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This paper presents an investigation of the nonlinear interaction of a Gaussian elec-
tromagnetic (EM) beam with an electrostatic upper hybrid wave in a collisionless magne-
toplasma. The EM beam is assumed to be propagating in the ordinary mode, having a
nonuniform intensity distribution (along its wave front) in a plane transverse to the direc-
tion of propagation. Because of the Gaussian intensity distribution of the EM beam, a
time-independent component of the ponderomotive force becomes finite and this leads to a
coupling between the pump EM beam and the electrostatic upper hybrid wave. This cou-
pling is so strong that the weak electrostatic upper hybrid wave gets excited. The excited
electrostatic upper hybrid wave may again interact with the pump EM beam and lead to
the generation of an electrostatic lower hybrid wave of significant power.

I. INTRODUCTION

When a high-power Gaussian electromagnetic
(EM) beam interacts with a collisionless plasma, a
time-independent component of the ponderomotive
force becomes finite which leads to the modifica-
tion in the background electron-ion density.! As a
result of this, an additional coupling is introduced
between the pump Gaussian EM beam and the
electrostatic modes of plasma. This coupling is so
strong that the electrostatic mode can be excited
and under appropriate conditions even focusing of
the electrostatic mode can take place.” The excited
mode can again interact with the pump to give rise
to the phenomena of enhanced Raman or Brillouin
scattering.>* The second possibility is that the ex-
cited electrostatic wave may again interact with the
pump wave and generate another electrostatic
wave.

The motivation behind the present paper is to
study the second possibility, viz., the generation of
the electrostatic wave. We have taken the specific
case of the interaction of a high-power Gaussian
EM beam with the electrostatic upper hybrid wave
in a collisionless magnetoplasma. The EM beam is
assumed to be propagating perpendicular to the
static magnetic field having its electric vector po-
larized along the static magnetic field (ordinary
mode). The excited electrostatic upper hybrid
wave interacting with the pump wave is found to
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generate an electrostatic lower hybrid wave of sig-
nificant power. The intensity of the generated elec-
trostatic lower hybrid wave is maximum for an op-
timum intensity of the pump wave.

In Sec. II we have studied the excitation of the
electrostatic upper hybrid wave by the Gaussian
EM beam. In Sec. III generation of the electrostat-
ic lower hybrid wave has been studied, using the
fluid model of plasma. Section IV presents the dis-
cussion and important conclusion of the present in-
vestigation.

II. EXCITATION OF THE ELECTROSTATIC
UPPER HYBRID WAVE

We consider the propagation of a Gaussian EM
beam in a collisionless magnetoplasma. The z axis
is defined along the static magnetic field (By=2B,).
The EM beam is assumed to be propagating along
the x axis in ordinary mode, viz., having its elec-
tric vector polarized along the static magnetic field.
The intensity distribution of the beam at x =0, is
given by

_E:‘OZEEO ’
(1)
EoEY | x—o=Edexp(—r2/r3),

where r [=(y2+2?)!/?] is the radial coordinate of
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the cylindrical coordinate system and r, is the ini-
tial beam width.

Because of the nonuniform intensity distribution
of the EM beam in the plane transverse to the
direction of propagation, the time-independent
component of the ponderomotive force becomes
finite. This leads to the modification in the back-
ground electron and ion densities. The modified
electron-ion density (No, /Ny;) is given by!
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It must be mentioned here that the electrostatic
upper hybrid wave is weak and hence it’s contribu-
tion to the dc component of ponderomotive force is
negligible in comparison to the pump Gaussian
EM beam.

Following the above mentioned reference, the
electric vector _éo of the EM beam at finite x, can
be written as
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Here
a=e’m;/3kgT,(1+T;/T,)mlw}

is the nonlinearity parameter, m, and m; are the
electron and ion masses, respectively, kp is the
Boltzmann constant, T, and T; are the electron
and ion temperatures, respectively, N, is the
electron-ion density in the absence of the EM
beam, e is the charge of the electron, c is the speed
of light in vacuum, and w, is the frequency of the
incident EM beam.

This EM beam may excite the natural modes of
vibration of magnetoplasma, viz., the electrostatic

2
So= r Bo(x)+Dy(x), Bo= 1 M , upper hybrid wave, thus leading to the enhance-
2 folx) dx ment in the amplitude of the electrostatic upper
W |, 9_;_& hybrid wave. Here we study the excitation of an
ko= ‘C_Go » €=1-— wh ’ electrostatic upper hybrid wave using the follow-
2 ing:
0l = 4mioe (i) The equation of motion,
pe m,
V, - o Gei — - = VN,;
me a:l (Vet V)Ve,i }zqe 1E+ ::l Ve,iX(B+BO)—7e,ikBTe,i N o . @)
e,
[
(ii) The equation of continuity, tal electron and ion densities in the plasma, g, ; are
aN. - the electron and ion charges (g, = —e¢; g, = +e),
el LV N,, iV i)=0 (5) respectively. B is the total time-varying magnetic

at

and the wave equation,

j’ =queve +qiNivi

is the current density.

In the above equations subscripts e and i are for
the electron and ion, respectively. Thus, V,; are
the total electron and ion velocities, N, ; are the to-

field in the plasma and E is the total electric field
in the plasma. v, ; are the ratio of specific heats
of the electron and ion gases, respectively.

Near upper hybrid frequency the ion motion is
negligible in comparison to the electron motion.
To find the electric field E, (=XE,) associated
with the electrostatic upper hybrid wave, we ex-
pand Ve, N,, and E as

—\79=V0e(w0,k0)+v1e(w1,k1) ’
N,=Ng.+nlw,ky), ™
_E.Z_E.()(w()?ko)_*’ﬁl(whkl) ’



25 NONLINEAR INTERACTION OF A GAUSSIAN . .. 2361

where N, is the electron density in the presence of
the EM beam given by Eq. (2), V., and n,, are the
perturbations in the electron velocity and density,
due to the electrostatic upper hybrid wave, varying
at frequency w,. Vo,, is the electron velocity in the
presence of the EM beam only.

Equations (4), (5), and (7) give the x and y com-
ponents of V;, as
iwe
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me
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m (w0l —w?l) ox?
and
ew
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e
ewc,v,zh 9’E, (8b)
me(wl —w?) dx?

Here o, =eBy/m,c is the electron cyclotron fre-
quency and
vih={VekpTe/m, )72

is the electron thermal speed.

Equations (6) —(8b) give the following equation
satisfied by the electric field E, of the excited elec-
trostatic upper hybrid wave:

(D%(J):ev (%l azEl azEl 82E1 (1)%

+ +—
Aol —wl)? ax? dy? 922 c?
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In the absence of EM beam, Eq. (9) gives the
dispersion relation

2.2 2
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(10)
In the absence of thermal motion, the above equa-
tion yields the usual upper hybrid oscillations at
frequency

o;=(w)"?.

2 2
Here wj, =(wp, + ¢, )12

quency.
We assume the solution of Eq. (9) is of the form®

is the upper hybrid fre-

E,=E o(x,y,2)exp[i (0t —k;x)] . (1n

Substituting for E; from Eq. (11) in Eq. (9) we ob-
tain

3E N 3’E,, 9%,

—2ik,A° OE 0=
kA" = a7 3?2 +B"E =0,
(12)
where
0 w%w:,vtzh
A= 2y2
cHwi —o7)
and

c? cz(wcze—w%) Ny
Substituting further for E,, in Eq. (12) as®
E y=E yp(x,y,2)exp[ —iks(x,y,2)] , (13)

we obtain the following equations after separating
real and imaginary parts:

2 2

as| le asl
ax'+ dy oz
__ 1 d’E10 9%E;po B°
kiE,o | dy? 9z? k?
(14)
and
i (31 ]8 . [3]a,.,
ox’ dy |ady 100 9z |3z '®
azsl 62S1 2
ayz +_ng EIOO':O’ (15)

where x'=x /A°.
The solution of Egs. (14) and (15) in paraxial ray
approximation is given by’
I

E Bo
1oo—fl(x,)CXP
2
s1=75 Bi(x") +®(x"), (16)

r2
2a5f1

1 dfi(x")
filx") dx’

While solving Eqgs. (14) and (15) the initial radial
variation of E o has been assumed to be

Bi(x")=

Eiw|x—0o=Bjexp(—r/2ag),

where a is the half-width of Gaussian distribution.
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Using Eqgs. (14) and (16) we obtain the following
equation for the beam-width parameter f; of the
excited electrostatic upper hybrid wave:

d2f1 _ 1
dx'?  agkif}

2 2 2

S1oiop, 3 me Eg

2 2 2y |4 2.4

kiclws —w?t) m; rofo
2
3 me EOO

Xexp |—7a - |-
m; fo
(17a)

From Eq. (17a) it is obvious that f| depends on
fo, hence, an analytical solution for f; cannot, in
general, be obtained. However, in the self-trapping
mode (fo=1) the following analytical solution of
Eq. (17a) can be obtained:

al+bl ai_bl -
f%:-——a—l;?—— oy cos(2Vb'x) (17b)

where

a'=1/k%a$(4%?,

and densities due to the generated electrostatic lower
2 2 hybrid wave, varying at the difference frequency
r— ©1®Dpe 3a Me E2 O=wy—;. _V.Oe,Oi are the electron and ion veloci-
kirie(4%wl-0k) |* i ties in the presence of the EM beam only.
Equations (4)—(6) and (18) give the following
Xexp |— %a e E equation satisfied by the electric field & of the gen-
i erated electrostatic lower hybrid wave:
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III. GENERATION OF THE
ELECTROSTATIC LOWER
HYBRID WAVE

We consider the electrostatic upper hybrid wave
described in the previous section, propagating
coaxially along with the EM beam. We use Egs.
(4)—(6) to study the generation of the electrostatic
lower hybrid wave, by the interaction between the
EM beam and the excited electrostatic upper hy-
brid wave at frequency w =wy—w,;. To find the
electric field &(=%£%) associated with the generated
electrostagc lower hybrid wave, we expand Ve, is
N, ;, and E as

Ve,i=V0e,0i(wo’k0)+V1e,1i(wlrk1)+Ve,i(mvk) ,
Nei =Noeoi+ 111101,k ) +n, (0,k) (18)
E=Eq(wp,ko)+Ej(0,k;)+ & (w,k) ,

where N, o; are the electron and ion densities in
the plasma in the presence of the EM beam only,
given by Eq. (2). Vy,; and n,, ; are the perturba-
tions in the electron and ion velocities and densities
due to the excited electrostatic upper hybrid wave,
varying at frequency w,. V,; and n,; are the per-
turbations, in the electron and ion velocities and

d
Oi-a—z-vl‘iy ] 5 (19)

2ec’w® Ny 3x?
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where w,,,-=(41rN0e2 / m;)!/? is the ion plasma fre-

quency, o, =eB, / m;c is the ion cyclotron fre-
quency, Vi, =(y;kgT; / m;)'/? is the ion thermal
speed, and vy, vy;, are the x and y components,
respectively, of V;. In writing Eq. (19) we have
used the lower hybrid condition o, <<® << ®ce.

In the absence of the EM beam and the electro-
static upper hybrid wave Eq. (20) gives the disper-
sion relation

2 2 2 2 2 2

K2 Wpe Vin  @p Viy _ Wpe  Wpi
2 2 2 2 2 2

Wpe Wge O © Wi O
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The solution of Eq. (19) may be written in the

form?

& = &,(x,y,z)exp( —ikx)

+ &,(x,y,z)exp[ —i(Ak)x] ,

where &, and &, are slowly varying complex func-

tions of space.

(22)

Substituting for & from Eq. (22) in Eq. (19) and
equating the coefficients of exp(—ikx) and
exp[ —i(Ak)x] on both sides of the resulting equa-

(20) tion, we obtain
In the absence of thermal motion the above equa- - ., 0% 3¢, 9’%,
tion yields the usual lower hybrid oscillations at —k°A'8—2ikA = T ay? 22 +B',=0
frequency g
(23)
) I/ | B (21)
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o, 3%, 3%, EwBo N we 1 1
—(Ak)*A'&,—2i (AK)A’ + + +B'#,=z — Dexp | —r? +—
2 ax "oy a2 Y ffi No2ctwe V|7 | 2drE T 2adf?
Xexp[ —i(koso—kys1)], (24a)
where
ok 1 kivk w0, wo(AE  (AkWE | ki(Akwd
D= 2 2 2 |17 3 2) 2 - 4 - 2 2 2,2
my(wje—w7) | agfi (0 — 0] Wce Wee Wee WOce rofo
ok 1 kivi | |o | o +m1<Ak)2V3,, wZ(ARVE | k(AKVE
mi(wg—o)) | agfi | (0i—ol) |0 = o o’ o' o’ refs
(24b)
where
o wﬁewzvﬁ, wf,,-V,%,
- CZCI)4 C2w2 ’
ce
@ 9w’ N o N
CZ Cza)cze NO C2 No ’

and Ak =ko—k, and N =Ny, =~N; (quasineutrality condition). To solve Egs. (23) and (24a) we use the

eikonal approximation.’ Thus,
&= o(x,p,2)exp[ —iks (x,,2)]

and

&2=&(x,y,2)exp{ —i[koso(x,p,2) —ky51(x,,2)]} .

(25)

(26)
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Substituting Eq. (25) in Eq. (23) we obtain the
following equations, after separating real and ima-
ginary parts:

2
ds ds as
ax" ay + [az
1 3’1, %) B’ ,
= ——A4'.
szm ay2 822 k2
(27)
and
ox"’ dy | 9y oz | oz
62 6 s
&3 . (28)
+ dy? a az?

Here x""=x/A’. Solution of Egs. (27) and (28) in
paraxial ray approximation is given by’

&10= o’ ex —r?
ST R PYS P
r2
s=73(x")+<l>(x") R (29)
1 df(x")

B(x")= ") dn

Using Eqgs. (27) and (29) we obtain the following

equation for the dimensionless beam-width parame-
ter f of the generated lower hybrid wave:

d*f __ 1 ’f wp: Ope
dxl:Z b3k2f3 2k2 (0828
X iazﬁe——Ego exp —ia Me -—Eozo
T my r&fé‘ omy fg

(30a)

From Egs. (30a), it is obvious that f depends on
fo, hence, an analytical solution for f cannot, in
general, be obtained. However, in the self-trapping
mode (fy=1) the following analytical solution of
Eq. (30a) can be obtained:

f2=_ (an_bn) (a"+b")
2bu 2bn

cosh(2vb"'x) ,

(30b)
where
a''= l/kzbgA 2

and

2 2

"__ o’ Dpe  Dpi 3ameE2
2 _ 2| 3
k't |0k w? m;
me
Xexp |—+ E
i

By’ and b, in Eq. (29) are the unknowns to be
evaluated later by using the boundary condition.

Substituting for &, from Eq. (26) in Eq. (24a)
we obtain

$202F2 exXp

1
—r? + , (31)
[2 rofs of. }

where

EyBy
Fy=2 %70 N ©¢_p
D, fof1 No 2cw,
and D is given by Eq. (24b). Here

D,=[—(Ak)’4’ +B']. (33)

Equations (22), (25), (26), (29), and (31) give the
electric field of the generated electrostatic lower
hybrid wave as

(32)

&= Fexp exp{i[wt —k(x +s5)]}

|

Xexp{i[wt —(Akx +koso—ks1)]} , (34)

_.r2
2béf?
1 1
+—
2rifs  2a3fi

+ Frexp | —

where
F Bo (35)
1= f(xn) N
To find the unknowns By’ and b, we use the
boundary condition & =0 at x =0 which yields
1 1 1
S =+ (36)
b§ ry  ag
and
By =———2%  (EoBi)-2 N D’
D, |x=0,y=0 2C (8] No x=0,y =0 ’
(37
where
D'=D|x_oy=0- (38)

The intensity of the generated electrostatic lower
hybrid wave is given by
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The total power associated with the generated electrostatic lower hybrid wave is given by®’

cos[k (x +5)—Akx —(kgso—kys1)] . (39)

+2F,Fyexp

_ 1 ldo |dwe) ® rte .
=t o o [ g dyaz. (40)
Using the following expression for the dielectric constant e:
w:e w;,- 5 a)lfe vtzh wf,,- Vlzh
€=+ —— kT T+t |
Wee O Woe Wfp OF @

and Eqgs. (20), (39), and (40) we obtain this expression for the power
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2 2
D'? N 20272 D? N 1
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rofe  aofi
2DD’ 1 N N | cos[k(x +s)—Akx —(kgsg—k15,)] a1
(Dy [x=0y=0)Dr fof1f | No |,_o,—0] | No [P S| : ’
2b6f*  2r5fe  2a4fY

where D and D’ are given by Egs. (24b) and (38), respectively. Here Py=(c/ Sﬂﬁf,o'_éowroz is the total power
associated with the incident EM beam.

2.0~
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FIG. 1. Variation of the intensity of the generated electrostatic lower hybrid wave at x =0 and 30zc Jworé =0.01
with the intensity of the pump wave. The solid curve is for v} /c2=0.0085 and the dashed curve is for v 4 /c>=0.01,

Q=10
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FIG. 2. Variation of the normalized power (P/P) of
the generated electrostatic lower hybrid wave with the
normalized distance £=230xc Jaworé for v /c2=0.01.
The solid curve is for w.; /w=0.02 and the dashed curve
is for we /@0=0.016. Py~5X 10" W.

IV. DISCUSSION
To have an appreciation of the power associated

with the generated electrostatic lower hybrid wave,
we have chosen the following set of parameters:

40—

wo=1.0x10"" radsec™',

©,=9.999% 10" radsec™!,

Yre _o.5, 29 _0.016 and 0.02
w

ro=100(c /wy) cm, ag=10r ,
2

Uth

—-=0.0085 and 0.01 ,

c

T, /T;=4,

’

The results have been depicted in the form of
graphs (see Figs. 1—23).

It is obvious from the expression for the electric
field of the generated electrostatic lower hybrid
wave [Eq. (34)] that it has two components, the
first one is supported by the thermal effects in the
plasma, and the second component arises as a re-
sult of the finite source terms by the beating of the
EM beam and the excited electrostatic upper hy-
brid wave. The first component which is support-
ed by the thermal effects in the plasma can be Lan-
dau damped depending upon the parameters of the
plasma. Under such conditions, the intensity of
the generated electrostatic lower hybrid wave at
x =0 can be written as

-
—
-
w
3.0 -
///
////
20 —
- (3)
- _—
z1o == == ==J2)
- // N Va N\
y / (8D \
o8- y / \
/ /
/ \
06| \
/ \
\ \
0.4}
/
\
0.2 \
0 | | | | L J
0 0.1 02 0.3 04 05 0.6

FIG. 3. Variation of the beam-width parameters of the excited electrostatic upper hybrid wave and the generated
electrostatic lower hybrid wave (f; and f) with the normalized distance £=30xc /wed. Curves (1) and (2) are for f,
for w. /w=0.016 and 0.02, respectively. Curves (3) and (4) are for f for w./w=0.016 and 0.02, respectively.
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2 2
N
EE* | o= —————(EqB ) |~
* (Drlx=0)2 NO x=0
we 2
X (D] =0
2C2a)0 |x 0
wexp | —r2 |-L 4L
TR T e

where D | ,_o=D"' is given by Eq. (38).

From the above equation it is obvious that the
intensity of the generated electrostatic lower hybrid
wave depends upon (i) the modified background
density and (ii) the intensity of the pump. By in-
creasing the pump intensity the modified density
decreases and hence there is an optimum value of
the pump intensity at which the intensity of the
generated electrostatic lower hybrid wave is max-
imum. This is evident from Fig. 1 where we have
plotted the intensity of the generated electrostatic
lower hybrid wave versus the normalized intensity
of the pump EM beam. It is interesting to note
from Fig. 1 that as we change the value of the
background electron (or ion) temperature the mag-
nitude of the intensity of the generated electrostatic
lower hybrid wave also changes. This may be at-
tributed to the fact that due to the change in the
background electron (or ion) temperature the modi-
fied density N, (or Ny,) is affected and hence the
intensity of the generated electrostatic lower hybrid
wave which depends on N, (or Ny;) changes.

Figure 2 shows the variation of the normalized
power P /P, associated with the generated electro-
static lower hybrid wave with the normalized dis-

tance of propagation & =30xc /wyr ¢, for different
values of the static magnetic field when the pump
EM beam is propagating in the self-trapping mode
(fo=1). The power associated with the generated
electrostatic lower hybrid wave exhibits maxima
and minima with the distance of propagation be-
cause of the focusing and defocusing effects of the
excited electrostatic upper hybrid wave, and the
generated electrostatic lower hybrid wave, as de-
picted in Fig. 3. For the typical set of parameters
chosen here the maximum power is more at lower
static magnetic field. The variation in the peak
power of the generated electrostatic lower hybrid
wave at different values of the static magnetic field
is due to the fact that by changing the static mag-
netic field the focusing of the electrostatic upper
hybrid wave, defocusing of the generated electro-
static lower hybrid wave and the dispersive proper-
ties of the electrostatic upper hybrid wave, and the
generated electrostatic lower hybrid wave are
changed.

We conclude from the present investigation that
the generation of the electrostatic lower hybrid
wave depends on the parameters of the plasma,
EM beam, and the value of the static magnetic
field. For the set of parameters chosen here the
maximum power associated with the generated
electrostatic lower hybrid wave is found to be
~2%10° W (corresponding to initial pump power
Py~5x%10'" W). However, for an optimum value
of the above-mentioned parameters the maximum
power can be even higher and may lead to the
heating of the ions after damping.
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