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%e derive a variational principle for the eigenvalues of the Fokker-Planck equation in

detailed balance, which holds for additive as mell as multiphcative stochastic processes

and which ls not restricted to one dimension. An intermediate theorem for the Fokker-
Planck equation is presented for the first time from which lower bounds for the

eigenvalues can be extracted. The same theorem can be applied to the master equation in

detailed balance. %e discuss as a first application the lower and upper bounds for the

lowest eigenvalue of a quartic potential in one dimension. To show the applicability of
our procedure to more complicated problems we give lower and upper bounds for the

linewidth factor and the second eigenvalue of the Fokker-Planck equation for the single-

mode laser. In addition, we discuss three models of multiplicative stochastic processes

which represent three different classes of behavior. For each model we give stationary

results, namely, the probability distribution and the first two nontrivial moments. To
characterize the long-time behavior of the relaxation processes involved we calculate

lower and upper bounds for the lowest eigenvalue. It is pointed out that, at least in the
models presented, there does not exist critical slowing down as a function of the strength

of the fluctuations. %'e conclude that one should be cautious when using the term noise-

induced phase transition in connection with multiplicative stochastic processes.

I. INTRODUCTION

In many cases the static and dynamic behavior
of macroscopic systems can bc characterized by 8
small number of macroscopic variable. To arrive
Rt these equations one can use, e.g., projector tech-
nlqUcs of adlRbatlc c111Tllnatlon.

If Gnc ls lntcfcstcd ln 8 statistical description of
8 macroscopic system, which is cspcclally Impor-
tant neat states which are not globally stable, it
proves to be fruitful to work in the framework of
the Fokker-Planck or the master equation.

As is mell known' the stationary solution of
the Fokker-Planck and master equation can be

given ln closed form (at least Up to quadfatufes) lf
the condition of detailed balance holds. Obtaining
the time-dependent solution of the Fokker-Planck
equation fof 8 spcclflc macroscopic system, howev-

er, is 8 much more complicated problem, because it
is necessary to solve an eigenvalue problem for Rn

elliptic partial differential equation.
From 8 physical point of vlcw thc study of thc

time-dependent solution of the Fokker-Planck
equation ls important fol vaflous I'casons. Thc
eigenvalues yield, e.g., the relaxation time, i.e., the
tlmc which has to bc cxcccdcd lf one ls lntcfcstcd
ln Obscfvlng thc cquilib11um pfopcrtlcs of 8 spcclf-
ic system. In addition one can extract from the

eigenvalues the switching time between the two lo-
cal extrema of the potential, a question which is of
Iclcvancc fol the construction of dcvlccs, c.g., 1Q

the fields of nonlinear optics, autocatalytic chemi-
cal reactions, and electronics and which therefore
attracted considerable attention during the last few
years.

The study of the time-dependent behavior of the
solutions of a Fokker-Planck equation with a non-

linear drift is a long-standing problem which may
be traced back at least to the pioneering work of
H. A. Kramers, which was generalized and re-
fined through several decades ' ' ' ' ' Up to
now the technique of a %KB-type approximation
to study the relaxation time of a bistable potential
has bccn thc Usual concept, . Howcvcf, Rs ls well
known Kramers's approximation breaks down if
the potential becomes too shallow in the neighbor-
hood of thc minima.

To overcoInc this difficulty Rnd in order to
study pfoblcms which Rlc Qot caslly Rcccsslblc to 8
Kramers-type approximation —monostable poten-
tials, potential for the phase diffusion of the
single-mode IRscI', ctc.—onc h8S to look foI' 8 dlf-
fcfcnt Rppfoach to thc problems.

One can study, e.g., exactly soluble models *"
which simulate the structure of a more complicat-
ed problem. This technique, however, suffers from
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the fact that there are not many Fokker-Planck
equations around whose time-dependent solutions
are known analytically. ' ' ' Therefore one is
interested in a more easily applicable approach.
For one-dimensional, addi tiue stochastic processes
such a technique, namely, a variational principle,
has been used, e.g., by Risken during the
study of the single-mode laser; more recently it has
been used in a more general framework by Larson
and Kostin, ' who applied this technique to a bi-

stable, biquadratic one-dimensional potential.
Very recently we have presented without deriva-

tion a variational principle for the Fokker-Planck
equation in detailed balance which holds for addi-
tive as well as for multiplicative stochastic process-
es and which can be applied to one as well as to
multidimensional stochastic problems. ' This prin-

ciple which assumes an elegant and intuitive form
has been applied to the example of the absorptive
optical bistability. In the present paper this varia-
tional principle which yields an upper bound for
the eignvalues will be derived in detail.

Furthermore we present for the first time an
"intermediate theorem" for the Fokker-Planck
equation in detailed balance from which one can
extract lower bounds for the eigenvalues, i.e., for
the relaxation rates, a problem that has not been
discussed previously in the literature of the
Fokker-Planck and master equation. To achieve
this aim we will make use of the intermediate
theorem which was obtained by %einstein
nearly 50 years ago (1934).

In the following sections we apply these methods
to various examples in one and two dimensions
with additive as well as multiplicative fluctuations.
%e demonstrate that the procedure can be applied
easily to real physical problems like, e.g., the
single-mode laser and the Arnold-Horsthemke-
Lefever model.

The paper is organized as follows. In Sec. II we
present in detail the derivation of the variational
principle which yields upper bounds for the eigen-
values and we give the intermediate theorem for
the Fokker-Planck equation in detailed balance.
Furthermore we show in this section how it be-
comes possible to extract lower bounds for the
eigenvalues from the intermediate theorem and
what conditions have to be satisfied to arrive at
this aim easily.

In Sec. III we give an application to additive sto-
chastic processes: %'e study a one-dimensional bi-
quadratic potential and the first two lowest-lying
eigenvalue of the single-mode laser. The upper

II. GENERAL RESULTS

%e start from a set of Langevin equations
characterizing the macroscopic variables ( x; I:

«; =fit I «I I l+g, i t xt l +, (2.1)

where the functions f;, g,j can depend on the ma-
croscopic variables. The fluctuating forces g'; are
characterized by their statistical properties. Equa-
tions (2.1) may be derived from microscopic equa-
tions by elimination of the irrelevant variables. '
If the g;J are independent of the macroscopic vari-
ables we call the stochastic processes (2.1) additive;
if they depend on the set I x~ I we call the process-
es (2.1) multiplicative.

In the following we assume the fluctuating
forces to be of the Gaussian white noise type, i.e.,

(2,.2)

bounds for the eigenvalues of the single-mode laser
are compared with the "exact" numerical results of
Risken and Vollmer whereas the lower bounds
are novel. From these results we deduce upper and
lower bounds for the linewidth factor and contrast
our findings with those of perturbative calcula-
tions.

In addition we show that we can give rigorous
homer bounds also for the effective relaxation rate
of the intensity correlation functions of the single-

mode laser.
In Sec. IV our procedure is applied to three

models with multiplicative fluctuations which cov-
er three large classes of behavior. In addition we

include in our discussion results for the static rno-

ments and the stationary probability density of
these models. From the stationary as well as from
the time-dependent results it becomes possible to
shed new light on the question of "noise-induced

phase transitions, " a phenomenon which, at present
is under very vivid discussion in the literature.

In Appendix A we show that the intermediate
theorem can also be applied to the master equation
in detailed balance thus presenting for the first
time the possibility of calculating in a rigorous
manner lower bounds for the eigenvalues of the
master equation and in Appendix 8 we generalized
the results of Sec. II to normal Fokker-Planck
operators and discuss as an example the detuned
single-mode laser.
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Equahons (2.2) and (2.1) descnbe, then, a multidi-

mensional Markovian process, and we can convert

(2.1) into the stochastically equivalent Fokker-
Planck equation

P( {xt j,t ) = —();[K;({x( j )P]

Stratonovich' called the condition

i) [Ak(8~K;, —2K;)]

where

(2.8)

(2.3)

where the drift vector K;( {xt j ) is related to the
quantities in Eqs. (2.1) via

K;( {x( j )=f ( {xt j ) + , g J. ( B—g~j) (2.4)

and the positive semidefinite, symmetric diffusion

matrix is related to the matrix g;~. ( {xx j ) via

Kij({xk j) g'l({ xk j)gjl({xk j) ~ (2.5)

(2.6)

In the following, summation over repeated indices
is always implied if not stated otherwise.

Choosing the ansatz

P((ee (,e(=gP„((ee((e

p —1/2L FPP 1/2
0 0

—1/2Po Pn =en

(2.9)

(2.10)

where Po is the stationary probability density Eq.
(2.7) can be rewritten in the form

AI;K; =5I.

the potential condition, and it is straightforward to
check that the restriction (2.8) is identical to the
condition of detailed balance, ' ' or generalized
detailed balance if the so-called reversible drift
vanishes. If the reversible drift is not identical to
zero, Eq. (2.7) cannot be cast into self-adjoint
form. 34

Introducing

the time-dependent parabolic Fokker-Planck equa-
tion may be transformed into an elliptic partial dif-
ferential equation

LV'n=~nfn ~

where

(2.11)

A,nPn =L" P„,
where

(2.7) L=—L+

and'4

(2.12)

L = —8;(K;({xk j)—t) [K~ ({xk j )]),
and where the eigenvalues A,„can form a discrete
as well as a continuous spectrum. Equation (2.7)
supplemented by suitable boundary conditions (e.g.,
natural boundary conditions) constitutes an eigen-
value problem which is in general not self-adjoint.

There exist no general methods to calculate the
eigenvalues for the most general case of a problem
that is not Hermitian. We confine ourselves there-
fore throughout the rest of the present paper to the
case where Eq. (2.7) together with appropriate
boundary conditions can be cast into self-adjoint
form.

As is well known' this can be done if the vector
of the stationary probability current P is identical
to zero:

L =B;(K; (J{ j)B )

—P [BK;({x j)BP ~ ].
To derive the orthogonality properties of the eigen-

functions Pn we introduce the abbreviations

(2.13)

Pn q.an=
Po Po

(2.14)

(2.16)

Then we multiply Eq. (2.15) by P' /Po and Eq.
(2.16) by Pn /Po, and obtain, after integration over
the whole phase space for the difference (d~ de-
notes the volume element in phase space),

Next we consider Eq. (2.7) for two different eigen-
values A,„and A.

(2.15)

fd& L"'P "L"'P' =(A,„—A. ) fdr ™.
P Pn P'

0 0 0

Making use of the explicit form of L" and taking into account condition (2.8) we have

(2.17)
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(A,„—A, )fdr =fdr[G' a;( —I/2K; P a G„)—G„a;(—, K;—Pa G' )]
Pp

—:fdr[G' a; p;(P„) G„—a;w;(P' )] .

Integrating by parts we obtain

Pn Pmfdr[(a;G )KIP~(a G„)—(a;G„)K; P (a G')]=(k„—A. )fdr
p

(2.18)

(2.19)

provided that the surface integral

o= f do;[G'~;(p„) G„~,.(p')] (2.20)

vanishes identically (der; denotes the surface ele-

ment for the integration over the surface X).
Let us consider some special cases of the general

condition (2.20).
(i) W;(P„)=0 on X, i.e., the probability current

vanishes for all eigenfunctions on the surface
which constitutes the boundary of phase space, or,
to phrase it differently, probability does not leave
the domain of phase space under investigation, a
condition which is suggestive and quite physical.

(ii) G =P /Pp vanishes on the boundary sur-
face, i.e., the eigenfunctions divided by the station-

ary probability distribution vanish there.
If condition (2.20) is satisfied we conclude im-

mediately from Eq. (2.19) that eigenfunctions
corresponding to different eigenvalues are orthogo-
nal with weight function P, ':

P„Pf " dr=O.
Pp

(2.20a)

For one dimension our result reduces to that given

previously by R. L. Stratonovich. ' If we assume
that the eigenfunctions are normalized,

f «= f le. I'«
4

=fpoiG„i dr=1, (2.21)

&K,,(a, G„)(a,G„'))
(2.22)

we obtain an orthonormal set of eigenfunctions.
As is well known a self-adjoint eigenvalue prob-

lem can be cast into the form of a variational prin-

ciple of the Rayleigh-Ritz type. With the help of
Eqs. (2.11), (2.15), and (2.19) the variational princi-
ple assumes the following form:

fP K; (a;G„)(a G„')d r

fpo fG„( dr

I

where the angular brackets denote stationary aver-

ages. Of course, the variational principle (2.22)
can be rewritten as well for the sets [ tp„] and

[ P„] but then (2.22) would lose its suggestive
form and its elegance. From Eq. (2.22) it is im-
mediately clear that the stationary state Gp ——1 is
associated with eigenvalue kp ——0. We notice, that
the right-hand side of Eq. (2.22) is a positive semi-
definite quadratic form, because the diffusion ma-
trix K;J defined in Eq. (2.5) is positive semidefinite
and the stationary solution Po ( I xk ] ) is a non-
negative function. From the fact that the varia-
tional expression in Eq. (2.22) assumes its minima
A,„,one concludes that the eigenvalue spectrum of
the corresponding Fokker-Planck problem is non-
negative. While calculating an upper bound for
the eigenvalue A.„ the chosen test function P„
=G„Pp has to satisfy, of course, the orthogonality
conditions (2.20a) for P; where i =0, 1,. . .n —1. It
seems worthwhile to notice that inequality (2.22)
has been given previously for the case of a one-
dimensional additive stochastic process for the
lowest-lying eigenvalue by Larson and Kostin. '

For the one-dimensional case of an additive sto-
chastic process Risken considered a variational
principle for a special example, namely, for the
single-mode laser. However, he obtained a rather
complicated expression because he did not intro-
duce the functions 6„. Furthermore it seems
worthwhile to notice that inequality (2.22) is not
restricted to additive processes. It may also be ap-
plied to multiplicative stochastic processes —we
will show this explicitly in Sec. IV—and even to
processes where K;1 acquires contributions from
additive and from multiplicative noise. In addition
it should be stressed that inequality (2.22) can even
be applied if some of the diagonal elements of the
diffusion matrix K,J vanish as is the case, e.g., for
the Kramers equation.

Now we present the extended version of
Weinstein's intermediate theorem suitable for the
Fokker-Planck equations that can be cast into
self-adjoint form. We assume the following condi-
tions to hold:
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(i) Ly„=k,„q&„, where L =L—+ [cf E. qs. (2.11)
and (2.12)];

(ii) appropriate boundary conditions for P„and
thus foi' f'+Po and for G„Po (e.g., natural boun-
dary conditions);

(iii) existence of an arbitrary function
u([ xx J )~ which is continuously differentiable
two times which satisfies the same boundary con-
ditions as G„Po

In addition, we introduce the abbreviations

u*t.

udge

f Jul dr

f (Lu*)(Lu)dr

f fu/ dr

Then we have

(2.24)

(2.25)

and there exists at least one eigenvalue of problem
(i) between

and

&+(p2 2)1/2

fP
[ a, (J:,,P,aJG„) ]'

Po I G.
I

'

For a one-dimensional additive stochastic process
we have the simpler expression

g fPo '[8 (PoB„G„)]2

fP,G„'
(2.29)

The proof parallels that of %einstein who was
interested in the corresponding quantum-mechan-
ical problem. For an ordinary differential equation
all details have been worked out by Kamke. (X
course, the same procedure can be carried out for
the master equation in detailed balance and we
describe this in Appendix A.

For further reference we rewrite p' in terms of
G„. %e have then

P, ' I."'P,G„'
p2 (2.27)

Po
I G. I'

%hat can be done to apply (2.26) to a specific
problem and to extract useful information~ (In the
following we assume for simplicity that the part of
the eigenvalue spectrum which is of interest is
discrete. )

The first step will then usually be the calculation
of upper bounds for the excited states via the vari-
ational principle (2.22) and we assume this to be
done. Then we have a discrete series of upper
bounds for the eigenvaules

0—=k &V&A."P&. . .

%e now insert the approximate eigenfunctions

y„—evaluated via the generalized Ritz principle—into Eq. (2.26) and obtain a value A, '„'"& k„"P.

The doman defined by these two values then con-
tains at least one eigenvalue of the Fokker-Planck
problem. If the domains are not overlapping and
there exists a limiting case, which allows us to as-
sign the domains to specific eigenvalues, we obtain
rigorous upper and lower bounds. The intermedi-
ate theorem can be carried out most easily for
problems with well-separated eigenvalues but care
has to be taken in choosing the variational test
functions when the eigenvalues approach each oth-
ers. %hen the eigenvalue spectrum contains a
"continuous band" of eigenvalues, it is, however,
impossible to extract information from the inter-
mediate theorem.

In many applications of the Fokker-Planck
equation the eigenvalue spectrum contains a
discrete branch with well-separated eigenvalues and
the methods proposed here allow us to find
rigorous upper and lower bounds. It will become
clear in the following sections, that these methods
are not restricted to the lowest eigenvalues but can
give bounds for higher eigenvalues as well. In the
applications which follow in Secs. III and IV, em-
phasis has been laid on showing that the procedure
works in practice and does not require time-
consuming, extensive numerical calculations.
Nevertheless we will find in many examples that it
is possible to calculate lower and upper bounds for
the eigenvalues by the methods presented here to a
quite surprising accuracy. If one can only calcu-
late upper bounds it is much more difficult to esti-
mate the accuracy of the procedure.

III. ADDITIVE STOCHASTIC PROCESSES

As a first application of the general results de-
rived in Sec. II we investigate the low'est-lying

eigenvalue of a biquadratic one-dimensional poten-
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tial. The corresponding Langevin equation takes
the form

x =ax —x +g, (3.1)

where g is assumed to be Gaussian white noise and
b «0.

Thc corresponding Fokkcr-Planck equation 1cads

Bt
= —t)„[(ax—x 3)P]

For thc stationary solUtioQ wc have

Q 2 X
Po ——Mexp ——x —1/2

As a first simple test function Gi, satisfying obvi-

ously the orthogonality condition

I'OGidx =0, (3.5

6 i(x)—:x

and we obtain from (2.22) and (2.29),

g fP0dx g
& fPox'dx & (x'& '

g fPo '(B„PO) dx
P= fPox dx

The upper and lower bounds for the choice (3.6)
are plotted in Fig. 1 as dashed lines. This result
can be improved easily as indicated in Fig. 1 using
the somewhat more refined test function

6 i(x)=tanh(cx)

which contains one variational parameter c. The

parameter c was determined by Ininimizing the
upper bound. Of course, it is also possible to fix c
by minimizing (P —a )'~, but, as is well known
the results for the optimum values are ihe same.

It is immediately seen from Fig. 1 that the trivi-
al test function Gi yields reasonable lower bounds
for small values of a, whereas the difference be-
tween lower and upper bounds become larger for
increasing a. For the region —4 & a & 2 the second
test function Gi gives excellent upper and lower
bounds, e.g., for a =0 the difference between the
bound is only 2%.

FIG. 1. Lower and upper bounds for the first excited
state of the one-dimensional biquadratic potential. The
straight line indicates the asymptotic behavior for
a ~—00. %'e have plotted the upper and lower bounds
for Gi(x) = tanh(ex) as a solid line and the correspond-
ing results for Gi(x) =x as a dashed line.

From Fig. 1 it can be concluded that a small irn-

provement for the upper bound can give rise to a
large impovement of the lower bound. As will be-
come clear in the following examples this is gen-
erally the case and can be traced back to our pro-
cedure of constructing the lower bound.

In addition it seems worthwhile to note that the
results of Dckker et al. , which have been obtained
via direct numerical integration of the underlying
differential equation are situated between the lower
and upper bounds presented here. %C note in

passing that the conjecture by Dekker et aI. that a
VRriational principle cRnnot give accuI'Rtc results
for the eigenvalues does not hold. As is well
known, the accuracy of a variational result is not
limited in principle because it can always be irn-
proved by choosing a more appropriate test func-
tion. This is immediately seen from the first ex-
arnple discussed here and from all examples which
are considered in what follows. For completeness
we have included in Fig. 1 the asymptotic value of
A, i for Q ~—(x).

To test the power of the method we examine as
the next example the second excited state of the
Fokker-Planck equation (3.3) in thc monostable as
well as bistable regime.
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We take for the test function G2 the ansatz

G2 ——~—e —dx2 (3.10)

This choice can be motivated as follows. In order
to approximate the second eigenfunction P2 the
test function has to be symmetric, thereby satisfy-
ing orthogonality on the first eigenfunction P&, and
it has to contain two internal zeros. The parame-
ter v. is used to guarantee orthogonality to the sta-
tionary state,

x+ =ax+ —x+
~

x
~

'+g . (3.12)

in Fig. 2 as a guide to the eye.
Now we consider an example which provides a

more sensitive test of our procedure, namely, the
linewidth factor of the single-mode laser, which
has been investigated by various methods (Refs.
24 —26 and 35 and references cited in Ref. 35).

The Langevin equation for the single-mode laser
reads

fG2Ppdx =0, (3.11)
For the associated Fokker-Planck equation we ob-
tain, with x+ =re'~,

while d is used as variational parameter.
The results for the lower and upper bound are

plotted in Fig. 2 and we see that A,(a) has a
minimum near a =1.5. For a large ()4), i.e., in

the bistable regime, the difference between the
upper and lower bound is less than 10% and even

near threshold the difference never reaches 30%%uo.

This is a quite satisfactory result keeping in mind
that we have made use only of the simple test
function (3.10) in order to minimize the numerical
calculations. Furthermore this result shows that
the method presented in Sec. II can be applied not
only to the first excited state but to higher excited
states as well, even in the bistable domain. The
asymptotic values for a~+ oo have been included

aP 1
t)r [r(a—r r)P] +——()„(rt),P )

Bt r

+ —,a,ag .
1

(3.13)

The stationary solution of (3.13) is

a, r4
Pp = &exp ——r

2 4
(3.14)

where. k is the normalization factor. As a suit-

able test function to describe the phase diffusion

we use

G&p(r, g) =e'"tanh(dr), (3.1S)

G~p(r, g) is chosen to satisfy the appropriate ortho-

gonality condition. We have plotted in Fig. 3 the

15 8

10 (-

FIG. 2. The upper and lower bounds for the second
—dxexcited state [using G2(x)=r eas a test functio—nj

are plotted as a solid line and the asymptotic values for
a ~+ oo are given by straight lines.

a
4 2

FIG. 3. Lower and upper bounds for A, &0 of the
single-mode laser; the asymptotic values are indicated as
dashed-dotted lines.
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upper and lower bound for A, ~o as a function of the

pump parameter a for —10(a (10. We see, that
the asymptotic behavior [A.to ——I/

~

a
~

above thres-
hold (a ~ ao), and A, ,o=

~

a
~

below threshold
(a ~—ao)] is approached more rapidly above
threshold than below. To display the quality of
the results for A, ~o [obtained for (3.15)] in more de-

tail we show in Fig. 4 the linewidth factor a which
is associated with the eigenvalue k&0 via

a=A, ,o(r )

where (r ) is the static moment

(r )=Jr Podr.

(3.16)

{3.17)

From Fig. 4 we conclude that the asymptotic
values for a (a = 2 below threshold, a =1 above
threshold) are reached rapidly for large values of

~

a
~

. In the threshold region the differences be-
tween the upper and lower bound is always less
than 15% even though we have chosen an elemen-

tary test function with a single variational parame-
ter.

We wish to notice that any other approach
which is used to calculate the linewidth factor of
the single-mode laser has to yield values which lie
between the upper and lower bounds presented here
and this must be true for all pump parameters.

Various approximation schemes which deal with
this problem have been discussed recently by
Ziegler and Horner, who compared their results
with those discussed previously by various au-

thors. ' When comparing Fig. 3 of Ref. 35 with
the results presented here it can be immediately

62(x)=(1—~x )
1

cosh ex
(3.18)

where r is fixed by the appropriate orthogonality
condition,

IP&G2r dr dq&=0, (3.19)

and e serves as variational parameter.
In Fig. 5 we have plotted the results for the

upper and upper and lower bound for A,o~ using
Eq. (3.18) and we have indicated the asymptotic

concluded that none of the approximate methods
presented so far yield values which lie inside the
admissible domain given in the present paper for
all values of the pump parameter.

In closing the discussion of A, ~o we wish to men-
tion that this eigenvalue has been calculated by
Risken and Vollmer via direct numerical integra-
tion of the corresponding differential equation giv-

ing values inside the domain discussed above.
Within the admissible range their values are near
the upper bounds presented here, a fact which has
been found to hold as well for the one-dimensional
problem. This leads to the conjecture that the ex-
act eigenvalue always lies closer to the upper
bound.

After the investigation of the eigenvalue A, &0

which dominates the long-time behavior of the am-
plitude correlation function, we consider the
eigenvalue Q& which yields the most important
contribution to the intensity correlation function
for large times. As a test function in this case we
use

1.92

1.76

1.60

1.44

1.28$
I

1 . 12

o. 96L

FIG. 4. The linewidth factor as a function of the pump parameter. The upper and lower bounds calculated in the

present paper are plotted as solid lines. The numerical integration by Risken and Vollmer is indicated by the double-

dotted —dashed line. Three of the approximations (a, e,f) plotted in Fig. 3 of the paper by K. Ziegler and H. Horner

are shown.
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values as straight lines. In addition we have in-

cluded in Fig. 5 the upper bound given by Risk-
en. " Using the same test function as Risken we

also calculated the corresponding lower bound
which is also plotted in Fig. 5. For the difference
between upper and lower bound [using (3.18)j we

find a maximum of less than 25% near a = 2.5.
This result demonstrates once again the applicabili-

ty of the proposed method even for problems
which are not strictly one dimensional.

Furthermore we wish to stress that the presented
lower bound for Q, sets a general upper bound for
the effective relaxation time (which has been intro-
duced in Ref. 26 of the intensity correlation func-
tion or, correspondingly, a general lower bound for
the effective relaxation constant.

In summarizing this section we can conclude
that we have demonstrated the applicability of the
general method of Sec. II to various problems —to
a monostable potential as well as to a bistable one
in one and two dimensions.

It was shown that even a somewhat clumsy
choice of the test function can give reasonable re-
sults in some cases [cf., e.g., the function G(x) =x
for the monostable quartic potentialj. All exam-

ples of this section have been additive stochastic
processes. In the next section we turn to the dis-
cussion of some models for multiplicative stochas-
tic processes, i.e., processes with a diffusion matrix
which depends on the stochastic variable.

IV. MULTIPLICATIVE STOCHASTIC PROCESSES

During the last few years multiplicative stochas-
tic processes have attracted a continuously increas-

ing attention concerning their station-
ary" '2' ' 44 as well as the dynamic '

behavior. In the present section we study in detail
three one-dimensional models for multiplicative
stochastic processes with respect to their stationary
as well as their dynamic behavior. Recently it was

conjectured by various authors * that "noise-
induced phase transitions" and "critical slowing
down" might occur for multiplicative stochastic
processes and it will be one of the purposes of this
section to test the validity of the above Inentioned
conjectures.

As a first model we consider a symmetrized ver-

sion of a model proposed by Arnold, Horsthemke,
and Lefever. The corresponding Langevin equa-
tion reads

x= —x+(1—x )g

and the stochastic variable x assumes values in the
finite interval [—1,lj. For the stationary solution
of the Fokker-Planck equation which is stochasti-
cally equivalent to the Langevin equation (4.1},one
obtains

and for the most probable values one has

0, Q&1
1/2

1+

FIG. 5. Lower and upper bounds for A,oi. %'e have
plotted the results for 62(x) =1—gx as dashed lines
and the results for G2(x) =(l —~x )1/cosh ex as solid
lines. The asymptotic values are indicated as straight
solid lines.

Thus one finds that Q & Q, = 1 the stationary pro-
bability density has one peak centered at x =0
whereas for Q & Q, the stationary solution peaks
near x =+(1—1/Q)'~ and has a minimum for
x =0. We have plotted the stationary probability
distribution for Q= 0.1, 1, and 20 in Fig. 6 clearly
showing the behavior obtained from the qualitative
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0.3-

0.2-

FIG. 6. Stationary probability distribution for the
symmetrized version "Arnold-Horsthemke-Lefever
(AHL} model" for Q = 0.1, 1, and 20, Eq. (4.2).

0, 5 », 0 ». 5 2.0 2.5 3.0 3.5 Q

FIG. 7. The moments (x') and (x'} for the sym-
metrized AHL model as a function of Q.

discussion above. From this behavior of I'0 it was
concluded that a noise-induced phase transition
occurs at Q, =1. To check this hypothesis we
have calculated the moments of the stationary pro-
bability distribution:

both moments (x ) and (x ) increase monotoni-
cally for increasing values of Q and nothing pecu-
liar happens near Q, =1, i.e., we obtain no indica-
tion for the occurrence of a phase-transition —type
behavior near Q, in the moments. Therefore we

study the lowest-lying eigenvalue with the aid of
the general techniques presented in Sec. II.

For the uppper bound of the first eigenvalue we
have

and we have plotted the results for M2 and M4 in

Fig. 7 as a function of Q ranging from Q = 0.2 to

Q =4 including Q, = 1. As is obvious from Fig. 7

Q f PoÃ(x)(t)„Gt) dx

f PoGidx

and for the quantity P defined in (2.29),

0
E{x)

dx Po B„j:(x)B„G)+ B„PoB„Gi+K(x)B~G)
0

f PeG&dx
(4.5)

where K{x)must be identified in the present model
with K{x)={1—x ) . As a simple test function

G~ we choose

2.0-

with one variational parameter a.
In Fig. 8 we have plotted upper and lower

bounds for the eigenvalue A, , for Q = 0.1 to Q=4
and as is easily checked, both upper and lower
bounds increase monotonically as a function of Q
and there occurs no especially small value for A,

&

near Q, =1. That is, even in the regime where the
stationary probability distribution shows two peaks
the lowest eigenvalue increases contrary to the case

3 Q

FIG. 8. Upper and lower bounds for A,
» of the sym-

metrized AHL model as a function of Q.
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of a bistable potential with additive fluctuations.
In the latter case the eigenvalue is known to de-

crease exponentially well inside the bistable
domain. '

To summarize our results for the first model,
which is restricted to a finite domain, we have
found no evidence for a phase-transiton —type
behavior near the "critical point" Q, and nothing
similar to "critical slowing down" has been ob-

served.
To check whether these results are specific for a

multiplicative stochastic process on a bounded
domain we have studied two further examples on

an unbounded domain for the stochastic variable.
The first one of these examples is given by the

Langevin equation

1
x = —dx+

(1+x )
(4.7)

and the stochastic variable can assume values in

the interval ( —Oo, oo). For the stationary probabil-

ity distribution of the Fokker-Planck equation as-
sociated with (4.7) we have

Po=~(1+x2)1/2exp (1+ 2x2)x21

0, Q&2d
+[(Q/2d)1/2 1]1/2 Q & 2d

(4.9)

i.e., for Q & 2d the function Po shows two peaks,
whereas for Q &2d only one peak occurs centered
at x =0. In the terminology of "noise-induced
phase transition" this behavior of Po near Q =2d
should have observable consequences on the sto-
chastic properties of the model given by Eq. (4.7).
To test this hypothesis we have calculated the mo-
ments of Po

(4.8)

The extrema of the stationary probability distribu-
tion are given by

T

M„=(x")=Mf (1+x )'/ x "exp ——(1+—,x )x (4.10)

In Fig. 9 we have plotted the stationary probability
density as a function of d/Q and in Fig. 10 the
moments (x ) and (x") are shown for the same
range of d/Q. As is easily checked the moments
and the stationary probability density Po depend
only on the ration d/Q due to the simple structure
of the model (4.7).

From inspection of Figs, 9 and 10 we immedi-

ately conclude that although the number of peaks
of Po changes at Q, =2d the moments reveal a
monotonic behavior over the whole range of Q

I

values and nothing indicates the special role which
should be played by Q =Q, .

To study the time-dependent solution of the
Fokker-Planck equation associated with Eq. (4.7)
we used as above the techniques described in Sec.
II and we have obtained for the lowest-lying eigen-
value, which dominates the long-time behavior, the
results plotted in Fig. 11 for 2.5 & d/Q & 0.25.
As is immediately checked upper and lower bounds
increase with increasing Q monotonically and no

0 6— 0.6

0 4 z. o X

FIG. 9. The stationary probability distribution for
the model introduced in Eq. (4.7) for Q = 1,2,5 (d =1).

FIG. 10. Moments associated with the process given
in Eq. (4.7). (x2) and (x ) are plotted as a function of
g (d= 1, Q, =2).
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P

0.4

FIG. 11. Upper and lower bound for the lowest-lying

eigenvalue A, I of the same stochastic process as a func-
tion of Q for d =1.

FIG. 12. Stationary probability distribution for Q
= O.S, 2, and 8 (d =1) for the process introduced in Eq.
(4.12).

special features occur near Q, /d =2. In addition

it seems worthwhile to note a scaling property for
the eigenvalues of the Fokker-Planck equation as-

sociated with model (4.7). %'e obtain

(4.11)

That is, if one has derived the values of A,„ for one
value of the damping constant d for ail Q, one can
extract via (4.11) the eigenvalues for all d g 0.

As a third model we wish to consider in this sec-

tion

x =dx —x3+(1+x2)'~2(,

and for the corresponding stationary probability
distribution we find

By construction the number of peaks of I'0 (4.13)
decreases for increasing values of Q contrary to the

two models studied above. &e find

increasing value of the moments for all Q. Con-

cerning the time-dependent behavior we proceed as
above and we plot the corresponding bounds for A,

&

in Fig. 14 showing that A, i increases monotonically
with increasing Q. At Q, =2d the plot shows no

special properties like "critical slowing down" or
anything related.

To summarize the results of Sec. IV, it should

be noted that we have studied three different

models which are simple examples of three large
classes of multiplicative stochastic processes. The
first example is confined to a bounded domain {for
the stochastic variable) and the corresponding sta-

tionary probability distribution splits into two

peaks for a certain value of Q with increasing Q.
In the second class the same type of behavior oc-
curs; the stochastic variable, however, is allowed to
assume values on an unbounded domain and our
second example [Eq. (4.7)] is a simple representa-

tive of this class. Another large class of multipli-

0, Q)2d
+(d —

2
Q)'i, Q (2d

i.e., two maxima for Po at xo ——+(d —
2

Q)'~ and

one minimum at xc ——0 if Q & 21, and one max-
imum at xo ——0 if Q y 2d. This qualitative discus-
sion of the structure of Po is supplemented by the
plots given in Fig. 12. To simplify the following
discussions we choose the special parameter
4 =0.3, i.e., the "critical value" is Q, = 0.6. For
this value of d we have calculated the moments
(x ) and (x ) as a function of Q. The results of
these calculations are plotted in Fig. 13 showing an

16

FIG. 13. Static moments (x"') and (x ) associated
with Eqs. (4.12) and (4.13) for d =1 as a function of Q.
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FIG. 14. Upper and lower bounds for the first exrit-
ed state as a function of Q.

cative stochastic processes one might consider con-
sists of those processes in which the number of
peaks of the stationary probability distribution de-

creases while increasing the strength of the fluctua-
tions Q, and for this class we have studied as an

example Eq. (4.12).
As 8 result of thc study of thcsc ploccsscs wc

have found that no spectacular features are ob-
served for the moments (x"}or the lowest-lying

eigenvalues near the point at which the number of
extrcma of the stationary probability distribution

changes. From these results we arrive at the con-
clusion that there exists, at least for the models
studied above, no phenomenon like critical slowing

down at the points Q =Q, . Furthermore we feel

that there is no reason to coin the term "noise-

induced phase transition" for an effect which is

only related to the details of the stationary proba-
bility distribution. Observable physical quantities
like stationary moments or relaxation times, how-

ever, do not show any peculiarities at the point

V. CONCLUSION

applied to the Fokker-Planck equation. By succes-
sive improvement of the variational test function
the upper bound can be decreased while the lower
bound increases simultaneously.

In the main part of the paper, we have applied
these methods to various stochastic processes in
order to demonstrate the practical applicability of
the prcscnt appl Oach.

For the case of additive noise we compare the
upper and lower bounds for the low-lying eigen-
values for a bistablc potential and for the single-
mode laser with the results derived by alternative
Inethods, or numerically, by various authors.

To discuss the question of multiplicative noise
wc have studied a class of a models for which
some authors fcccntly prcdictcd 8 ncw c18ss of
phase transitions and critical slowing down. In ad-
dition we have shown in the present paper that for
various other models discussed here, the upper and
lower bounds for the lowest-lying nontrivial eigen-
values are not consistent with the prediction of
critical slowing down. The time-dependent proper-
ties of the models studied are found to have little
if anything in common with the traditonal notion
of phase transitions and thus thc concept of
"noise-induced phase transitions" appears to be ill

defined and a source of confusion.

APPENDIX A: INTERMEDIATE THEOREM FOR
THE EIGENVAI. UES OF THE MASTER EQUATION

IN DETAILED BALANCE

%'e briefly sketch the application of the inter-
mediate theorem to the master equation (for the
details of notation we refer to Ref. 2). The master
equation reads

P(m)=L „P(n), (Al

In this paper, we have presented a general ap-
proach to characterize the discrete eigenvalues of a.

Fokker-Planck problem, satisfying the "potential
conditions, " in terms of rigorous upper and lower
bounds.

The upper bound was obtained by a variational
method analogous to the Rayleigh-Ritz method. It
was shown that the variational principle assumes a
rather elegant Rnd simple form for additive as well

as multiplicative stochastic processes.
The lower bound has been derived by using the

intermediate theorem of %einstein which can be

L~„=W(m, n}—5 „QS'(l,n} .

Using the separation ansatz

P(m) =e

we have

L~nen= —~ Vm . (A4)

Bccausc L~II 1S 1n gcncral not self-adjolnt wc have
to consider also the Rdjoint problem

& Lm. =—~*&n
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If detailed balance holds, i.e., APPENDIX 8

a variational principle can be associated with Eqs.
(A4) and (A5) (Ref. 2) which takes the form

(X L„q„)
(x q„)

(X L'„X„)
(XX )

(A8)

where I X ), ( y„) are assumed to form a
biorthogonal set of eigenvectors. To carry over the
intermediate theorem to the master equation it is
more convenient to write Eq. (A7) in the form

P —1/2L FPP &/2
0 0 (A14)

are in general non-Hermitian. The operator L can
be split into a Hermitian part LH and an anti-
Hermitian part Lq. If the anti-Hermitian part Lz
and the Hermitian part LH commute, i.e.,

In the main part of the present paper we have
confined ourselves to Fokker-Planck equations that
can be cast into self-adjoint form. It is possible,
however, to generalize the results presented in Sec.
II to so-called normal operators.

As has been discussed in Sec. II the Fokker-
Planck operator L and the transformed operator

34

where the I X ) are orthogonal to all lower eigen-

functions and where

V~ LH]=o,

we have the equations

(A15)

L„'~ = 8'(n, m) —,S'"(n)
L„P~ i im(l—.p——)f~ . (A17)

From Eq. (AS) it is now obvious how one has to
proceed to get the intermediate theorem for the
master equation. Introducing the abbreviations

It is now easy to check that all considerations of
Sec. II can be carried out for Eq. (A16) and it be-

comes thus possible to get upper and lower bounds
for the real part of the eigenvalues for Fokker-
Planck operators that can be cast into normal from
(A15). From Eq. (A17) one can then obtain a
rough estimate for the imaginary part of the eigen-
valucs.

As an example we consider the equations
(x+ =u+iu =re'~)

(X L'„L„'070)

(XX )

x+=(a+ib)x+ —~x+
~

~x++g,

where ( is assumed to be Gaussian white noise. In
polar coordiantes Eq. (A18) reads

we find that P &a and that there exists at least
one eigenvalue which lies between

r'=ar r+g,—
y=b+g.

(A19)

(A20)

(p2 2) li2 For thc Hcrmitian part of the Fokkcr-Planck
operator which is associated with the Langevin
equations (A19) and (A20) we find

1 8 1 8+——+— +v(.),
Bf ~ ~~ f Bg

The extraction of lower bounds for the eigenvalues
of the master equation from the upper bound and
from the intermediate theorem proceeds via the
same path and under the same restrictions as for
the cast of the Fokker-Planck equation.

and for the anti-Hermitian part

(A22)
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V(r) = ——+ —r +r ( ——+2) +( —&) .
4 2 4

(A23)

From inspection of Eqs. (A21) —(A23) it is obvi-
ous that LH and Lz commute and that the eigen-
values of Eq. (A21) are those of the single-mode
laser. Equation (A18) can be derived in a physical
context, e.g., from the Maxwell-Bloch equations

for two-level atoms under the assumption that
there is a small detuning in the equation for the
field whereas the polarization has no detuning.
Then one obtains via adiabatic elimination of the
polarization and the inversion of the two-level

atoms, Eq. (A18). If one starts, however, in the
Maxwell-Bloch equations with a detuned polariza-
tion one obtains via adiabatic elimination a
Langevin equation whose corresponding Fokker-
Planck equation cannot be cast into normal form.
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