, )Z(x,,r, ;x.)X(x., r,;x, ) . (15)

For r &) (2coo) ' and xf )0, Eq. (14) leads to the
explicit result

P (xI, r;x;) = JQ)OCd~ U~ (xf)
dy exp(- 8/a)

me U'(xf)

Let us comment on three aspects of our result
(16). (1) Evaluating Eq. (16) for x;=0 and r & r, by
steepest descent at the saddle point z =1 —xf the pre-
vious result (12) is recovered. (2) For times r ) r„
~here the range of xf around the stability points is
important, the integral in Eq. (16) cannot be done by
steepest descent. (3) In the limit r )) r, Eq. (16) ap-
proaches the expression

P = [I +erf [(~o/a) '"x,l ]Po(xr ),
where Po(xf) is the equilibrium distribution of the
system in the harmonic range around xf =+1. Thus,
the proper result for the occupation probability' of
the site +1,

p+= [1+erf[(~0/~)'"x&l ]/2

ls obtained.
Let us remark that Eq. (16) can also be verified by

the mode decomposition method. " By considering
appropriate integral representations of the corre-
sponding mode functions the sum over all mode con-
tributions can be performed explicitly and the result
can be written in the form (16).

Recently, de Pasquale, Tartaglia, and Tombesi"
have treated the decay of an unstable state by the
method of stochastic differential equations and have
obtained explicit results for the moments. The same
results aiso follow from our Eq. (16) after only a
slight modification has been performed. "

A final remark is in order. Exchange of probability
between the sites x = —1 and x =+1 happens on a
very huge time scale. '6 The basic object to be con-
sidered in this case is an approximate double kink
solution with boundaries x& = —1 and xf =+1, ~here
the kink positions represent two collective parame-
ters. With the appropriate generalization of Eq. (14)
we directly obtain a repulsive kink-kink interaction. '

Thus, contrary to Ref. 11, we need not change over
to an integration path in the complex plane of the re-
lative kink position. '8 The proper value of the in-
verse transition time

rx ' =d~o~i exp [ —[ U(0) —U(1) ]/~ I/~

is obtained by this method.
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