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%e discuss the extension of the Lewis-Riesenfeld technique of solving the time-
dependent Schrodinger equation to cases where the invariant has continuous eigenvalues.
The extension is carried out for a general Ermakov system. %'e also discuss extensions to
S-dimensional systems and the calculation of the propagator for a general Ermakov sys-
tem.

I. INTRODUCTION

0= 2p + 2N (t)g

by making use of an explicitly time-dependent con-
stant of the motion (or time-dependent invariant) I,

k 0I= —,(xp —xq) +—,k =const
2 x (1.2)

where x (t) is a e-number solution to the auxiliary
equation

Some years ago Lewis and Riesenfeld' solved the
Schrodinger equation for the time-dependent har-
monic oscillator

(1.7) also, of course, satisfies (1.4) and (1.5). The
Schrodinger equation for the Ermakov Hamiltoni-
an (1.6) is

+ , to (—t)q + f + P(q, t)=i%
2 Qq x x Bt

In Ref. 2 we proved that the general solution to
(1.8) can be written

P(q, t)=pc„e " P„(q,t),
(1.9)

c„=(P„(q,O),P(q, O) )e

where
x+a) (t)x =k/x

The Lewis invariant (1.2) satisfies

[I,H]+ —=0, —dI 1

dt /A

and has eigenvalues

Ig„(q, t) =A,„f„(q,t),
A,„=const .

In a recent paper we extended the Lewis-
Riesenfeld solution technique to a general Er-
makov system with Hamiltonian

H = —,p'+ , to'(t)q + —f+
X

having Ermakov invariant

(1.3)

(1.6)

a„(t)= — f

istic(2ti*)~
x 1/2 X

(1.12)

and the [ P„) form a complete, othornormal set

I P"„(tr)P„(tr)do =5„„. (1.13)

Here P„(q/x) =P„(tr) satisfies the time-indepen-
dent Schrodinger equation

+ , ktr'+ f(tr) P„(—tr)=&,P, (tr),
do'

'2

I=—,(xp —xq) +—+ +f &
2 x X

where x satisfies the same auxiliary equation (1.3),
and f(q/x) is an arbitrary function. The invariant

The unitary transformation e'~ ' ' maps the
eigenvalue equation for I (1.5) into the time-
independent Schrodinger equation (1.12).

The interest in the above solution arises from the
fact that every potential, V(o)= —,ko +f(tr), for
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which we solve (1.12), can be used to generate a
solution to the time-dependent Schrodinger equa-
tion (1.8). Thus, we have a class of exactly solv-

able, time-dependent Schrodinger equations
depending on the arbitrary function f (q/x).

The work of Lewis and Riesenfeld and our work
in Ref. 2 assumes that the eigenvalue spectrum
for the invariant I is discrete —Eq. (1.13) contains
the Kronecker delta. In general, however, the
spectrum of I from Eq. (1.12) will possess both
discrete and continuous eigenvalues. Thus, we
must investigate the Lewis-Riesenfeld theory in the
case of continuous eigenvalues, the case of both
discrete and continuous eigenvalues can then be ob-
tained by superposition.

and

f P)„(tr)Px (tr)dtr =S(A,—A'), ,

c(&)=(1(„(q,O), f(q, O))e ' '"".

(2.9)

(2.10)

Next we present an explicit example of the use of
the continuous spectrum theory.

III. EXAMPLE

H= —,p + —,~ (t)q (3.1)

We consider the original Lewis-Riesenfeld prob-
lem of the time-dependent harmonic oscillator,
f=0

II. CONTINUOUS EIGENVALUES

H= —,p~~ , o) (t)q—+ f +
x

with

(2.1)

x+N (t)x =k/x (2.2)

and
2

Here we again start from the Ermakov Hamil-
tonian

(3.2)

x+co (t)x =0.
The eigenvalue problem is

(3.3)

(3.4)

Lewis and Riesenfeld chose k =1 in the invariant
(1.2) which implies the eigenvalue problem is
discrete —the eigenfunctions ())„(o) are related to
the Hermite polynomials. We now take k =0 in
(1.2), which gives

I = —,(xp —xq)

I = —,(xp —xq)~+ —+ +f +
2 x x

(2.3) with solution

We assume a continuous eigenvalue spectrum for Px(o)= e', —oo &l(, & oo .
21r

(3.5)

IP)„(q,t)=A,g),(q, t),
A, =const . (2.4)

We have modified the eigenvalue in (3.4) for nota-
tional simplicity. The eigenfunctions tjt),(q, t) have
the form

(2.5)
c(k) =const .

The Schrodinger equation is Eq. (1.8). We expand
the solution in terms of the eigenfunctions tj)x(q, t)

P(q, t)= f c(A, )e' (""t()g(q,t)d)(, , while the phase functions a(A, , t) are given by

a(k, , t) = — f

(3.6)

(3.7)
The calculations are similar but not identical to the
discrete case summarized above. The result is that
the solution (2.5) is valid if

(2.6)

The solution to the Schrodinger equation is then

~( )
1 f (~)

—(%. /2) f (dt/x )

V'2n-x

a(A, , t) =——f ' dt
x' ' (2.7)

where

+&axq /(2%r)&ikq/xd~ (3 8)

d~
z + , ktr +f(o) Pq(tr)=—+),(tr),

dD
c(t(, ) = (P)((q,O), l((q, O) )e (3.9)

(2.8) The result (3.8) represents the solution to the time-
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dependent harmonic oscillator Schrodinger equa-
tion in terms of a Fourier transform.

The original derivation by Lewis and Riesenfeld
(k =1) gave the solution in terms of a Hermite
transform. These two modes of representing the
solution to the time-dependent harmonic oscillator
have also been given by Burgan et al. 3 The solu-
tion by Burgan et al. is derived by rescaling the
space and time coordinates. The results by Burgan
et al. are for the N-dimensional time-dependent
harmonic oscillator. However, making use of in-

variants for higher dimensional systems we can
extend our arguments to higher dimensions.

presented by Burgan et al. ' Our techniques are
quite different than Burgan et al. since these au-

thors do not exphcitly use the Lewis-Riesenfeld

theory.
As a final point it was proven by Khandekar

and Lawande that the Feynman propagator
(Green's function) for the solution

(4.1)

can be written

i fag(t") —a~(t')]
K {q",t';q', t') = e

IV. DISCUSSION

%e have extended the Lewis-Riesenfeld solution
technique to cases where the invariant has continu-
ous eigenvalues. As an example we solved the
Schrodinger equation for the time-dependent har-
monic oscillator for which the invariant has an en-
tirely continuous spectrum. This changes the ex-
pansion of the wave function from a discrete Her-
mite transform to a continuous Fourier transform.
Many other examples could be constructed since
we have shown how every solution to the time-
independent Schrodinger equation (2.8) allows us to
generate a solution to a time-dependent
Schrodinger equation involving the function f.

Using 5-dimensional Lewis-type invariants the
results of this paper and Ref. 2 can be extended to
certain X-dimensional time-dependent Schrodinger
equations. For the 5-dimensional time-dependent
harmonic oscillator the results agree with those

which is the generalization of the usual expansion
formula for tine-independent Hamiltonians. In
(4.2) the sum over A, can contain both discrete and
continuous eigenvalues, i.e., sums and integrals.
Using the results of Ref. 2 and this paper we can

calculate the propagator {4.2) for any Ermakov
system. The solution, of course, depends on the
function f. Khandekar and Lawande have con-
structed E for the cases f =0, f =cx /q2 dis-

cussed in Ref. (2). Note also that since c&
=( —A, /A') J (dr/x ) for all Ermakov systems we

only need solve the time-independent Schrodinger
equation (2.8) in order to employ (4.2) for the cal-
culation of the propagator.

%e plan to pursue extensions of the ideas
presented here and in Ref. 2 to more general time-
dependent systems.
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