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This paper presents an investigation of the nonlinear interaction of a Gaussian elec-

tromagnetic (EM) beam with an electrostatic upper hybrid wave in a collisionless magne-

toplasma. The EM beam is assumed to be propagating in the ordinary mode, having a

nonuniform intensity distribution (along its wave front) in a plane transverse to the direc-

tion of propagation. Because of the Gaussian intensity distribution of the EM beam, a

time-independent component of the ponderomotive force becomes finite and this leads to a

coupling between the pump EM beam and the electrostatic upper hybrid wave. This cou-

pling is so strong that the weak electrostatic upper hybrid wave gets excited. The excited

electrostatic upper hybrid wave may again interact with the pump EM beam and lead to

the generation of an electrostatic lower hybrid wave of significant power.

I. INTRODUCTION

%'hen a high-power Gaussian electromagnetic
(EM) beam interacts with a collisionless plasma, a
time-independent component of the ponderomotive
force becomes finite which leads to the modifica-
tion in the background electron-ion density. As a
result of this, an additional coupling is introduced
between the pump Gaussian EM beam and the
electrostatic modes of plasma. This coupling is so
strong that the electrostatic mode can be excited
and under appropriate conditions even focusing of
the electrostatic mode can take place. The excited
mode can again interact with the pump to give rise
to the phenomena of enhanced Raman or Brillouin

scattering. * The second possibility is that the ex-

cited electrostatic wave may again interact with the

pump wave and generate another electrostatic
WRVC.

The motivation behind the present paper is to
study the second possibility, viz. , the generation of
the electrostatic wave. %C have taken the specific
case of the interaction of a high-power Gaussian
EM beam with the electrostatic upper hybrid wave
in a collisionless magnetoplasma. The EM beam is
assumed to be propagating perpendicular to the
static magnetic field having its electric vector po-
larized along the static magnetic field (ordinary
mode). The excited electrostatic upper hybrid
wave interacting with the pump wave is found to

generate an electrostatic lower hybrid wave of sig-
nificant power. The intensity of the generated elec-
trostatic lower hybrid wave is maximum for an op-
timum intensity of the pump wave.

In Sec. II we have studied the excitation of the
electrostatic upper hybrid wave by the Gaussian
EM beam. In Sec. III generation of the electrostat-
ic lower hybrid wave has bccn studied, using thc
Quid model of plasma. Section IV presents the dis-
cussion and important conclusion of the present in-

vestigation.

II. EXCITATION OF THE ELECTROSTATIC
UPPER HYBRID %AVE

%C consider the propagation of a Gaussian EM
beam in a collisionless magnetoplasma. The z axis
is defined along the static magnetic field (80——z80).
Thc EM beam ls assumed to bc propagating along
the x axis in ordinary mode, viz. , having its elec-

tric vector polarized along the static magnetic field.
The intensity distribution of the beam at x =0, is

given by

where r [=(y +z2)'~2j is the radial coordinate of
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the cylindrical coordinate system and rp is the ini-
tial beam width.

Because of the nonuniform intensity distribution
of the EM beam in the plane transverse to the
direction of propagation, the time-independent
component of the ponderomotive force becomes
finite. This leads to the modification in the back-
ground electron and ion densities. The modified
electron-ion density (%pe/Xp;) is given by'

3 me
NQ, =XQ;=XoexP ——,a EQ.EQ

m]

It must be mentioned here that the electrostatic
upper hybrid wave is weak and hence it's contribu-
tion to the dc component of ponderomotive force is
negligible in comparison to the pump Gaussian
EM beam.

Following the above mentioned reference, the
electric vector Eo of the EM beam at finite x, can
be written as

„&oo
F =z exp z, exp[ —iko(x+so)],

fo(x) 2rofo(x)

p 2 dfo(x)
so ———po(x)+4Q(x), po ——

,(x) dx
2
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kp — +p y ~p
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4~&o
Q)~
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and fo is governed by

d'fo

dx korof Q

3 me—a Eppm.

2
me ~op

N exp — Q
m; f',

2 3 2~ofoeoro

Here

a=e m;/3k&Te(1+T;/T, )m, ~p

is the nonlinearity parameter, m, and m; are the
electron and ion masses, respectively, k~ is the
Boltzmann constant, T, and T; are the electron
and ion temperatures, respectively, Xp is the
electron-ion density in the absence of the EM
beam, e is the charge of the electron, c is the speed
of light in vacuum, and cop is the frequency of the
incident EM beam.

This EM beam may excite the natural modes of
vibration of magnetoplasma, viz. , the electrostatic
upper hybrid wave, thus leading to the enhance-
ment in the amplitude of the electrostatic upper
hybrid wave. Here we study the excitation of an
electrostatic upper hybrid wave using the follow-

ing:
(i) The equation of motion,

q, ; V'E, ;= q„E+ ' V„X(B+Bp)—y, ;k&T„.
C e,i

(4)

(ii) The equation of continuity,

BXe;' + V'.(X„.V„.)=0

and the wave equation,

1 BE 4& BJ
Bt2

J =q,X,Ve+q;N;V;

is the current density.
In the above equations subscripts e and i are for

the electron and ion, respectively. Thus, V, ; are
the total electron and ion velocities, X„are the to-

tal electron and ion densities in the plasma, q„are
the electron and ion charges (q, = —e; q; = +e),
respectively. 8 is the total time-varying magnetic
field in the plasma and E is the total electric field
in the plasma. y, ; are the ratio of specific heats
of the electron and ion gases, respectively.

Near upper hybrid frequency the ion motion is
negligible in comparison to the electron motion.
To find the electric field E~ (=xEi) associated
with the electrostatic upper hybrid wave, we ex-

pand V„X„and E as

V, =Vpe(cup, kp)+ v )e(a)),k) ),
N, =Xpe+n ),(oui, k) ),
E=EQ( rdo k Q )+E$ (co ) k $ )
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where Npe is the electron density in the presence of
the EM beam given by Eq. (2), v ~, and n „are the
perturbations in the electron velocity and density,
due to the electrostatic upper hybrid wave, varying
at frequency co&. Vpe is the electron velocity in the
presence of the EM beam only.

Equations (4), (5), and (7) give the x and y com-

ponents of v&e as

l co)e
U ~ex =(COce —CO])

me

Substituting for E~ from Eq. (11) in Eq. (9) we ob-
tain

BE)p B E]p B E]p—2ik, A' +, +, +B'E o=0,
Bx By

2 Bz2

(12)

where

2 2 2

2 2 2 2
C (CO„—CO, )

and

icoeUth B E]
m, (co, —co, ) Bx

(8a)
and

2 2 2
CO

&
CO ]COIP Npe=2+2 2 2c

2 2
Uley (ce 1)

COce

Ei
me

Substituting further for E]p in Eq. (12) as

E~p ——E,pp(x, y,z)exp[ —ik, s, (x,y,z)], (13)

eco vth B E&
2 2

(8b)
m (co —coi) Bx

Here co„=eBp/m, c is the electron cyclotron fre-

quency and

is the electron thermal speed.
Equations (6)—(8b) give the following equation

satisfied by the electric field E] of the excited elec-
trostatic upper hybrid wave:

coco U BE& BE& BE& co
+ + + E]

c (m —co ) Bx By Bz c

CO ~CO~
2 2

E, =o. (9)
C'(CO,'e —CO]) NO

In the absence of EM beam, Eq. (9) gives the
dispersion relation

we obtain the following equations after separating
real and imaginary parts:

'2
Bs] Bs& Bs]

1 B E&oo B E&oo Bp

k E, By Bz k

(14)

and

BE, Bs,
' B, Bs,2

Bx' +
By By

' +
Bz

B 2

B s] B s]
E)(~——0, (15)

y2 Bz2

where x'=x/A .
The solution of Eqs. (14) and (15) in paraxial ray

approximation is given by

2 2 2
CO~V, hk [

COg
—CO] =

(CO —CO] )
(10)

Bp

f {x') 2 2g2

In the absence of thermal motion, the above equa-
tion yields the usual upper hybrid oscillations at
frequency

1/2

2

s (
———P)(x')+4)(x'),

2

df, (x')

f~(x') dx'

(16)

Here co~ ——(co~+co„)' is the upper hybrid fre-

quency.
We assume the solution of Eq. (9) is of the form

E, =E, (pxy, z)exp[i (rp, t —k,x)] .

While solving Eqs. (14) and (15) the initial radial
variation of E]po has been assumed to be

E ]pp ~ „p——Bp exp( r /2a p ), —

where ap is the half-width of Gaussian distribution.
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Using Eqs. (14) and (16) we obtain the following
equation for the beam-width parameter f&

of the
excited electrostatic upper hybrid wave:

d'fi 1

dX Qok~f~

2 2 2f l~l~pe 3 me EOO+ 2 2 2 2 4 2 4k, c (~„—co, ) m; rofo

vl~ Eoo
XCXP —

4 (X
m; fo

and

g'=1/k)ao(A )

2 2
QP)6)p 3 PPl~

Ng~
)(Cxp — 6E Eoo4

m;

From Eq. (17a) it is obvious that f~
depends on

fo, hence, an analytical solution for f~
cannot, in

general, be obtained. However, in the self-trapping
mode (fo 1) the fo——llowing analytical solution of
Eq. (17a) can be obtained:

f ~ =, —,cos(2v b'x), (17b)2b' 2b'

III. GENERATION OF THE
ELECTROSTATIC LO%'ER

HYSRID %'AVE

Wc consider the electrostatic upper hybrid wave
dcscrlbcd in thc previous section propagating
coaxially along with the EM beam. Wc use Eqs.
(4)—(6) to study the generation of the electrostatic
lower hybrid wave, by the interaction between the
EM beam and the excited electrostatic upper hy-
brid wave at frequency ~=coo—~). To find the
electric field 8'( =xS') associated with the generated
electrostatic lower hybrid wave, we expand V, ;,
X„,and E as

V, ; =Vo, 0;(mo, ko)+ v), );(m), k) )+v, ;(m, k),
+e,i +oe,oi+ I)e, li(~)~k))+&p, i(~k) i

E=EO(a)o, ko)+E)(~),k) )+ 5'(m, k),
where Xo, 0; are the electron and ion densities in
the plasma in the presence of the EM beam only,
given by Eq. (2). v), ); and n), ); are the perturba-
tions in the electron and ion velocities and densities
due to the excited electrostatic upper hybrid wave,
varying at frequency m). v, ; and n, ; are the per-
turbations, in the electron and ion velocities and
densities due to the generated electrostatic lower
hybrid wave, varying at the difference frequency
u=mo —~). Vo, 0; are the electron and ion veloci-
ties in the presence of the EM beam only.

Equations (4)—(6) and (18) give the following
equation satisfied by the electric field 8' of the gen-
erated electrostatic lower hybrid wave:

pe~ "th pi~th 8 8' m ~pe oe pi &oi
2 2 2 22 2 2'

2 2 2 2 2
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where ~p,.——(4m%0e / m;)'~ is the ion plasma fre-

quency, ~„=e80 / m;c is the ion cyclotron fre-

quency, Vth=(y;kgT; / m;)'~ is the ion thermal

speeds and U»I~» U»Iy arC thC X and g COIIlponCQts,

respectively, of V~;. In writing Eq. (19) we have

used the lower hybrid condition m„~~ m ~g~„.
In the absence of the EM beam and the electro-

static upper hybrid wave Eq. (20) gives the disper-
sion relation

2 2 gg'2 2 2
"th ~PI' ~ th Pe ~Pi

2 2 2

In the absence of thermal motion the above equa-
tion yields the usual lower hybrid oscillations at
frcqucncy

The solution of Eq. (19) may be written in the
form

8 = 8»(x»p»z)exp( —lkx)

+g', ( xy, z}exp[ i(—i)k)x],

where 8'» and 8'2 are slowly varying complex func-
tions of space.

Substituting for 8' from Eq. (22) in Eq. (19) and
equating the coefBcients of exp( —ikx) and

exp[ —i(ilk)x] on both sides of the resulting equa-
tion, we obtain

—k'A'8', —2 kA' + + +8'8', =0
BX Qp Qg
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(21} and
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2 22 2. 2pe Uth pi~thA'=
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c Qp~~ c Q)

2 2 2 2
~Pt, ~ N PI N

cz czar„&0 c' &0
'

and hk =ko —k» and X=%0,-NO; (quasineutrahty condition}. To solve Eqs. (23) and (24a) we use thc
eikonal approximation. Thus,

g'
~
——8' ~o(x,y,z)exp[ —iks (x,y,z) ]

Ãq ——g'qo(x, y,z}exp [ i [koso(x,y,z) —k~s ~ (x,y, z) ] ] .—
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Substituting Eq. (25) in Eq. (23) we obtain the
following equations, after separating real and ima-
ginary parts:

CO
2

ckA r Nro ce

2
ps 3 me

4 Eoo
mg

'2
3$ 3$ Bs„+ —+

Bx Bp BZ

2
3 me

g exP — A Eoo
mg

0+ —A'.
k 8 )0 BJ' Bz, k

(27)

and

0 ~~ ~+~0+ +
Bx BP BP Bz Bz

c)2s 82$
+ + +i00. {28)2

QZ
2

Here x"=x/A'. Solution of Eqs. (27) and {28) in
paraxial ray approximation is given by

&o' —r2

f{x") 2bof'
2

s =—P(x")+4(x"),
2

1 df(x")
f(x") dx"

(29)

Using Eqs. (27) and (29) we obtain the following
equation for the dimensionless beam-width parame-
ter f of the generated lower hybrid wave:

Bp and ho in Eq. (29) are the unknowns to be
evaluated later by using the boundary condition.

Substituting for 8'2 from Eq. (26) in Eq. (24a)
we obtain

1 18 20~E2exp —r
2 2 +

2&ofo 2EEof E

z Eoo&o E me2=
fof E &o 2c'oEo

and D is given by Eq. {24b). Here

D„=[—(hk) A'+8'] .

Equations (22), (25), (26), (29), and (31) give the
electric field of the generated electrostatic lower
hybrid wave as

2

8 =F
E exp exp j E [cot —k (x +s )]j2b f'

1 1

2f222f2

x exp ji [OEt —{hkx +koso —k Es E )]j,
d f 1

~(2 b4k2f3

me
X —a4

m;

2 2
OE f OEpi OEpx

ce
2 2Eoo 3 me Eoo

4 exp —
4 Q

rofo Ent fo

80'

f(x")

To find the unknowns B I
and bo we use the

boundary condition 8'=0 at x =0 which yields

From Eqs. (30a), it is obvious that f depends on

fo, hence, an analytical solution for f cannot, in

general, be obtained. However, in the self-trapping
mode {fo——1) the following analytical solution of
Eq. (30a) can be obtained:

f = — + cosh(2v b "x),
2$ II 2g II

and

1 1 1——+2 2 2bo ro ~o

Dr
I x =Oy=o

' 2c'~o &0

{36)

where

a =1/kb A

and

D
I x=oy=o .

The intensity of the generated electrostatic lower
hybrid wave is given by
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2
8'O' = F& exp — +F2exp —r2 T 2 2

b2f2
1 1

2 2 + 2 2
rofo aof i

1 1 1
+2F~F2exp r — + + cos[k(x+s) —hkx —(kosp —k~s~)] .

2b 2f2 2r 2f 2 2a 2f 2 (39)

The total power associated with the generated electrostatic lower hybrid wave is given by '

(40)

Using the following expression for the dielectric constant e:
2 2

Npe Np, .p=1+
2 2

Nce N

2

—k 2

Nce

2 2 TE2
Uth Npl r th

Nce N N

and Eqs. (20), (39), and (40) we obtain this expression for the power

2 2 2

2CT p Nce N 2C Np

D& 2 N
X

(D, l.=o,y=o)'f' +o „=pr p

2
' '2

(b ~)+ D N
D2f 2f 2

1 1

2 2 + 2 2rof p apf I

2DD' 1

=o,y =o)D fof &f N x =O,y =0

cos[k (x +s)—b kx —(kpsp —k, s, )]

Np

2g 2f2 2r 2f 2 2a 2f 2

(41)

where D and D' are given by Eqs. (24b) and (38), resPectively. Here Po =(c/go. )Eo Ep2rro is the total Power
associated with the incident EM beam.
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FIG. 1. Variation of the intensity of the generated electrostatic lower hybrid wave at x =0 and 30zc/co~a ——0.01
with the intensity of the pump wave. The solid curve is for u, h/c =0.0085 and the dashed curve is for u,h/c =0.01,
Q =10.
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IV. DISCUSSION
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2
&&' ~.=o=, (~oo&o )'

cue
X

2e coo
(D

~

o)'

1 1g exp —r —2+ z
ro &o

where D
~ „o D' is——given by Eq. (38).

From the above equation it is obvious that the
intensity of the generated electrostatic lower hybrid
wave depends upon (i) the modified background
density and (ii) the intensity of the pump. By in-

creasing the pump intensity the modified density
decreases and hence there is an optimum value of
the pump intensity at which the intensity of the
generated electrostatic lower hybrid wave is max-
imum. This is evident from Fig. 1 where we have

plotted the intensity of the generated electrostatic
lower hybrid wave versus the normalized intensity
of the pump EM beam. It is interesting to note
from Fig. 1 that as we change the value of the
background electron (or ion) temperature the mag-
nitude of the intensity of the generated electrostatic
lower hybrid w'ave also changes. This may be at-
tributed to the fact that due to the change in the
background electron (or ion) temperature the modi-
fied density Xo, (or Xo;) is afFected and hence the
intensity of the generated electrostatic lower hybrid
wave which depends on No, (or Xo;) changes.

Figure 2 shows the variation of the normalized
power P/Po associated with the generated electro-
static lower hybrid wave with the normalized dis-

tance of propagation (=30xchooro, for different
values of the static magnetic field when the pump
EM beam is propagating in the self-trapping mode

(fo = 1). The power associated with the generated
electrostatic lower hybrid wave exhibits maxima
and minima with the distance of propagation be-
cause of the focusing and defocusing efFects of the
excited electrostatic upper hybrid wave, and the
generated electrostatic lower hybrid wave, as de-

picted in Fig. 3. For the typical set of parameters
chosen here the maximum power is more at lower
static magnetic field. The variation in the peak
power of the generated electrostatic lower hybrid
wave at difFerent values of the static magnetic field
is due to the fact that by changing the static mag-
netic field the focusing of the electrostatic upper
hybrid wave, defocusing of the generated electro-
static lower hybrid wave and the dispersive proper-
ties of the electrostatic upper hybrid wave, and the
generated electrostatic lo~er hybrid wave are
changed.

We conclude from the present investigation that
the generation of the electrostatic lower hybrid
wave depends on the parameters of the plasma,
EM beam, and the value of the static magnetic
field. For the set of parameters chosen here the
maximum po~er associated with the generated
electrostatic lower hybrid wave is found to be
=2&10 % (corresponding to initial pump power
Po-5&10' %'). However, for an optimum value

of the above-mentioned parameters the maximum

power can be even higher and may lead to the
heating of the ions after damping.
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