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A resolvent superoperator approach is described for the evaluation of the dynamic con-

ductivity of a strongly interacting electron-phonon system, starting from a current-

correlation integral formula. The conductivity is expressed in terms of a self-energy

superoperator and a self-consistent expression is obtained for this temperature-dependent

quantity.

I. INTRODUCTION

Transport coefficients, such as electrical conduc-
tivity, are usually calculated either from a
Boltzmann transport equation or in terms of corre-
lation functions. Boltzmann's transport equation
has a limited validity' and is applicable only to
the case of weak interactions. A large number of
theoretical methods have been developed for the
evaluation of the electrical conductivity of solids
for various model systems using correlation func-

l

tion techniques. The correlation function ap-
proach can, in principle, be used for any system
however strong the interactions. If we consider an
arbitrary system subject to an external electric
field, then the Fourier component of the current
density j (k,co) is related to the Fourier com-
ponent of the total electric field E(k,co) by

j (k,co)= fdk 'o(k, k ',co) E(k ', to),

where the nonlocal conductivity tensor is given
b 14

(1.2)

(1.3)

where p is the equilibrium statistical operator and J(k, t) is the spatial Fourier component of the current
density operator. A small imaginary part —i5 added to the frequency implies adiabatic switching of an

external electric field and ensures convergence of the integral at t = oo. The Hamiltonian describing such a
system must include the effects of Coulomb interactions either directly or by means of quantized elec-

tromagnetic field interactions.
An alternative to this exact approach is to consider an effective medium in which electron-lattice and

electron-impurity interactions are screened and in which the external electric field is replaced by the total
electric field but all other effects of the Coulomb interactions are neglected. The expression for the conduc-
tivity in this effective medium is

o(k, k ',co)=f dte '" ' "f dpt Tr[p J(k ', ihip, ) J(k—, t)] .

cr'"( k, k ",co)[(co/c) 1 —k "k "]o'(k ",k ',co)
o(k, k ',co) =o'"(k, k ',u)—

(2~)' [k "'—(co/c)' —i5sgn(co)]

and cr'" is the external conductivity. This relates the current density to the external electric field, that is, the
field produced by external sources and which would exist in the absence of the medium, and is given by
Kubo's formula:

o'"(k, k', )=tolim f dte "" ' I' f dp& Tr[pJ(k', ifipt) J(k,—t)],
S 0+ 0

This looks the same as Eq. (1.3) for o'" but in (1.4)
the statistical operator and the time-evolution
operator involve an effective Hamiltonian which
excludes Coulomb interactions. A discussion of

I

this approach is given by Toyozawa. " If such a
system is subject to a spatially slowly varying elec-
tric field, then the spatially averaged current densi-

ty is given by the local conductivity tensor,
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g —1 d~ e
—i(co—ts)t

0

)& I dP, Tr[pJ( —i'~) J(t)],

(1.5)

where J (t) = J(k =O, t).
It is this latter approach that we shall take as a

starting point. Expressions (1.4) and (1.5) are not,
as many people claim, exact but should neverthe-

less provide a very good approximation for the
conductivity even for strong electron-phonon or
electron-impurity interactions.

In this paper we will show a detailed method of
calculation for the frequency-dependent conductivi-

ty of an electron-phonon system, starting from the
current correlation formula [Eq. (1.5)]. Our
method is based on the resolvent- formal-
ism "" ' applied to quantum-transport theory.
Although one has to work in a superspace of
operators, the advantage of working with the resol-
vent rather than conventional Green's functions '
is that the transport problem is reduced to a study
of an effective one-electron operator. Therefore,
the difficulties of simultaneously solving both Dy-
son and Bethe-Salpeter equations in the thermo-

dynamic Green's function approach are thereby
avoided. A similar method has been presented ear-

lier by several authors. ' However, our method
does not heavily depend on the strength of the in-

teraction. Therefore, the results obtained could be

applied to the strong-interaction case unlike the
previous theories ' which are based on the per-
turbation expansion of the resolvent superopera-
tors. We employ a factorization approximation for
the equilibrium statistical operator [Eq. (2.11)] and

calculate the current correlation function using the
grand canonical distribution for the electrons and
the canonical distribution for phonons. Thus, any
collision process between an electron and phonons
is assumed to take place in the average field of the
phonons. The effect of such a field is to induce
perturbed single-particle energies and to introduce
lifetimes for the electron states. The lifetime
broadening due to the interactions is, for example,
responsible for the spectral broadening of line

shapes and can be studied theoretically by examin-

ing the real part of the conductivity tensor.
We relate the conductivity to a self-energy super-
operator and hence it is important to provide a
general expression for this temperature-dependent
self-energy which is applicable to the strong in-

teraction case. In this paper we show how to do
this in a self-consistent manner. The theory is

II. FORMAL PRELIMINARIES
A. The model Hamiltonian
and the conductivity tensor

We consider an electron-phonon system charac-
terized by the following time-independent Hamil-

tonian:

H=gh'~'+Hpb,
J

h"'—=hg'+A, V

(2.1)

=hoj +A g (yJ b-+y-'~'bt-),
q

Hpb =g (b b- + —, )fico

q

(2.2)

(2.3)

where ho is the single-particle energy operator,
V=+(y b +y-b---) is the interaction potential

q q q q
between an electron and a phonon with momentum

q, A, is a parameter to indicate the order in the ex-
pansion, which is set equal to 1 later on, b- and7 qb- are, respectively, the phonon annihilation and

creation operators, y- is the screened interaction
q

developed independently of the single-particle rep-
resentation (momentum, Landau, or other), and
hence it can be applied irrespective of the system
studied. In particular it is valid for systems sub-

ject to a constant magnetic field and the differ-
ences due to 8 arise only at the final stage of cal-
culation. Therefore, it can be applied to the study
of resonance problems such as cyclotron reso-
nance (co=co, ), phonon-assisted cyclotron reso-
nance (co=Su, +coL ), and magneto-phonon reso-
nance (co~0,coL ——Nco, ).

In Sec. II, the general theoretical method of the
evaluation of the frequency-dependent conductivity
of an electron-phonon system is outlined. The
one-electron resolvent superoperator is given in

terms of a simpler effective one-electron resolvent

8, . This depends on the self-energy superoperator

g, which is defined at the outset unlike previous
theories ' which are based on the perturbation
expansion of the resolvent superoperators and
hence depend heavily on the potential strength. In
Sec. III, the general technique ' for dealing with
superoperators is briefly presented. The general
expression for the temperature-dependent self-

energy superoperator is given. This expression

[Eq. (3.20)] is similar to expressions [Eqs.
(2.15)—(2.19)] by Prasad ' who used a somewhat
similar approach.
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(one-electron) operator, which is defined in terms
of the matrix elements of electron states. The en-

ergy operator hp may contain a magnetic field B.
To evaluate the frequency-dependent conductivi-

ty, we start from the current correlation integral
formula [Eq. (1.5)]

00

g —1 dt e
—l(co—t5)t

p

)& f dP) Tr[pJ, ( ih—P, )J,(t)],

(2.4)

where co is the frequency of the external field, 5 is
a positive number, Q the volume, and p is the
grand canonical operator

p=p(H gN—) =e@~H H'/Tr(ep'&H ') . (2.5)

P=(ksT) ' is a reciprocal temperature, g the
chemical potential, X the electron number opera-
tor, and J,(t) is the r component of a total current
operator in Heisenberg picture:

f ding)(H) J, ( —ifiP&) = lim p(H') . (2.7)
P

Substituting (2.7) into (2.4), Kubo's formula is re-
duced to a more compact form

o~(co) = lim lim 0
p+ p Bu

X I dt e ' ' "Tr[p'J„(t)], (2.8)

where p' is defined by

p' =p(H' gN) .— (2.9)

We assume that the phonons are distributed all the
time according to the canonical distribution law

pph pph(Hph ) e '"/Tr' ""'( e '"
)

(2.10)

and further assume that the following factorization
is allowed:

J (t) e)Ht/hJ e iHd/h —J g j J

J
(2.6) p'=p |)h(H& h)p gh' ' /AN uJ— — (2.11)

where j is the velocity operator multiplied by the
electronic charge —e. This formula is valid pro-
viding H does not include Coulomb interactions.

Let us introduce the fictitious Hamiltonian
H'=H —u J (u is a complex-number vector),
then further simplification is effected by utilizing
the identity:

This is equivalent to the assumption that the

phonons are part of the heat bath for the system

and is likely to be valid if the system has a low

density of electrons such as in a semiconductor.

The approximation is almost certainly invalid for a
metal. The Kubo formula can then be expressed in

terms of a single-particle trace (denoted by Tr):

lm)= lim lim ll ' f die " ' "Tr (exP —iih +Hex) —e'exP ith ~H x) —) xj,
g~p+ u ~p ug

(2.12)

where the angular brackets, ( )~he denote the averaging over the phonon states, n' is the Fermi operator

n'—= (e@" " ' ' ~'+1) ', h—:hp+A, v . (2.13)

This can be written in the form

dr (t0)= i% lim 0 —' tr[hp, ( fico+i%5)j—,],
5 p+

where

(2.14)

hp, (z) —= lim n,
' = lim i I dt e exp[ i (d/+4 —~h)t]n'

Cl

u ~p Bu& U~ p Bu&
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A script letter denotes a superoperator which gen-
erates a commutator upon acting on an ordinary
quantum operator such that

From (2.18) and (2.20) we obtain

R, —R, =R, (g, —A, &)R, . (2.22)

MB= [—A, B]=AB—BA . (2.16)
Substituting (2.22) into (2.19), we obtained (2.19) as

As can be seen from (2.14) and (2.15), evaluation
of o. (co) is reduced to a calculation of the
phonon-averaged quantal density operator n,

' de-

fined in the Laplace transformed space, viz. ,

n,':—((Ao+A p„+kW —z) 'n')p„

n,
' —= (R,n'),„
=(R, n')pz+(R, (g, —XW)R,n')»

=(A'p+g, —z) 'X, (2.23)

where

=(R,n')„„, (2.17) &=( n') p+h((g, &~—)R,n')ph (2.24)

R, —= (Ap+A ph+kP —z) (2.18)

where the resolvent superoperator is defined by The proof that Eq. (2.23) is a consequence of the
previous line is given in the Appendix. We expect
that for most systems,

X= (n')p„ (2.25)

B. Evaluation of n,
'

where the effective one-electron resolvent super-

operator R, and the self-energy superoperator g,D D

are, respectively, defined by

R, =(A'p+4 „h+g, —z)

g, = —A. (&R,P )ph .

(2.20)

(2.21)

In order to evaluate n,', let us consider the fol-

lowing identity:

n,
' =(R,n')„h=(R, n')p„+((R, R, )n')—p„,

(2.19)

since the terms (g, R,n')
ph and A. (WR, n')ph tend

to cancel. In fact, we can show that at high fre-
quencies ((g, —AP )R,n')ph- I/z whereas, of
course (n')

ph is independent of z. If in fact (2.25)
is correct, then the factorization (2.23) succeeds in

separating the dynamic and static properties:
(A'p+g, —z) ' represents the dynamic properties
and (n')„h is purely static. The approximation
procedures applicable to dynamic and to static
problems are usually quite distinct. We are con-
cerned in this paper mainly with dynamic proper-
ties of the system and so we shall assume in gen-
eral that (n')

ph is known. For weakly interacting
systems, however, we can determine (n')

ph by
means of a perturbation expansion of n',

Jd2' f(N)(ho+AV uj —W. )—
277

fd+f(+)[G'(&) &G (9')VG—(H)+A'G (X)VGO(,X)VG0(~)2'
&G'(~) VG'(9') VG'(X) VG (W—)+O(A4)], (2.26)

where f(N) and G (X) are, respectively, defined by

f(N) =(e@ &'+1) (2.27)

(~)=(&p—u' j —H) (2.28)

hat is required next is some systematic method of evaluating g, [Eq. (2.21)]. Such a method can be
devised by expressing R, as in infinite series; by successive iterations using (2.21) and (2.22), we obtain
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R, =R, g [(g, —A, F )R, ]"

=R,' XR—,'~R,'+ X'(R,'~R,'~R,' R,'—( ~"R,'~) „„R,')

—X'(R,'~R,'~R, ~R,'—R, ( ~R, ~),„R,'~-R,'—R,'~R, (~-R,'~-),„R,')

+X'(R,'X R,'~-R,'~R,'~R,' R,'& ~R,'—~-),„R,'~R,'~R,'
R, K—Rz ( F R, k )phRg & Rz Rz F—Rz WRz (WRz P )phRz

—R, (~R,'~R,'~R, ~),„R,'+R,'& ~ R,'~),„R,'(~R,'~-),„R,')+0(z') .

Substituting (2.29) into (2.21), we obtain g, as

g,
—= —X'(FR, W)p h

= —Z'& ~R,'~ },„—Z'(
& ~R,'~-R,'~ R,'~.-),„—& ~R,'& ~R,'~'),„R,'X-),„)

X'(( ~R,'~R,'~—R,'~R,'~-R,'~),„&~R,'& ~R,'~)—„„R,'~R,'~-R,'~ &„„

—( ~R,'~R, ( ~R,'~),„R,'~R,'~),„—( ~R,'~R,'~R,'( ~R,'~ &„„R,'~ )„„
(~R, ( ~R,'~R,'—~R,'~)„R,'~"),„

+ ( ~R,'( ~ R,'~ &,„R,'( ~-R,'~),„R,'~- &„)+O(z') . (2.30)

We should emphasize that these series expansions for E., and g, are not the conventional perturbation ex-
pansions and that, in general, we expect the convergence to be quite rapid, even for strongly interacting sys-
tems. The reason for this is that the effects of the interaction are included in the denominator of R, . This
also has the effect that the term-by-term divergences experienced in the usual perturbation theory are cir-
cumvented. The operator g, defined by (2.21) is similar but not identical to the corresponding operator de-
fined in diagramatic terms in the previous theories. ' To second order in (2.30) these operators are the
same but there are differences in fourth and higher orders.

Using these expressions for R, and g, , we obtain ((g, AW)R, n')—
zq ,as

((g,'—X~)R,n ),„=—X(~R,'n ),„+X'((~R,'~R,'n ),„—((~R,'~),„R,'n },„)
—A, ((P R, WRz I R, n')ph —((/ R, I )phR, WRz n')ph (F"Rg (&R—, F )phR, n')p )h

+X'(( ~R,'~R,'~R,'~-R,'n'), „—((~R,'~R,'~R,'~),„R,'n'), „
—« ~-R, ~&,„R,'~R, ~R, '&„„&~R, ( ~-R,'~),„R, ~R,"&,„

(~R,'~-R,'( ~R,'~),„R,'—n'),„+( ( ~R,'~),„R,'( ~R,'~),„R,'n )„„
+((~R,'(~R,'~-),„R,'~"),„R,'n ),„)+0(z') . (2.31)

In what follows, we shall neglect this term. Let us consider the g, expansion [Eq. (2.30)]. In this expres-
sion each term contains implicitly many terms which involve summations over many phonon momenta.
However, only a small proportion of all the terms implied in the expansion of g, survives the phonon
averaging process. Firstly, any term with an odd number of Vs is zero since V is a bilinear function of b-

q

and b -„[see Eq. (2.2)]. We have already used this to obtain expression (2.30). Secondly, as we have as-

sumed there is no correlation between phonons having different momenta, if we write the interaction opera-
tor as

(2.32)
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then the only terms which are nonzero are those which have an even number of V-,&- operators in theqs q

phonon averaging process. So that, for example, (&-„R,P -, )~1, is zero unless q = q '. In this way we ob-

tain the internal structure of g, as

g, = —A,'g (m-, R, X -, ),„

g((P -R, & R, W Rg W„)ph —(X~-Rg (P -R, 7 -)phR, P -)ps)

((P R, P-,Rg P R, F -, )pl+(W R, &-„R,&-,R, &-, )ps) +O(A. ) .
q q '(+q)

(2.33)

We have developed a prescription of the method
for the practical evaluation of the dynamic conduc-
tivity tensor for an electron-phonon system. It
should be stressed that the formulas obtained so
far are developed independently of the single-

particle representation (position, momentum, Lan-

dau, or other) and hence can be applied to a system
subjected to a static magnetic field. As can be seen
in (2.23) and (2.24), the co (i.e., z) dependency of
the conductivity tensor is entered in the self-energy

superoperator and the energy denominator of R, .
Although we can evaluate the co-dependent terms
arising from X [Eq. (2.24)] which may be impor-
tant in the low-frequency region following the
prescription outlined in this section, we shall not
consider them in the present investigation. For the
cyclotron-resonance problem we can safely ignore
these co-dependent terms, which contain no reso-
nance terms. ' In any case, we expect the effect
of these correction terms to be small and the
optical-absorption line shapes, which are related to
the dynamic conductivity tensor, to be mainly
determined by the energy denominator

0+gz z) —(fz ) in (2.23).
Let us reexpress the conductivity tensor as fol-

lows:

o (z)= i' lim 0 't—r[(r, M, )j„],
S~O+

where M, is defined by

(2.34)

M, = lim X= lim (n'&p„.
u ~p ~~s u ~p ~Qs

(2.35)

It is now clear that choosing an appropriate repre-
sentation for an electron state, we can evaluate the
dynamic conductivity o. (co). Let us write
tr[(r, M, )j„] in a matrix representation:

«[(r~M. )j.]= X && iI r*M.
I &2&&&2Ij. I&1&

(2.36)

where a single-electron eigenstate is labeled by A.

and satisfies the eigenvalue equation

ho I
A, ) =Eg

I
A, ) . (2.37)

It is clearly seen that if g, =0 (no interaction), ab-

sorption spectra have a sharp peak at
E~ —E~ —z =0. However, due to the interaction

1 2

incorporated in g, such peaks are lifetime-

broadened. We would like to emphasize that our
results depend only on the assumptions that pho-
nons are uncorrelated and that the statistical opera-
tor is factorizable. The former assumption may be
relaxed in our formalism. The latter is likely to be
valid when one considers the system of low-

electron densities such as in a semiconductor. We
did not appeal to the weak-interaction assumption.
Hence, the formula could be applied to the strong
interaction case. Solving this equation for
(A, 1 I %,(z)

I
Aq), one can, in principle, evaluate the

conductivity tensor. Unfortunately, it is not feasi-
ble since g, is generally not diagonal. However,
we evaluate it by making an appropriate approxi-
mation to the matrix elements of g, . In the next
section we shall illustrate the approximation pro-
cedure and demonstrate a method to evaluate the
self-energy superoperator.

Our problem is now reduced to the evaluation of
the matrix elements for (r, Ms), which is a func-
tion of superoperators. Consider the quantal
operator %s(z) =—r, M, . Multiplying (r, )

' from
the left, we obtain

(rg ) 'es(z) =(A'0+gg —z)es(z) =Ms . (2.38)

We consider the A, i, A,2 element of (2.38):

(Eg Ex —z)(A. ,—I %,(z)
I
A~)

+(x, Ig,'q, (z) Ix, )=(x, IM, Ix, ) .
(2.39)
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III. APPROXIMATION PROCEDURE

An exact solution of transport equation for
(A, ~ I

'p, (z)
I A2), Eq. (2.39), is not feasible because

the self-energy operator g, is, in general, nondiago-
nal. In order to proceed further we therefore need

an approximation scheme for the evaluation of
(k~ I g, %,(z)

I
A2). The approximation scheme has

two distinct stages. Firstly, we consider only the
lowest-order contribution to g, from its series ex-

pansion, Eq. (2.30) or Eq. (2.33).That is„we assume

A]+A2
(3.5)

If we introduce a pair of variables (v p) replacing
the pair (A.&,k2) such that

(3.6)

then (3.5) is expressed by the new notation

(A t I
A

I )I2) = (v+ —,p I
A

I
v ——,p ):—A&(v) .

gD- h, =—g(—W, ZDW-„),„, (3.1) (3.7)

A. Second-order non-self-consistent

approximation (weak-interaction case)

In order to see the structure of the collision
term, let us consider the crude approximation
which is applicable only if the interaction between
electron and phonon is weak. Then Eq. (3.1) can
be further approximated:

g,'= —b,'= —g & ~-, z,'~-, &,„, (3.3)

where R, also contains b, :

Rg ——(A'0+4 ph
—bg —z)

%e note that this approximation to the self-energy

operator contains higher-order effects of the in-

teraction through the appearance of b, in R, and

should be valid even for quite strong interactions.
The second stage of approximation involves a
scheme for evaluating (A,

& I b,+,(z)
I A2) which will

be outlined belo~.

Let us define an operator (p I
h(v)

I p, ') in v space
associated with superoperator A such that

(p Ih(v)
I
p'}=sf h„q(v)2) " r) "h—~ q (v)ri",

(3.8)

where we have introduced the shift operators q+-"

which replace a function of v by the same function
of v+ —,p:

ri+"f(v)=-f(v+ , p) . —

It is noted that an operator h(v) is just another
way of writing the superoperator A and a matrix
operator (p I

h(v)
I p, ') is a matrix with respect to

one set of quantum numbers and an operator with
respect to the other. It is then easy to verify that
the matrix elements of a commutator can be ex-
pressed in terms of (p I

h (v)
I
p'):

(x, ISA I
x2&=(AA)„(v)

—= (v+ —,p ISA
I
v ——,p)

=g (p I
h(v)

I
p, '}A„(v), (3.10)

R, =(A'p+A ph
—z) (3.4)

Since the collision opera~or is a function of super-
operators, to evaluate the matrix element of such a
function is a complicated matter. The practical
calculation involving superoperators can be facili-
tated by using a general technique due to Resi-
bois. In this method a four-leg structure (which
should be used for calculating the matrix elements
of superoperators) is reduced to two legs by intro-
ducing a new representation of such operators so
that the tetradic algebra " reduces to the familiar
algebra. This general technique exhibits a power
for evaluating the self-consistent collision term to
bc discussed 1n the next scctlon.

Let us specify the A, &, i,z matrix element of an ar-
bitrary operator A by a new matrix representation:

where the explicit form of the unperturbed and the
perturbed parts of A are, respectively, given by
making usc of (2.2), (2.37), (3.7), and (3.9):

(
I
hp(v)

I
p')=—«.+I /2 E. In+p,I-

(3.11):—Ao(VsP)5p~ ~ s

(p I
}'(v}

I
p')=—&v+-, p I

V
I
v , p+p'&n—"—"

—&v+-, p —p'I l'I v , p&n "'"——
(3.12)

It is noted that the unperturbed superoperator Ao is
diagonal in the p variable.

Since we know the mathematical device outlined
above, the evaluation of the collision term is
straightforward. Applying it to the present prob-
lem, one obta1ns
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&A( I
b 4

I
A2&—:(b %)„(v)=g(p I

b (v)
I
p')%„(v)

—=P P P &(p I ~q (v)
I
p')[bo(vp')+~h —&] '(p'

I V-, (v)
I
p" ) &phag" (v)

q

=XXX [(&-, +~)[&v+-,p I r-, I
v —,p+—p'&(E. &++, -E. &/—2+~--, ~) '

q, P

X &v , p—+p—'
I y-, I

v , p, +—p—"&+„(v , p, +——,p")—

1

+&v+ , p p-"
I r—, I

-v+ ,p p-'&(~—.+„/2 &.+—
/2 ' ~q

x& + p p'-Ir —, I
-,p&~—,—( + ,p ,p-")—l—

+N
q

[&v+ —,p, I yq I
v ——,p+p'&(E„„/2+„' Ev I /2 ~—q

I I
'

x (v —
2 p+ p I

'Y
q I

v ——p+p" & y -(v ——'p+ 'p&')—

ig
2p p I rq I + zp p &(E,~~/2 E„+~/2 „—, +~ z)-

q

I 1x& + p p lr-—, I

———,p&+„-( + —,„——,p")]I

—XXX[(&-q+()[&v+-,plr-„lv ~p+p'&«. ,/2+p' Fv p/2+~q-
q II P

x&v , p+p p——lyq lv—2p&+„(v—, p+p' —,p—"——
1 1

+&v+ —,p I r , I
v+-, p p'+p" —&«—.+p, /2 E +p/2 p' ~q—

x &v+ ,
'
p p'

I r , I

-v —,-p&+& (v+—,—p p'+ ,p"-)I—-

1

+&q [&v+ ,'plr' „lv ,--p+p'&«. —p—/2+p' ~ p-/2 ™q—
x &v ,'p+p' p"

I

—y-—,
I
v ,—p&+„-(v —,—p+p'——

x &v+ 2 p I y-, I
v+ ~ p p''+p" &(~.—+~/2 @ +p/2 p'+~

q
2— —

x&v+ , p p'Ir-, lv -2p—&~& (v+ 2p—p'+ 2p")1I— (3.13)

where N- is the Planck distribution for phonons and is given by
q

Tr P (p b b ) —(e 1) (3.14)

It is noted that expression (3.13) is exact. This general expression looks very complicated. To see the physi-
cal picture of (3.13), let us consider as an example the simplest situation of an isotropic translationally in-

variant system. Let us assume an electron-phonon interaction (operator) of the form

q
C

q
exp(i q r/4) (3.15)

where C is a constant, which depends on the type of phonon studied, and that the one-electron states are
q

characterized by the electron momentum. For such a case, one can easily find from (3.13) that
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P, g ( O' R, F'--) p%h' P~)
q

=g
I
C

q I [(N q +1)[(E, q
E2—+fico- —z) '+(Ei Ei—- fico—-„—z) ']

+N-[(E,+- Ei ——fico-„z) —'+(E, Ei —-+fico- —z) ']}(Pi
I

qc
I P2&

I

C-
I

[(N-+1)[(E, -„Ei+—fico- —z) '+(Ei E, —- fico-——z) '](Pi —q I

qc
I
Pi —q &

+N-[(E, - Ei ——fico- —z) '+(Ei E2+—-+fico- —z) '](Pi+ q I
0

I
Pi+ q & },

(3.16)

where 1 and 2 refer to the electron momenta Pi, P2
and Ei is an eigenvalue of the eigenvalue equation:

ho
I

P &i=E IiPi & =(Pi/2m )
I Pi & . (3.17)

In this representation, the single-electron current
operator j„ is also necessarily diagonal, hence in
the expression for the conductivity we naxi
(Pi

I g(P -R, &-&~hqc
I
Pi&. Changing 2~1 in

(3.16) and taking the limit 5~0+, this expression
shows the gain-loss structure appearing in the
quantum Boltzmann collision integral for an
electron-phonon system. ' ' For the static case
(co~0), the resultant expression agrees to (A2. 11)
of Barker. It is noted that in (3.13) the first four
and the last four terms correspond to the gain and
the loss structure of terms, respectively. It should
be emphasized that expression (3.13) is general and
does not depend on any representation for an elec-
tron state. Therefore, it can be applied to a system
subjected to a static magnetic field.

B. Second-order self-consistent
approximation (strong-interaction case)

When the interaction between electron and pho-
non is strong, one has to take account of higher-

(~i
I
bq'

I ~2 & =g (v I
b(v)

I
v')q'p (v) .

Since the energy denominator in R, contains b,
which is, in general, not diagonal, it is not feasible
to evaluate (3.18). Hence we need an approxima-
tion. As seen in the previous section, for relaxive
(diagonal j ) transport, the operator b, is diagonal
in p. Following this remarkable property, we as-
sume here that b, is also diagonal in p:

(p I
b (v)

I
p') =[b (v)]„5„„. (3.19)

Substituting Eq. (3.19) into Eq. (3.18) and after a
straightforward calculation, we obtain the follow-
ing equation for the self-energy:

order effects of the interaction. In practice the
operator g, may be approximated by b, given in

(3.1). The replacement of R, by R, (b, ) in b, is,
however, an important correction to the scattering
vertex since b, in the energy denominator of R, is
responsible for the higher-order effects. Therefore,
even the second-order approximation for g, is
beyond the Born approximation customarily em-

ployed in the evaluation of the scattering rate.
Let us consider the collision term:

[b (v)]„

=PP[(N-q+1)((v+-, V Ir , lv , V-+V'&—[E—.,n+, E—. p/2+—f q
[b(v , I—+ , V—')], —z} '——

q P

x(v, ~+I 'Ir-„ Iv+ , I &+(v+ , s u' -Ir-, Iv -, u&———1 ~ f 1 I ~ f 1

1 1

[E„+&/i E„+z/i z ~
q

——[b(v+ , I , p, ')]& ——z}—'(v——,pI r-„I v+ , I p'&)——
1 I 1

+Nq «v+ 2p I rq I
v 2p+p'&IE- y—li+c E. c/2 -~

q
—[b(v-,I + , 0—')] z—

i
}——
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x&v ——,'p+p'ly-,
I
~+ , v-&+&v+-, )

—v'I y-, I
v ——,} &

x [E„„i—E„„i „+~-,—[b(v+ —,p ——,p')]„—z} '& v ——,p I y-, I
v+ —,p —p'&)]

—gg[(&-q+l)(&v+ , v-Iyq lv —,v+s'&—IE.—,n+, —E. „n+~q —[b(v, ~+,~')], —z} '

q

x&v ——,'v+p'I y'-,
I
v ——,v &q"" "'+&v+-, p I y-, I

v+

I I —1X [E.+pa F-.+„n —
p

—~q [b(v+ ,—V 2V —)l„——Z}

x &v+, ~ ~'Iy'-, Iv, ~&~"" "')

I I

+&q (&v+ 2p I yq Iv zp+p &[Ev pn+p ~ pi2 ficoq [b(v —,p+ ~p )]~ z}

x&v,'~+p'I y-„ I
v ,'v &~"—"—"'+&v+2v I

y'-,
I
v+

I I
X [F-.+p~z E+pn p+~ q

——[b(v+-—,V —,V )]p —z}—
x&v+ 2s ~'I y-, lv ——,v&n"" "')].

(3.20)

Multiplying 4'&(v) from the right on both sides
of Eq. (3.20), one can easily obtain the collision
term (3.18) of the transport equation (2.39).
Prasad has also obtained expressions for the colli-
sion term but by means of a diagram technique.
The physical meaning of (3.20) is clearly under-

stood by considering the corresponding terms for
the weakly interacting case: The first two terms of
(3.20) correspond to the gain part and the last two
to the loss part of the collision term. As can be
seen from Eq. (3.20), [b (v)]„has to be determined
self-consistently since it appears in the energy
denominators on the right-hand side. For strong
interactions this causes a significant correction. It

should be mentioned that expression (3.20) is valid
for arbitrary frequencies of the probing electric
field and that the approximation of the diagonality
of b, (or more generally that of g, ) is strictly valid
for the translational invariance of the system (re-
laxive transport). The further evaluation of (3.20)
for a particular electron-phonon system and the
application to resonance problems will be reported
in a separate paper.
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fessor S. Fujita, State University of New York at
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APPENDIX: DERIVATION OF EQ. (2.23)

(A1)

Let us consider the equation

&R, X&ph ——&(A'0+4 ph+g, —z) 'X&ph,

where X is any quantum operator. Let the phonon states be labeled M,E,P, ... . Noting that pph and Hph
are diagonal in

I
M & and that g, does not depend on phonon coordinates, we have (Al) as

&8, X&ph ——&(So+A ph+gg —z) 'X&ph

=tr'~"'[p„h(AD+A pg+g, —z) 'X]

= g &M
I pph I

N & &N
I
(So+A ph+g, —z) 'X

I
M &
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=/&M
~
pph(X&[/fo+(X M—)RNq+g, —z] '&N ~X ~M&

=+&M IPph IM &5M, N [~0+(&—M)~, +g,'—z] '&&
I
X

I
M &

=+&M [Pph iM&(Ao+g, —z) '&M (X(M&

=(/o+g, —z) ' y &M
[ pph [

M&&M [X [M&
M

=(&o+g, —z) '&X&ph. (A2)

Equation (A2) is valid for any quantum operator X. Therefore we can write n,
'

as in (2.23).
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