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We show that with some weak assumptions molecular expressions for Frank elastic
constants of nematics, containing the direct correlation function, are equivalent to such

expressions obtained from the theory of hydrodynamic fluctuations.

In one of our previous papers' we derived micro-
scopic expressions for the Frank elastic constants
of nematic liquid crystals, containing the
Ornstein-Zernike direct correlation function c(1,2).
The expressions were derived by expanding the
functional of the total free energy of the system in

gradients of the one-particle distribution function

p&(1). There also exist other microscopic expres-
sions, ' directly related to autocorrelation func-
tions and are obtained by considering the hydro-
dynamic fluctuations of the local symmetry axis of
the nematic phase. These expressions naturally
contain the function U2(1,2) =—pq(1, 2) —p&(1)p&(2),
where p2(1, 2) is the two-particle distribution func-
tion.

In this paper we prove that, with some assump-
tions, these two approaches, and the final expres-
sions for the Frank constants, are equivalent. The
problem in its formal aspects is similar to that ap-
pearing in the statistical theory of the surface ten-
sion.

Let us follow first the theory of the hydro-
dynamic fluctuations. The fluctuations of the local
symmetry axis are described by the following ele-

ments of the susceptibility matrix (see, e.g. , Ref. 3),

X„„(rr') =P(n;—(r ')nj(r '))

The average of R;~(r) in an undistorted but orient-
ed nematic, is given by

(R &(r)) =pS(n; nj , 5J)—,
— (2)

where n is the unit vector in the preferred direc-
tion. It follows from (2) and the definition of n;(r)
that (n;(r)) =O. If n is parallel to the three-axis
one can write

n;( r ) =R;3( r )/pS (i = 1,2) . (3)

In the absence of a magnetic field one finds the fol-

lowing expresions for the Fourier transforms of
1'„,„,and 7„,„,(Refs. 3 and 5):

X„„(k)=e '"'" " 'X (r —r ')d(r —r ')
Il ) Pl ) j 1

=(K)ki +K3k3 )

(k):(K2k i +K3k3) 7

(4a)

(4b)

with Ki, K2, and K3 denoting the Frank constants.
The vector k is assumed to lie in the 1 —3 plane.
The Frank constants are given by the sum rules.
For example,

1/K& ——lim lim k~7„„(k).kl~ k3~0

where

(i,j =1,2) (1)

ni(r) =(~ik ni nk)Rkl(r )n
& /pS,

R;,.(r)—:g(Q 0, ——,5;,. )5(r —r ),

P=—I lktt T, S stands for the order parameter, p the
number density, and 0 for the unit vector along
the long axis of the ath molecule whose center of
mass position is r . ( ) indicates an equilibrium
average and we use the grand canonical ensemble.

A calculation of the average in (1) leads immedi-

ately to the microscopic expressions for the suscep-
tibilities and, hence the Frank constants, contain-

ing the function U2(1,2). Before we write them
down let us notice first that all pair correlation
functions in the uniform nematic of linear rigid
molecules have the form

X(1,2)=X(r —r', O', 0 ) .

In the following we shall write X(1,2)=X(r —r'),
where X( r ) is understood to be an operator acting
on functions of 0, and defined by
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X(r)
~

p}(Q)—=fX(r, Q, Q')ll(Q')dQ' .

Now, we find from (1), (4a), and (4b} that

(Sa}

1/K;= lim lim k, (Q;Q3~ Uq(k) ~Q;Q3),
(pS)2 a,~a,~

[i =1,2 and the summation convention is not used in (Sa) and (Sh)],

1/K3 —— lim lim k 3 ( Q ~Q3
~

Uq( k )
~

Q ~Q3 },
(pS} I,~I,~ (Sc)

where 8( r —r') = W(1,2) =—U2(1,2)+pi(1)5(1,2),
and U2(k) is the Fourier transform of
U2(r —r') = U2(1,2).

The expressions for the Frank constants' in

terms of the direct correlation function

e(1,2)=e(r —r') are as follows:

with A~~ and Az referring to the longitudinal and
transversal magnetic polarizability of one molecule.

Now we proceed to show that K] ——K i . Let us
notice first that we can write another expression
for Ki. Namely, in the presence of the uniform
magnetic field H, parallel to n, we have *

1
K( ——

2

1
K2 ——

2

f (L2p) ~c(r) ~Lzpfb

f «apl I
c(r)

I Lip&)x d r,

(9a) X (k) =(K]k] +K3k3 +~ H2) (12)

with 7, —=X~I
—gz standing for the anisotropic part

of the magnetic susceptibility. Hence, from (Sa),
(11), and (12)

K3 —— f (L2p~
~

c(r)
~
Lzp& }z'dr,

2

I.i
——i(sinyB/B8+ cot~ c~~/~g),

+cotg sin+8/Bg
8
ae

and I.3 ———iB/Bq are components of the angular
momentum operator L. It turns out that with

some weak assumptions K; =K (i =1,2, 3).
Nematics are usually diamagnetic. Since the inAu-

ence of the magnetic field on intermolecular in-

teraction is very small it is reasonable to neglect it.
If we do so we can ~rite the following relation

L~ p, }=—Pf 9'(r)
~

LV,„,)dr,

where V,„,is the external potential due to the uni-

form magnetic field H. The relation' is analogous
to that derived by Lovett and connecting V~
with V-, V,„,. In our case of diamagnetic molecules

we have

V,„,= ——,(Aii —Ai)(H. Q)

——,A~H

y, f (L2V,„,~

9(r}~L2V,„,)x dr, (13)

X, =pSA, . (14)

To transform the integral appearing in (13) we
use the identity

8'(r)= f 9'(r ")8' '(r ' —r ")

y S(r —r ')dr 'dr ",
~here the inverse of S(r) is related to the direct
correlation function as follows:

'(r) =5(r)/p~-c(r) .

From (15) and from the fact that fx 5(r }dr =0
we obtain

where A,:—A
~ ~

—3&. As far as the magnetic cou-

plings between molecules are assumed to be small
it can be written
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J(L2V,„,(9'(r) (L2V,„,)x'dr= —f (V,„,(
9'(r')9' '(r}9(r "}(L2V,„,)

x d d d

Finally, from (10), {13),(14), (16), and (17) we find
that —1

(L2tot
~

& '(r) ~L2pt)x'dr=It'. ; .
2P

Of course, we prove in the same manner that
E2 ——I( z and E3 ——E3.

The expressions (9a)—(9c) seem more useful for

a calculation of elastic constants than expressions
{Sb)—(Sc). It follows from the fact that the func-
tion e(r) is believed to be a short-range function.
Thus, it is easier to find some approximation for
e(r) than for U2(r), the Fourier transform of
which must have the 1/k singularity to give elas-
tic constants of finite values.
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