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We present a systematic scheme of improvement on the hypernetted-chain (HNC) equations,
based on the density-functional formalism of correlations in high-density, classical plasmas. We
show by a numerical comparison that the proposed scheme significantly improves the HNC
results and leads to predictions almost identical to the exact Monte Carlo results.

The classical one-component plasma (OCP) makes
an idealized model for description of salient proper-
ties in high-density plasmas, such as those found in
the interior of degenerate stars and heavy planets. In
thermodynamic equilibrium at temperature 7, such
an OCP with number density » is characterized by a
single dimensionless parameter, I' = (Ze)?/aks T,
where Ze is the electric charge of a particle and
a =(4/3wn)'” is the ion-sphere radius.

The hypernetted chain (HNC) approximation, -
though superior to all the analytic schemes proposed
thus far for a treatment of OCP,? still exhibits a sys-
tematic departure from the exact Monte Carlo (MC)
results® in the strong-coupling regime, I' >>1: Am-
plitudes of the oscillations in the radial-distribution
function g (r) are usually underestimated in HNC
(see Fig. 2 below). The HNC form of ‘‘thermal en-
ergy”’ in the internal energy formula® differs substan-
tially from the MC form, I''/2 vs T4, the HNC
thermal-energy function is larger numerically than
the MC thermal-energy function, with a difference
amounting to 45% at I'=150.® Such a thermal-
energy contribution, for example, plays the central
role in the theoretical calculation of miscibilities in
dense, multi-ionic plasmas; accurate representation of
thermal energy is crucial here. It is therefore a
meaningful project to construct a workable theoretical
scheme by which a systematic and significant im-
provement on HNC may be achieved for high-density
plasmas.

Recently, Rosenfeld and Ashcroft’ advanced a
semiempirical scheme of modification to HNC, on
the basis of universality ansatz for the bridge func-
tions; the numerical results obtained for OCP are
nearly indistinguishable from the exact MC data.
Their scheme, however, relies heavily on the
parametrized hard-sphere bridge functions, contain-

ing a free parameter to be determined from a self-
|

consistency condition. Application of this scheme ap-
pears increasingly difficult for a multi-ionic plasma,
where the number of free parameters correspondingly
increases.

In this Communication, we wish to present a sys-
tematic scheme of improvement on the HNC results
within a self-contained framework of the plasma
theory. Technical difficulties involved in the numeri-
cal computations are no greater than those in the
solution to the original HNC equations; the scheme
does not contain free parameters and is applicable
equally well to OCP and multi-ionic plasmas. Only
for notational simplicity, we shall here describe the
theory in terms of OCP, however. By a numerical
example we shall demonstrate that the proposed
scheme can lead to predictions almost identical to the
exact MC results.

We begin with placing a test charge Ze at the origin
(T =0), and regard its potential ¢.,(r) as an exter-
nal disturbance to an otherwise uniform OCP. In the
density-functional formalism,? the Helmholtz free en-
ergy of the system is expressed as a functional of
density n(r) =n +8&n(r):

Fln(D)= [ dF geu(Non(n)
+3 far far' v T-FDon(Non(r)
+Foln(N1+FIn(nN] . Q)

Here v(r) = (Ze)?/r is the Coulomb interaction,
Foln(r)] refers to the free-energy functional for the
corresponding noninteracting system, and F.[n(r)]
refers to the free-energy functional for the remaining
correlation contribution.

We expand F.[n(r)] around the uniform density »
as

Fn(n1=F.nl +% fd F’fd K2 F-7Den(nsn(r)
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where the term proportional to 8n(r) vanishes identi-
cally by virtue of particle-number conservation. The
v-body correlation potential K”’(ty, ..., T,) can
be calculated by means of the functional derivative
method?; the results for the Fourier transforms of
K® and K are

4m(Ze)B/q* +BR 7V (9) =—ni(q) , 3)
RO (5, ) =1 - S ) @

T S(pS(esth

where 8= (kzT)™' and k=9 +q. The functions,
S(q) and ¢(q), refer to the static structure factor and
the Fourier transform of the direct correlation func-
tion. The function S (P, Q) is a three-body analog

of S(q), expressed in terms of the Fourier transform
of the ternary correlation function #®( ¥, ') as

SOP, ) =—2+S(p) +5(q)
+S) +i%(F,7) . (5)

The equilibrium distribution is determined from
the usual condition® that the first functional deriva-
tive of F[n(r)] with respect to 8n(r) vanish. Since
the pair-correlation function, A(r) =g(r) —1, is
given by 8n(r)/n, the equilibrium solution yields

g(r)=expl=Bv(r) +h(r)—c(r) +B(N] , (6)

where we use the Ornstein-Zernike relation’® between
h(r) and c(r), and set

2
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This function corresponds to the sum of all bridge
functions in the Mayer cluster expansion; Eq. (7)
thereby connects the diagrammatic expansion theory
with the density-functional formalism.!° The HNC
equation results if one sets B(r) =0 in (6).

Since S(gq) for the Coulomb system behaves as
asymptotically equal to g2 in the long-wavelength lim-
it, due care must be exercised in the evaluation of
the three-body function S® (5, ), so that a spuri-
ous divergence may be avoided in (4). One can in
fact show!! that such a divergence is avoided as long
as the ternary correlation function satisfies the sum
rule,

Jarwoa, mm=-2aow . @
where rp=| 71— 7l; B (F, §) actually represents
a short-range potential. In particular, use of the con-
volution approximation,

héa,\) ( f"l, Fz, F;) =h(r12)h(r23) +h(r23)h(r31)
+h(r3)h(ryy)

+n fd Tah(rig) h(rys) h(rss)

[
which satisfies (8) exactly, leads to Ifcm(ﬁ', q) =0.
Similarly we have confirmed that the four-body
correlation potential K vanishes identically when
the quaternary correlation function is also expressed
in the convolution approximation.

Since the convolution approximation, on which the
HNC equation is based, takes accurate account of
long-range correlation in the Coulomb system, we
seek to improve the HNC approximation for the
short-range correlation, writing

hO(F), T, T) =h (T, T, T3)

+5h (T Ty T3) . (10)

The Kirkwood superposition-approximation term,
given by the first, triangular diagram in Fig. 1, offers
a simplest typical term describing such a short-range
contribution. The sum rule (8) is violated; the use
of this term alo_nei)in (10) would lead to a spurious
divergence in K.~ (P, @). To rectify this apparent
flaw, we convolute each vertex and collect all the dia-

9) grams as depicted in Fig. 1; the result then is
J
BKR (T -7, =t ==n(F-Dr(T =T Dr(F"=FI) . an
Substitution of (11) in (7) finally yields
2 ’ " ’ ’ " "
BCK(r)=%-de‘ Jar n(F=FDRAF =T DAAT = TDRGIRG) 12)

which turns out to be the simplest bridge-diagram contribution.
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FIG. 1. Kirkwood superposition-approximation terms
with vertex corrections. The open circles refer to the parti-
cle coordinates under consideration; the filled circles, those
to be integrated; and a line joining two particles represents
the pair-correlation function A (r).

On the basis of those calculations, one now has a
systematic scheme of improving the HNC equations
in the framework of the plasma theory: One first
solves the HNC equations and writes the resulting
correlation functions as Aync(r) and cync(r). The
bridge function is then evaluated by stretching the
short-range part to approximate ion-sphere values as

2

I
[f a

where Bck(r) is calculated!? by substituting Aunc(r)

in (12). The stretching coefficient C is determined'?
as

B(r)=l(C—l)exp +1]BCK(r) , (13)

C =[1.057T +cunc(0) +1/Bck(0) ; (14)

the other parameter takes on the value, £ =1.6, re-
flecting the condition, Bek(£€a) =0. Finally, one
substitutes (13) in (6) and solves the resulting modi-
fied HNC equation, regarding v(r) —B(r)/B as the
effective potential. In Fig. 2 a numerical computed
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FIG. 2. The radial-distribution function g(r for OCP at
I'=160. The filled circles represent the MC values; the
crosses, the HNC values. The solid curve depicts the result
on the basis of Egs. (13) and (14).

result is compared with the HNC and MC results at
I' =160; a significant improvement over the original
HNC result is clearly observed. The final result as il-
lustrated in Fig. 2 turns out to be almost identical to
the MC result; the excess internal energy obtained in
the improved scheme now agrees with the Monte
Carlo data* with digression less than 0.15%.

The detailed theory and numerical results are
planned to be published elsewhere.
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