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Oscillatory free-induction decay and oscillatory spin echoes
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Oscillatory free-induction decay (FID) theoretically predicted by Schenzle, %'ong, and
Brewer was observed by using NMR in an inhomogeneously broadened proton system.
Oscillatory behaviors were also observed, in the same system, in two-pulse echoes generat-
ed by large-area pulses. These phenomena appear in a highly inhomogeneous-broadened
atomic or spin two-level system driven by resonant laser or rf pulses with areas equal to
or larger than 2m. Detailed studies were made for spin-locked and notched echoes.
Behaviors of the oscillatory FID and the oscillatory echoes were theoretically examined

by solving the Bloch equations and numerically integrating the solution over the inhomo-
geneous broadenin. Excellent agreement between experiment and theory was obtained.
Analytic expressions for the shapes of the locked- and notched-type echoes are obtained,
which interpret the main characteristics of these echoes, when the infinite linewidth of
the inhomogeneous broadening and the 5-function-type excitation for one of the pulses
are assumed.

I. INTRODUCTION

The oscillatory behavior of the free-induction de-

cay (FID) was theoretically predicted by Schenzle,
Wong and Brewer (SWB) ' for atomic or spin two-
level systems excited by a laser or a radio-fre-
quency (rA resonant field in the form of a square
pulse, when the following conditions are satisfied:
(1) the inhomogeneous linewidth is very large com-
pared with the honiogeneous one, {2) the pulse area
is equal to or larger than 2~, and (3) the magm-
tude of the driving field is smaller than the inho-
mogeneous linewidth. They derived their results

by solving the Bloch equations and numerically in-

tegrating the solution over the inhornogeneous
broadening. They also obtained an analytic expres-
sion for the oscillatory FID, which is approximate
but interprets the main characteristics well.

The first decisive experimental verification of
the oscillatory FID was made by us, using an in-

homogeneously broadened proton NMR system.
Later we observed the oscillatory FID in the opti-
cal region in ruby. The "edge-echo" effect ob-
served by Bloom in his classical experiment in

1955 is attributed to the oscillatory FID.
Physically, the oscillation of FID can be inter-

preted as the sideband effect'. The laser or the rf
driving field directly excites only a part of the in-

homogeneously broadened spectrum because the
field intensity is smaller than the inhomogeneous
linewidth. However, resonant dipoles nutate
around the driving field and create sidebands,
which excite other parts of the spectrum. Hence,
the resultant radiation after the pulse contains
many frequency components giving rise to the os-
cillation of FID.

A part of this papcl ls conccrncd with thc de-
tailed description of the NMR experiment confirm-
ing the oscillatory behavior of FID.

In connection with the oscillatory FID, it is ex-

pected that two-pulse echoes display similar oscil-
lations (oscillatory echoes) when the pulse areas are
large. This was pointed out by SWB, and ESR ex-
periments and calculations by Mims in 1966 pro-
vided examples of this phenomenon. However, as
far as treating cases where both pulse areas are
large, we obtain very complicated echo shapes and,
in general, no uniform oscillation of echoes as in
the case of FID.

In the present paper, we treat rather simplified
cases where only one of the pulses is a large-ares
one. In these cases echo patterns become relatively
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simple. Moreover, analytic expressions of the echo
shapes can be obtained in a manner similar to that
in the FID cases, ' when the width of the inhomo-

geneous broadening is assumed to be infinite.
When the first pulse is short and the area of the
second is large, the echoes obtained are called
"spin-locked echoes" in NMR or "radiation-

locked echoes" in optical region. When the area
of the first pulse is large and the second is short,
the echoes obtained are called "notched echoes"
according to the naming in optical regions.

Theoretical and experimental investigations

described below show that echoes exhibit amplitude

oscillations, when the area of the longer pulse is

equal to or larger than 2m, and the conditions (1)
and (3), as in the case of FID, are satisfied. These
oscillations have not been recognized so far except
for our latest observation of oscillatory radiation-

locked echoes. A part of multiple spin echoes ob-

served by us (M.K. and T.H.) are considered to be
a special case of these echoes.

The theory of the oscillatory echoes is developed

in a manner similar to that of FID, i.e., by solving

the Bloch equations and numerically integrating
the solution over the inhomogeneous broadening.
The results are applicable to both NMR and
optical-resonance experiments.

In this work, the experimental verification of the
oscillatory FID and the oscillatory echoes were
done by using NMR. The utility of NMR comes
from the fact that a highly monochromatic excita-
tion field (rf field) is available and experimental
conditions, such as shapes of the pulses, pulse
areas, the width of the inhomogeneous broadening,
and so on, can be easily and accurately controlled.
In addition, the long homogeneous decay time of
nuclear spins enables us to observe the full signals
and to analyze them without the consideration of
the relaxation effects. The agreement between
theoretical predictions and experimental results is
quite excellent, as shown in Sec. III.

II. THEORETICAL ANALYSIS

A. Basic equations

We start from the Bloch equations for a magnet-
ic moment m in a reference frame rotating around
the static magnetic field Hp (z direction) at a fre-
quecy 0 of the applied rf field H~. Relaxation ef-
fects are neglected in accordance with the experi-
mental conditions. When the direction of the rf
field H~ is taken along the x axis in this frame, the

Bloch equations can be written as

dm„/dt =dmin,

dms /dt = —hm„+7m, ,

dm, /dt = —Xm~,

where 6 and X are the frequency offset and Rabi

frequency defined by yHp —0 and yH&, respective-

ly, and y is the gyromagnetic ratio. General solu-

tions of the coupled differential equations are

m (t) =k,X+kqh cospt —kih sinpt,

m„(t)= k2psin—pt kipco—spt,

m, (t) =k i 6 k~X c—ospt+ kiX sinpt,

where

P (g2+X2)l/2

(2)

When the initial conditions are

and

m„(0)=m„p,

m„(0)=m„„

m, (0)=m, p,
the coefficients ki, k2, and k3 become

k i ——(Xm„p+hm, p) /P,
k2=(bm o —Xm o)/P

ki ———myo/P .

(3)

In the absence of the rf field the time development

of the moment can be obtained by setting X=O in

(2) and (3) as

m„(t)=m„pcosb,t +m„psindit,

m„(t)=—m„psinht +m„pcoskt,

m, (t)=m, p .

(4)

ii(t) =f m, (t)g(b )ddt,

u(t) =f my(t)g(b, )dh .

(5)

The response of the moment to any pulse se-

quences can be obtained by combining Eqs. (2) and

(4). The solutions m„(t)and m~(t) must be in-

tegrated over the inhomogeneous line-shape func-

tion g(h) to obtain dispersion and absorption sig-

nals as
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In the following calculations the line-shape func-
tion g(h) is assumed to be the Gaussian as

(6)

where 0.* is the inhomogeneous linewidth full
width at half maximum (FWHM) and N the spin
number density.

B. Free-induction decay

The theory of oscillatory FID was already given by SWB. The formulas given in this section are essen-
tially the same as those by SWB. Suppose that a square pulse with duration ~~ is applied at t =0 to the sys-
tem. When the initial conditions are

and

m„(0)=0,
my(0) =0,

m, (0)=mo,
(a} (b}

J.J ".4

(c}

FIG. 1. Calculated and observed shapes of oscillatory FID signals for pulse area 2tr, 4Jr, 10Jr, and 20rr [from
(a) to (d)]. The horizontal scale is 100 Ius/div.
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the time developments of m„(t)and m„(t)after the pulse can be obtained as

m„(t)=(m+/p~)[h(1 —cospr&)cosh(t —r, )+psinprl sinh(t —7I)],
m~(t) =(moX/p )[ h(1 ——cosprl)sinh(t r~—)+psinpr~ cosh(t —rl)] .

Although the notations are different, the solution m~(t) is the same as U(t) of SWB [Eq. (2.14) in Ref. l] ex-
cept for the relaxation terms. The FID signal (the u-mode signal) is obtained by inserting m~(t) into the
second equation of (5). Since m„(t)is an odd function of 6, the u-mode signal given by the first equation of
(5) vanishes when the line-shape function is symmetric about the line center. However, if the line-shape
function is asymmetric with respect to 5, as in the present experiment (see Sec. III), the u-mode signal ap-
pears.

Generally the integral (5) cannot be carried out analytically. Therefore, we performed numerical calcula-
tions to obtain theoretical shapes of FID. The results of the numerical calculations for pulse areas g~&
= 2nn (n = 1,2,5,10,15,20) and (2n +1)m. (n =1,2,7) are shown in Figs. 1 —3. The values of the parame-

ter used are

o'=2m. F85.2&10 rad/s

and ri ——0.6 ms. The FID shapes for pulse areas 2n, 4m, 1(hr, and 2(hr were already obtained by S%'B. Our
results coincide with theirs.

%hen the linewidth 0.* is assumed to be infinite, an analytic form of Eq. (5) can be obtained by using the
Laplace transform method. Here we reproduce the formula given by S%B as

0, t) 2&i

where Ji is the Bessel function of order 1. Equation (8) shows that the oscillatory FID lasts only for a
times ri after the pulse and no signal is expected after that.

FIG. 2. Calculated and observed shapes of oscillatory FID signals for pulse area {a) 3(hr and (b) 40n. The horizon-
tal scale is 100 ps/div.
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(b)

FlG. 3. Calculated and observed shapes of oscillatory FID signals for pulse area 3Ir, 5Ir, and 15rr [from (a) Io (c)].

The horizontal scale is 100 ps/div.

C. Two-pulse echoes

%e treat a case where, as shown in Fig. 4, the second pulse with duration r2 is applied at t =r&+r after

the application of the first pulse with duration r& at t =0. The time development of the moment after the

second pulse can be obtained by successive applications of Eqs. (2) and (4). The calculation is straightfor-

ward and a somewhat lengthy result for m„(t)is obtained as

IIIy&IIIo=(&&8 )( —b(4 +I'cospTI)(i —cospT, )sink(t —T, —T—T2)

+P(4 +X cosPT, )sinPT~cosh(t TI T T—,)——

——,b, [ (1—cospTI)[X +(26 +g )cospT2j+p2sinpTIsinpT2 Ising(t —TI —T2)

——,pI sinpTI[p —(2b +X )cospTz]+26, '( 1 —cospTI)sinpT2 ]cost(t —TI —T2)

——,X 6(l —cospTI)(l —cospTI)sink(t —TI —2T—TI)

—I X p 8111p'TI( 1 —cospTI ) cosk( I —TI —2T T2 ) )

where the same initial conditions as in the previous
section are assumed at t =0 and the amplitudes of
the two pulses are assumed to be equal. The first

I

two terms containing the factors

sin{t —r) —r-r2)

I

0

FIG. 4. Schematic pulse operation for t~o-pulse echoes.

cos(t —ri —r—r2)

give FID after the second pulse, and the last two
terms containing

sin(t —r) —2r —rp)

and
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(e)
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VV

~~~hR i As~~,
-~vyg

UU gqcr

FIG. 5. Calculateu ated and observed shapes of oscillatory spin-locked echo signals. The area of the second pulse is,
from (a) to (d), 2n. , 4m, 1(hr, and 20m.. The horizontal scale is 250 ps/div.

give the echo. These echo terms coincide with Eq. {28) in Ref. 4 if the notations are altered. The shape of
the echo is calculated by substituting {9)into {5),and results are shown in Figs. 5 —8. Because m {t) in thisx
case is also an odd function of 5, the u-mode signals vanishes as in the FID cases, when the line-shape
function is symmetric about the center.

Generally, it is difficult to obtain analytic expressions of two-pulse echoes from Eq. {5). However, when
e' is assumed to be infinite, analytic expressions can be obtained for the cases where only one of the pulses
is a large-area one, as follows.
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(a) (b) (c)

V V
,|(IIR R II((.

r

FIG. 6. Calculated and observed shapes of oscillatory spin-locked echo signals. The area of the second pulse is,
from (a) to (c), 3m, Sm, and 15m. The horizontal scale is 250 ps/div.

1. Locked-type echoes

We first consider the case where only the area of the second pulse is large and the first pulse is so intense
and short that the 5-function-type excitation can be assumed, i.e., the off-resonance effect during the first
pulse and the duration v

&
of the first pulse can be neglected. The off-resonance effect is taken into account

only during the second pulse. We call the echoes obtained in this manner "locked-type echoes. " In this case
we obtain m„(t)after the second pulse (t y ~+~2) as

m~/mo —(1/p ——)(cos8[XE(1—cospr2)sinb (t —'T —Tg) —Xp sinp1 pcosb (t —r—rq) ]
+sin8[hp sinpr2sinb (t —T2) ——,[X +(dP+ p )cospr2]cosh (t r2 ) )—

1—( —,sin8)(X /p )(1—cosprz)cosh (t —27 —'Tg), (10)

where 0 is the area of the first pulse. The last term gives the echo.
When the linewidth cr' is assumed to be infinite, the echo shape can be obtained by the following formula:

v(t) = —[—,moX g(0)sin8]I(t),

where

I(t) = J (1/p )(1—cospr2)cosk(t —2T 1g) bd, . —

The echo pattern is determined by the integral I(t) independent of 8.
In order to evaluate the integral I(t), we apply the Laplace transform in the variables p and v2 as

F(p) = I(~2)exp( —p~2)d7 2= WI(7 2),0
(13)

where the quantity (t —2'T —r2) is held fixed. Performing the integration in r2, we obtain an explicit form of
F(p) as

F(p)=[~/p(p +X ) ]exp[ —
i
t 2T r2 i (p—+—X )' ] . (14)

If we put

F(p) =~G(p)/p, (15)

the integral I(t) becomes

I(t)=W 'F(p)=a& 'G(p)/p=a J G(s)ds, (16)
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"U

C

C

FIG. 7. Calculated and observed shapes of oscillatory notched echo signals. The area of the first pulse is, from (a)
to {d), 2m, 4m, 19n., and 2(hr. The horizontal scale is 250 ps/div.

where

G(s) =W-'G{~) .

The inverse Laplace transform yields

o&& &
~

&
—2&—~21

G"= z, I x[s' —(~ —2~—~ )']'"I » It 2~—
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FIG. 8. Calculated and observed shapes of oscillatory notched
to (c), 3m, 5m, and 15~. The horizontal scale is 250 ps/div.

echo shapes. The area of the first pulse is, from (a)

From Eq. (18), I(t) is obtained as

0, t g2~ and tg2~+2v. 2

I(t)=, I„,,

o[x[ ' —( — — )']'"Id,

Equation (19) shows that the locked-type echoes display a uniform oscillation, which is symmetric about
the center at t =2~+~&, and the echo signal appears only for a time ~q before and after the echo center.
These characteristics are similar to those of the oscillatory FID. The oscillation of the echo is also qualita-

tively understood as the sideband effect and the limited length of the echo is closely related to the theorem
on coherent transients recently derived by SWB.' However, the oscillation pattern is different from that of
FID. Instead of the Bessel function J~ in the case of FID [Eq.(8)], Jo appears in Eq. (19). In the case of
FID, the large-area pulse is applied to the moments pointing along the z direction, whereas in the present
case the large-area pulse is applied to the moments in the xy plane, whose directions are randomized by the
inhomogeneous broadening. The locked-type echoes arise from the memory stored along the direction of the
rf field (x axis). Echo shapes obtained from Eq. (19) are nearly the same as those obtained from numerical
calculations using Eqs. (9) and (5), which are shown in Figs. 5 and 6.

2. Notched-type echoes

In this case, the area of the first pulse is large and the 5-function-type excitation is assumed for the
second pulse. %e call the echoes formed by this type of excitation "notched-type echoes. " %hen the area
of the second pulse is 8, a similar calculation gives m~(t) after the second pulse (t & ~i+~) as

~y/~0=(1/p ) j sin8(b, '+X'cospr|)cosh(t —r, —r)

—{1+cos8)(X/2)[b (1—cosPr, )sink(t —rl) —P sinPr~cosb (t —r, )] I

—[(1—cos8)/2](X/p )[b (1—cospr& )sink{ t r, —2r) +p sinpric—os'(t —rl —2r)] . (20)

The last term gives the echo. Assuming u' = ao, we obtain the expression corresponding to (11):

U(t) = —[ 2 ma(1 —cos8)Xg(0)]I(t),
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where

I(r)= I (1/p )[h(1—cosprt)sinb(r —r, —2r)+psinpr)cosh(t —rt 2—r)]dh .

The Laplace transform of I(t) with (t r&——2r) held fixed becomes

F(p) =m[+1./p+ 1/(p 2+72)'~2]exp[ —
~

t r—( 2—r
~
(p +X2)'~ ],

where the plus and the minus signs are adopted when t —ri —2r & 0 and t —ri —2r ~0, respectively. For
r & r~+2r, I(t} is of the same form as in the case of FID except for the minus sign. Therefore, I(r) is ob-

tained as

0, t~2r
I(t)= 1/2f ] s —(t —r] —2r)—KX J) ( X[s —(t —r) —2r}2)'~2 }ds, 2r & t & r(+2r

s + (t r~ 2—r)— (24)

For t & r]+2r, we divide I'(p} into two terms as

+(p) =~[1/p —1/(p'+X')'"]exp[ —
~

r —r, 2
~

(p2+y2)~~2]

+[2~/(p +I )'~ ]exp[ —
~

r r) 2r
~

(—p +—g')'~2] .

The first term is of the same form as in the case of t gr~+2r except for the minus sign. The inverse
transform of the second term is listed in the table of Ref. 9. Thus I(t) becomes

0, t & 2r]+2r
]/2

s —(t —r] —2r)
1(r) nX I . J, t X[s (r r, 2—)'r]—'~ )d—s

s +(t —r —2r)

+2JOI X[rj—(r —r) —2r) ]'~ ], r&+2«t &2«+2r.

Equations (24) and (26) show that the notched-

type echoes display oscillations. However, in con-
trast to the oscillation in the locked-type echoes,
the oscillation is neither uniform nor symmetric
around the echo center at t =ri+2r. If the second
term in Eq. (26) was absent, the echo pattern
would be antisymmetric about the echo center.
The echo behavior can be qualitatively understood
as follows: The second pulse gives rise to the ef-
fective time reversal in the motion of the moments.
The echo pattern before the echo center reflects the
time reversed motion after the first pulse which is
represented by J] in Eq. (24). In the echo pattern
after the echo center, however, the contribution of
the time reversed motion during the first pulse,
which is represented by Jo in Eq. (26), are super-
posed on the former motion. Thus the pattern of
the notched-type echoes become complicated.

The echo shape obtained from Eq. (26) shows
discontinuity at t =2r&+2r. This arises from the
assumptions of the infinite linewidth and the 5-
function-type excitation of the second pulse. Nu-
merical calculations based on Eqs. (5) and (9),

where both the linewidth and the pulse length are
finite, give the echo shapes without discontinuity,
which are in good agreement with the experimental
results, as shown in Figs. 7 and 8. However, main

characteristics of the notched-type echoes are
represented by Eqs. (24) and (26}. The discontinui-
ty is due to the mathematical reason that the in-
tegrand in Eq. (22) is of the order of 6 '. The
reason why the discontinuity is absent in the case
of the locked-type echoes is that the integrand in
Eq. (12}is inversely proportional to 6 .

III. EXPERIMENTAL DETAILS AND RESULTS

A. Apparatus and samp1e

NMR signals were detected by a homebuilt
NMR spectrometer operating at 11.002 MHz. It
provides various rf pulse sequences with variable
amplitude and rf phase. Phase sensitive detection
was used so that the u- and v-mode signals could
be separately detected. The detected signals were
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integrated and averaged by an averager (KAWA-
SAKI ELECTRONICA TMC-400S) to observe the
detailed structures of the oscillations of FID and
echoes, which were in most cases, buried in the
noise level.

The experiment was carried out on proton in wa-
ter (-1 ml) which is a pure two-level spin system.
In order to obtain a suitable length of the spin-
lattice relaxation time T& for data collection, the
water was doped by paramagnetic impurities (Cu+
ions). The typical value of the homogeneous
linewidth (FWHM) o ( = 2/ T2 ) estimated from
the spin echo envelope decay time was 2m g 85
rad/s. The inhomogeneous linewidth (FWHM) o'
was artificially increased by placing a piece of iron
between the pole faces of the electromagnet. The
resultant inhomogeneity across the sample was ap-
proximately 20 Oe. The shape of the inhomogene-
ous broadening was measured by plotting the am-
plitude of the spin echo signals versus Ho. The
magnitude of Hi of the rf field was measured
from the length of a ~/2 pulse snd was adjusted so
that the condition o.*g 7 & 0. was satisfied. An
operation to observe FID or echo signal was fin-
ished in a time much shorter than T2 and there-
fore the effect of T2 (and also that of Ti which
was approximately equal to T2) could be neglected.

8. Free-induction decay

Oscillatory FIB signals observed for

X~i =2nm' (n =1,2, 5, 10,15,20)

are shown in Figs. 1 and 2, together with the re-
sults of numerical calculations using Eqs. (7) and

(5). These are the U-mode signals. The reference
signal of the phase sensitive detector was adjusted
to be in phase with respect to FID obtained by a
m/2 pulse. The pulse area Xv.

&
was changed by

changing the rf field intensity 0i and keeping the
pulse duration z~ fixed (= 0.6 ms). The vertical
scale was normalized on the oscilloscope so that
the observed amplitude of the first oscillation was

equal to that of the calculated one. All signals in
Figs. 1 snd 2 were obtained by integrating 128
times.

Agreements between observed signals snd calcu-
lated curves are quite excellent. If one put the
former upon the latter, one finds them to coincide
with each other except for the initial transient.
The theory by SWB shows that the shape of the
initial transient depends strongly on the shape of

the inhomogeneous broadening. The observed
shape of the inhornogeneous broadening in the
present experiment was Gaussian-like but slightly

asymmetric about the center. Discrepancies be-
tween observed and calculated initial transients are
due to this asymmetry.

All characteristics of the oscillatory FID
predicted by SWB' have been confirmed experi-
mentally, which are (I) the oscillation frequency is,
in first approximation, equal to the nutation fre-
quency (Rabi frequency), (2) the FID signal follow-
ing the pulse continues for a time ss long as the
pulse duration, (3) the number of oscillation in-
creases by increasing the pulse area and the num-
ber of periods is almost equal to the number of nu-
tation of the resonant dipoles around the driving
field, and (4) the envelope of oscillation is approxi-
mately s linearly decreasing function of time.

In Fig. 3 observed and calculated FID signals
for

gri ——(2n+1)rr (n =1,2, '7)

are shown. In these cases the oscillation is not un-
iform immediately after the initial transient.
When the pulse area was increased by m, the oscil-
lation became uniform. Agreements between ex-

periment and calculation are also excellent.
We also examined the characteristics of FID

when the pulse ares was changed by changing the
duration v~, instead of changing 7, and keeping the
value of 7 fixed. The observed signals also
behaved as the theory predicted. However, for the
large pulse area, the observed amplitude was srnsll-
er than the calculated one due to the relaxation ef-
fect.

We also observed the u-mode signals arose from
the asymmetry of the inhomogeneous broadening.
They were small and sharp transients immediately
after the pulse. The shape of these signals agreed
with the calculated ones obtained by the asym-
metric line shape function.

C. Two-pulse echoes

Locked-type echoes

Observed spin-locked echoes for

7&2——2nm (n=1,2, 5, 10)

are shown in Fig. 5 together with theoretical
curves obtained by the numerical calculations
based on Eqs. (9) and (5). The first pulse was
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made a m/2 pulse for obtaining maximum ampli-
tude. The spacing ~ between the pulses and the
duration v.

2 of the second pulse were about 1.5 and
0.6 ms, respectively. The pulse area was changed
by changing X. The signals are the v-mode ones
detected the same way as in the FID case, but the
integration was done 512 times because of rather
poor signal-to-noise ratio. Good oscillations ap-
pear on either side of the echo center, and are sym-
metric about the center. Agreements between ob-
served and calculated shapes are satisfactory except
for slight discrepancies in the vicinity of the
center. This discrepancy is due to the asymmetry
of the inhomogeneous broadening. Spin-locked
echoes for

Xrq ——(2n+1)m. (n =1,2, 7)

are shown in Fig. 6. The oscillation patterns near
the echo center are different froin those in Fig. 5.
Pedestal-like shapes appear near the center. These
correspond to the FID shape immediately after the
initial transient in the cases of gr& ——(2n +1)n..
The observed and calculated shapes coincide with
each other except for the part in the vicinity of the
echo center as in Fig. 5. When the u-mode detec-
tion was performed, a small signal appeared near
the echo center due to the asymmetry of the inho-
mogeneous broadening.

2. Notched-type echoes

Oscilloscope traces of the notched-type echoes
for

X~& ——2nn. (n =1,2, 5, 10)

are shown in Fig. 7 together with calculated
curves. The second pulse was made a m. pulse.

The spacing v between the pulses and the duration

v
&

of the first pulse were 1.5 and 0.6 ms, respec-

tively. The echoes are not symmetric about the

echo center as is expected. Although the shapes

are rather complicated, the observed signals suc-

cessfully agree with the calculated ones. A small

discrepancy due to the asymmetry of the inhomo-

geneous broadening appears in the neighborhood of
the echo center. The oscillation on the left-hand

side of the center is nearly the time-reversed pat-

tern of the FID oscillation after the first pulse.

Notched-type echoes for

X~i ——(2n+1)m- (n =1,2, 7)

are shown in Fig. 8. The observed shapes also
show very good agreement with the calculated
ones. The echoes in Figs. 7 and 8 vanished in the
u-mode detection, leaving very small signal about
the echo center.

IV. CONCLUDING REMARK

Oscillatory FID theoretically predicted by SWB
was confirmed experimentally by using NMR in an
inhomogeneously broadened proton system. Oscil-
latory echoes were also observed in the same sys-
tem in the cases of spin-locked and notched echoes.
Behaviors of these echoes were found to be fully
explained by the Bloch equations. We are now
studying theoretically and experimentally on two-
pulse echoes in general cases and have found ana-
lytic expressions of the echo shapes produced by
two pulses with arbitrary amplitude and duration.
Details will be reported in the near future. It is in-
teresting to study oscillatory FID and echoes in
optical-resonance experiments. The present work
should provide a basis for such studies.
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