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A fully quantized theory of the free-electron laser in the small-signal regime is present-

ed which allows for a calculation of the photon statistics. For an initial vacuum, we find

photon antibunching if the electron momentum is below resonance. %'e conjecture that,
in general, the free-electron laser preserves coherent states only in the absence of gain.

I. INTRODUCTION

Historically, the first explanation' of the gain
mechanism of a free-electron laser (FEL) invoked
quantum mechanics. Although Planck's constant
fi dropped out of the final expression for the gain
indicating that it should be derivable from a classi-
cal approach, this was supposed to be very difficult
for a long time, since the first approach' relied
crucially on quantum recoil corrections to the fre-
quenries of emitted photons for which there is no
classical analog. There is now general agreement
that all essential features of the FEL can be under-
stood in terms of classical concepts. This excludes,
of course, the problem of the photon statistics of
the FEL and, consequently, the very question of
whether or not the FEL is a laser in the sense that
it radiates a coherent state. This question albeit in-

teresting in itself is by no means purely academic.
The well-known example of multiphoton ionization
of atoms shows thai the photon statistics of an in-

tense monochromatic light beam can be of vital
importance with respect to its interaction with
matter. A general solution to this problem re-

quires a fully quantized approach. In this paper
we are far from solving the problem of the photon
statistics of a free-electron )aser, instead when

speaking about a FEL we actually mean a free-
electron amplifier in the small-signal cold-beam
noncollective regime. No attempt has been made

yet to investigate the photon statistics of a free-
electron laser above threshold.

Quantum descriptions of the FEL often start
from the Bambini-Renieri Hamiltonian, which
sperifies the FEL (in the context of the
Weizsicker-Williams approximation) in a moving
frame in which the frequencies of the laser and the
wiggler coincide. In this frame resonance occurs
when the electron is at rest, hence the electron can

be treated nonrelativistically. This paper relies on
a reformulation of this approach in the interaction
picture in contrast to the Schrodinger or Heisen-

berg picture which are usually applied. '

In the interaction picture, the time-evolution

operator of an electron-laser photon state is given

by the time-ordered exponential of the transformed
interaction Hamiltonian. If the electron momen-
tum operator is treated as a classical c number, the
problem reduces to that of a classical current in-

teracting with a quantized radiation field. There
is, however, no gain in this approximation due to
the neglect of the electron quantum recoil. In an
earlier approach to the same problem ' this had
been remedied by introducing the recoil corrections
(as obtained from energy-momentum conservation)

by hand into the detuning parameter, which is the
only quantity to depend significantly on these very
small corrections. By means of this procedure, one
obtains in a very simple way all basic results of
FEL theory. In spite of its success, this ad hoe

approach is not completely satisfactory. We re-

place it here by expanding the exact time-evolution
operator up to first order in the recoil which is
sufficient to describe the small-signal regime. To
our knowledge, this is then the only fully quan-
tized treatment of the FEL, which does not resort
at some stage to the classical equations of motion
in order to infer gain.

In Sec. II, we derive the time-evolution operator
in the above-mentioned linear recoil approxima-
tion. In Sec. III, we employ it to compute gain,
spread, and the photon statistics in terms of eigen-
states of the photon number. If the FEL starts
from the field vacuum, the resulting final state of
the radiation field is bunched, antibunched, or
coherent depending upon whether the electron
momentum is p y0, p g0, or p =0, respectively.

We suggest that, in general, the FEL preserves
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coherent states only inasmuch as gain is zero or
can be neglected. This is equivalent to the star-

tling conclusion that the FEL is a laser in the
sense that it produces a coherent state only if it is
not a laser in the sense that it does not amplify. In
Sec. IV we compare our present results with the
earlier mentioned semiphenomenological ap-
proach. ' The latter turns out to be perfectly jus-
tified if the initial radiation field is either suffi-
ciently intense or in the vacuum state. We finally
relate our work to Refs. 5 and 6.

II. TIME-EVOLUTION OPERATOR

where ro is the classical electron radius and V is
the quantization volume.

In the interaction picture, H] transforms to

iHot /A —iH pf /A=e ]e

)gg (e
—Ef (Ak +2kP)/2m+ fa C C )

where in analogy with Ref. 5, we introduced the
operator

a =a, e'~

with the properties

[A,A ]=1, A A =at.at. .

(3)

(4)

H =Hp+H], (&a)

We start with the one-electron nonrelativistic
Hamiltonian which describes the FEL in the so-
called Bambini-Renieri frame. In this moving
frame, the laser and wiggler frequency coincide
with ~=ek/2. The Hamiltonian is given by

icota aa+ —icuta a Q+
—fmf

(Q Q Q ) (6s)

8 e e =e e'p f /2 fi —'kz —'p f /2 fl —kz f [Ak —2kp) /2
(6b)

The time-evolution operator for the electron-

photon state is given by

In deriving Eq. (3), we used the following relations:

H) =li6g(QLQgre —QgrQLe ) .~ t —ikz ~ ikz

Here aL(aL ) and a~(a&) are photon annihilation
(creation) operators which represent the laser field
and the wiggler field, respectively, in the
Weizsacker-Williams approximation, p and z the
electron's momentum and coordinate with

[z,p] =itri, m is a renormalized electron mass, and
the coupling constant g is given by

4me

kv "'

T/2
S(T/2, —T/2)=a exp ——I dtHt(t), (7)

where a is the Dyson time-ordering operator and
the symmetric integration has been chosen by con-
venience. The interaction time T =L/c is speci-
fied by the wiggler length L. Equation (7) as it
stands can only be evaluated in perturbation
theory. This is due to the time-ordering prescrip-
tion as well as the appearance of the operator p in

Eq. (3). We are now trying to get rid of both diffi-
culties by expanding S(T/2, —T/2) around some
e-number average value po which will be specified
afterwards. Hence we write

S(T/2 —T/2) =So(T/2 —T/2)+S](1 /2 —T/2)+ (8a)

2

So(t2, t i ) =Wexp —— dt H~(t)
fi

T/2
S&(T/2, —T/2)= J Ct Sp(T/2, t) (p —pp) [—i'(t)] Sp(t, —T/2) .—T/2 Bp

(8c)

Here So(T/2„—T/2) is the time-evolution opera-
tor in the classical recoilless approximation for the
electron current. It has been shown earlier that,
in this approximation, the photon distribution
function exhibits a Poisson distribution if initially

no laser field is present, and that So(T/2, —T/2)
preserves coherent states. There is, however, no
gain in this approximation since the quantum
recoil of the emitted photons, which is responsible
for the gain mechanism in the free-electron laser, '
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The commutator of the interaction Hamiltonian
for p =pQ at different times is therefore a purely
imaginary e number. Under this condition it can
be shown that the time-ordering operator merely
introduces a phase:

S (t, t )—e' '2* ' exp —— dt'Hl(t')
r) & =&o

is not taken into account. The quantum recoil is
accounted for up to first order by S](T/2, —T/2}.
Owing to this linear approximation we are hence-
forth restricted to the small-signal regime. Note
that in the expansion we were carefully respecting
the time ordering. The square bracket in Eq. (Sc)
is a symbolic notation: the correct order of the
operators must be inferred from Eq. (3) [see Eq.
(17) below].

From now on, we will take the semiclassical lim-
it of the wiggler field, i.e., we will set

&a =its =&&w (9)

This limit is reasonable because the quantum na-

ture of the wiggler field is a mathematical device

only and no quantum effects of it can have a phy-
sical meaning. %ith this, we obtain from Eq. (3)
(for p =pQ),

[Ht(t'), Ht(t")]=2ig Xa sin[P(t' —t")],
where

It can easily be shown that SQ(t2, t& ) is unitary
and satisfies the group property

SQ(t i, t2)SQ(t2, t3) =SQ(t], t3 } .

On substituting from Eq. (3) in Eq. (12a) and ap-
plying the Baker-Hausdorff formula, we get

i8(r2, E& } J'(t2, r, }A —J'(r2, r, }3
SQ(t2, t] )= e e e

1/2}
Ij (t2, t

&
} I

~

Xe

;pi gV +w ipt2 i pi&j (t2, ti)=g+Na dte' '= (e ' —e ') .
E) I

It is evident from Eq. (15) that

2g&&w
j(T/2, —T/2) =j(T)= sin(PT/2) =j~ {T) .

Equation (14) provides us with an explicit expres-
sion for the time-evolution operator
SQ( T/2, —T/2 ) in the classical recoilless approxi-
mation.

Next we derive an expression for the lowest ord-
er correction S&(T/2, —T/2). On substituting for
Hl(t) in Eq. (Sc), we obtain

S((T/2, —T/2)

tg+Na k —T'l2

dt tSo(T/2, t)[(p po)Ate '—p'+2 (p po)e'p']So(t—, —T/2)

ig Nak
So( T/2, —T/2)

&( I dt te 'p'{ [p —po —Ak[ ~j (t, —T/2) ~'+j*(t, T/2)~ +j {t, —T/2)~] }[~ +j—(t T/»1—
—T/2

—[A+j(T/2, t)](p —po —0'k[ ~j (T/2, t) ~'+j' (T/2, t)~+j (T/»t)~ ] ]) (17)

In deriving Eq. (17) we have used the following commutation relations:

[A, S(ot&, t, )]=j'(t t&2)So(t, ,t&),

[~ So(t2 t&)]=J(t2 t&)So(4 tt)

[p,A]=fikA, [p,A ]=—A'kA

[p So(t, , t, )]=—RkSo(t2, t&)[j'(t2, t~)A +J(t2, t~)A+ ~J(t2, t~)
~ ],
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as well as the group property [Eq. (14)].
Since ~j ~

&&1,' Eq. (17) can be somewhat simplified. Applying the square bracket in Eq. (17) to a

state
~ p, N), the resulting state is a superposition of states ~p, N), ~p+Ak, N+1) and

~

p+2Ak, N+2).
With the choice of po specified in Sec. III, the eigenvalue p —po never vanishes. We can then safely neglect

~j (t, —T/2)
~

and
~

j(T/2, t)
~

in Eq. (17). Moreover, it turns out that the underlined j's never contribute

significantly except when multiplied with p —po. The resulting expression for S(T/2, —T/2) is then

ig+Ns k rn
S(T/2, —T/2)=SO(T/2, —T/2) 1 — I dt te

X( I p —po —fik[j'(t, T/2—)A "+j (t, —T/2)A] ]A

—A t p —po —A'k [j~(T/2, t)A +j ( T/2, t)A t] I

+ (p —po)[j(t, —T/2) —j(T/2, t)]) (19)

The last term proportional to p —po is negligible
for N » 1. It can easily be shown that
S(T/2, —T/2) as given by Eq. (19) is unitary up
to the order of k/m.

S(T/2, —T/2) apparently depends on the choice
of pp. We are now going to show that up to the
order of k/m it is actually independent of pp. Ac-
cording to Eqs. (15) and (11) we have

Bj(T/2, —T/2) k Bj(T/2, —T/2)
Bpo m BP

BS(T/2, —T/2) 0 k

Bpo m

'2

(21)

III. PHOTON STATISTICS

p Ip»=p FI»» (22a)

We shall first consider an initial number state

~ p, N) which satisfies

and hence using Eq. (18b)

BS (T/2, —T/2)

~Po

k Bj(T/2, —T/2)
m BP

XSo( T!2,—T/2)(A —A), (20)

A ~p, N) =UN
~

p~fik, N —1),
A'~ p, N) =V'N+1

~ p —ekN+1) .

Exploiting the arbitrariness of the expansion
parameter po, we fix it by

po ——p ——,flak .

(22b)

(22c)

(23)

where we have neglected the derivative of the
phase i8(T/2, —T/2) since it contributes only to
higher orders. Calculating then the derivative
BS(T/2, —T/2)/Bpo from Eq. (19),
BSO( T/2, —T/2)/Bpo cancels against the deriva-
tive of the integrand thus leaving us with

This will provide us with the most symmetric ex-

plicit results. Moreover, the parameter P then

reads

P=kp/m, (24)

so that resonance at p =0 becomes explicitly obvi-

ous. It then follows that

(p, n ~S(T/2, —T/2)
~
p, N)

ig+Na haik rn 1=(n (So
~

N)+ J dt te '~'[ , v'N+1(n
~
So

~

N—+1)+, v N (n ~SO(N ——1)
m

+(N+ —, )[j {t,—T/2) j(T/2, t)](n
~
So

~

—N)

+j~(t, —T/2) (N+1)(N+2)(n ~SO ~N+2)

j' ( T/2, t)v'N {N——1)(n
~
So

~

N —2) j . (25)
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Here we used the abbreviations So S——o(T!2, T—/2), p=p+(N —n)A'k, and
I
I &

=
I p (—I —N)hk, l ).

The photon-distribution function for the radiation field is then given by

P(n)=
I (p, n IS(T/2, T/—2)lp, X) I'

Ak2 8'(T)= 1&n I So I
&&

I

'— (v'&+ I &n
I So I

&+ I &+v & &n
I
S. I

& —I&
m BP

—j(T)v'&(& —ll&n
I So I

& —2&+j(T)&(&+I)(&+2)&n
I So I

&+2&](&
I
So In &

It can be shown ' that

(n Isola&= e ' e Ji8(T/2, —T/2) ( —i/2&j (T) .n —S(T)I + —&r:2(T)1

where the Ig are I.aguerre polynomials. ln view of Eq. (27), &u ISo I &&&ylSo I
&& is real, which has

been used in deriving Eq. (26). Owing to the unitarity of S (T/2, —T/2), P(n) should be properly norma&-

ized at least up to the order of k/m. Actually we find as a consequence of SOSo ——1,

g P(n)=1.
n=0

The first term in Eq. (26) corresponds to the photon distribution in the absence of quantum recoil. ' For
E =0," it yields the earlier mentioned Poisson stat'. sties, The second and third term are responsible for
gain, as will be shown below. They destroy Poisson statistics even for X =0. One can also easily convince

oneself that the P(n) for X =0 are not the first-order expansion of a Poisson distribution with a different

mean value: for X =0, Eqs. (26) and (27) yield

P(n)= ej ' 'j—"(T) 1 — . [n —(2n+1)j~(T)+j (T)]
n! mj(T) BP

(28a)

~hereas the shifted Poisson distribution is

p(n)= 1
e (J2(T)+e [j2(T)+e]2n

n!

+ -. .—2(T) 2n

n! j (T)

(28b)

Here e might be specified by Eq. (29) below, ac-
cording to

Ak . Bj(T)

Obviously, the discrepancy between Eqs. (2ga) and
(28b) is considerable. This leads us to conjecture
that the FEL radiates or preserves a coherent state
only inasmuch as gain can be neglected.

A further interesting observation can be made
when comparing Eqs. (25) and (26). The expres-
sion in curly braces in Eq. (25) is, for N»» 1, pro-
portional to N, whereas the term in square brackets
in Eq. (26) is only proportional to v N since the
last two terms almost cancel for N «» 1. This in-

dicates that the phase of (p, n
I
S(T/2, —T/2)

I p,X) reacts much earlier to increasing laser-field

strengths than its modulus, i.e., the applicability of
the first-order recoil approximation depends upon
the quantity to be calculated. Gain and spread
(and all higher moments) can be calculated from
P(n); the expectation value of the field as well as
two-time field-correlation functions, however,

would incorporate the phase.
The photon-distribution function P(n) allows for

the calculation of all the moments,

(n "&=g n "P(n) .
n=0

%'hen investigating the (anti-) bunching proper-
ties of the emitted radiation, however, we will find
that extensive cancellations erase all leading terms.
Hence Eq. (16), which is based on the already ap-
proximated Eq. (19), is insufficient and we have to
return to Eq. (17). %e then find using the com-
mutation relations (18a)—(18d):
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&n )=(p N iS(T/2, —T/2}'A'AS(T/2, —T/2) ip, N)

Sc . Bj (T)=N+j '(T)— j (T) (2N+1)+5,

(n }=(p,N iS(T/2, T/—2)t(AtA) S(T/2, T/—2) ip, N)

= [N+j '(T)]'+j '(TN2N ~1)— j (T) [4N'+2N+1+4j'(T)(2N+1)]
m 5p

+[4N+2j (T)+ l]5, (30a)

Ak
ant=&(a -(n &}'&=j'(T)(2N+I)— ~(T) ' [I+2J'(T)(»+I)]+(»+IN

Bp
(30b)

T/2
5=if}/'NaSc j(T)/m I dire '@[2ij(T/21)i +2ij(t, T/2)—

i
j(T/—21) j(1,——T/2)].

The second term in Eq. (29} represents spontaneous
emission. For Sgp 1 it is negligible with respect
to the third term, which is the usual gain expres-
sion. Via Madey's theorem' this is related to the
first term in the spread (30b). Inasmuch as
N-A 1, all telllls 111 Eq (29) except the one 111

the factor 2%+ I, contribute as classical terms to
the quantity Are(n ) [notice that j (T)-A ' in
view of Eq. (15)]. This includes the last term
which we would not have obtained from the ap-
proximate Eqs. (19) or (26). It gives corrections to
spontaneous emission and is negligible for all ¹

This quantity 5 is also negligible in Eq. (30a}. In
the spread (30b), however, due to extensive cancel-
lations the second and the third term, which in-
volves 5, are of comparable magnitude. Notice
that the spread 18 increased for positive and de-

creased for negative gain.
From Eqs. (29) and (30), we have for N =0

24k~ 0

hn (n)=—— ji(T) J, (31)
m Bp

where 5 has cancelled. Hence the radiation field
which evolves by spontaneous emission is bunched
for p& 0, i.e., if the electron momentum is above
resonance (p ~ 0), antibunched for p &0 (p ~0),
and in a coherent state for p=0 (p =0). This is a
genuine quantum effect which cannot be obtained

by any classical analysis. Intuitively we can under-
stand the phenomenon of photon antibunching in a
FEI. by noting first that the classical current leads
to a coherent state of the field, i.e., a Poisson dis-
tribution function. The effect of recoil for p(0 is
to remove "bunches" of photons from the coherent
state, thus leading to a narrower distribution func-

I

tion. The situation here is therefore similar to the
multiphoton absorption process in atoms, ' where

photon antibunching has also been predicted.
The present analysis is based on an initial vacu-

um state. We conjecture that similar results con-
cerning photon antibunching would be obtained for
an arbitrary initial coherent state. A careful
analysis of this problem within the framework of a
many-electron theory remains to be carried out.

If we try to obtain corresponding results for a
coherent state we run into the same difficulties
which are already inherent in Ref. 5. I.et us first
take an initial electron field coherent state

i ia }
with Aiia}=aiia). The lowest-order contribution
to the gain,

(aiiS(T/2, T/2) A AS(T—/2, — T/)2ii a)

=
I a+j I +

is strongly phase dependent, and the same occurs
to all higher orders. This is not surprising since in
contrast to a state

i p,N ) =
i p ) i

N 1, in which

both the field and the electron are uniformly distri-
buted in space, an electron field coherent state con-
tains inbuilt correlations which reflect the classical
initial conditions. Before reasonable results for an
ensemble of electrons can be obtained, the phase of
the coherent state must be averaged over, analo-
gously to the averaging over classical initial condi-
tions. ' Generally, such an averaging procedure
will not preserve a coherent state. The necessity of
averaging does not occur in case of a state

i pN ).
Alternatively we might consider the amplifica-

tion of a field-coherent state, i.e., i
in }=

i p } i
u )

with at i
u }=u

i
u }. Since
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A lp) lu)=u Ip+fik) lu),
in view of the orthogonality of electron states with

different momenta, only terms with equal numbers

of A's and A~'s survive. Hence we are essentially
back to the results for photon number states. This
conclusion, however, depends crucially on the
orthogonality relation (p I

p+A'k ) =0, which in-

volves the quantum recoil. To use it in the
zeroth-order term where recoil has been neglected
otherwise, does not seem to be consistent. More-

over, making use of this orthogonality requires an

extremely monochromatic electron beam.
Vfe sho~ed that starting from the field vacuum

X =0, due to the presence of gain, the FEL does
not radiate a coherent state. %e believe this sug-

gests that the FEL also conserves coherent states
(be it field-coherent states or some averaged elec-
tron field coherent states) only inasmuch as gain is
neglected.

as established in Eq. (27). The most essential
features of the FEI., however, gain and electron
bunching, have dropped out of this approximation.
In an earlier approach ' this had been remedied by
reintroducing the recoil by hand into the detuning
parameter. This procedure yielded correct results
for gain, spread, and all other basic properties of
FEL's. %e are now going to compare our present
exact first-order calculation of the photon statistics
with the former semiphenomenological approach.

%ith the just-mentioned procedure ' we have,
instead of Eq. (26},

P(n)= 1+(n N)M —
I

(n—ISo IN) I

Bz

where we proceeded as indicated in Eqs. (23} and

(24) of Ref. 7 or Eqs. (2.16) and (2.18) of Ref. 8.
In our present notation

IV. DISCUSSION
~

( T)2 ~ Elk
~( T}Qj (T)

m BP
(33)

If the quantum recoil is neglected, we are left
with the simple model of a classical current in-

teracting with a quantized radiation field which is

exactly solvable. This leads to the photon statistics

Using the zeroth-order matrix element (27), which
is common to both approaches, doing the deriva-
tive indicated in Eq. (32), and re-expressing P(n) in
terms of matrix elements of So we obtain

P(n)=
I

&n ISoI&& I'+~(n —» " —1 &n ISol&& —2&n ISol& —1& && ISo'In&.
z

To compare with Eq. (26) we evaluate the matrix element &p, n
I [p,So]

I p,X) [Eq. (18d)] which yields the
relation

(n —»&n ISo l»=j(T)(&n ISo I& —»~&+&n ISo I&+1)v'&+1)+j'(T)(n ISo Ix& .

It is consistent with our earlier approximations to drop the last term on the right-hand side of Eq. (35),
which then can also be used to simplify Eqs. (25) and (26). Introducing Eq. (35) in Eq. (34) we obtain

P(n)=
I

&n
I So I

&& I'+ . &&
I
So In &[~& &n

I So I
&—1&+J(T)«&+1)(&+»&n ISo I

&+2&
j(T)

j(T)v'X(S ——1)(n
I So

I
%+2)+j(T)(n

I So I X)] .

This differs from Eq. (26) only by the presence of
the last term. It is this term which destroys uni-

tarity so that g„oP(n)+1. The last term can be

safely neglected for X g~ 1. For small N inspec-
tion of the explicit form [Eq. (27)] of (n

I So I
X)

shows that it only contributes significantly for
n =X. Hence all moments calculated by means of
P(n} instead of P(n) are reliable for X ~~ 1 as well
as X =0. This justifies the semiphenomenological

approach ' for all cases of interest. It also shows
that the latter cannot be trusted whenever recoil re-
lated modifications of (n

I
S&(T/2, —T/2)

I
X)

become important, since the process of introducing
the recoil by hand fails to reproduce Eq. (25).

Our work differs from Ref. 5 mainly by using
the interaction instead of the Schrodinger picture.
In Ref. 5 quantum Auctuations of the momentum
operator are neglected by approximating
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P'=up &+(p —&p &)]'=2p&p& —&p &'. (37)

If &p & is assumed to be constant, the resulting
Hamiltonian no longer allows for gain. This is
easily demonstrated by calculating
&N

~

exp(iHt)AtA exp( iH—t)
~
X& with the Hamil-

tonian approximated according to Eq. (37). Hence
in Ref. 5, &p & is assumed to be time dependent
and to be given by a classical trajectory. One is
then left with an explicitly time-dependent Hamil-
tonian, which is, moreover, ambiguous since the
classical trajectories behave completely different
depending on the classical initial conditions. '

Since this procedure cannot be considered to be a
consistent quantum-mechanical approach, conclu-
sions drawn from it regarding genuine quantum-
mechanical entities such as the evolving photon
statistics do not seem to be reliable.

Our linear recoil approximation is similar to Eq.
(37); we apply it, however, to the interaction
picture-time evolution operator and not to the

complete Hamiltonian. Up to that final expansion,
the exact Ho has been used. Speaking in terms of
quantum-mechanical perturbation theory we have
approximated the vertices, but not the propagators.
The importance of retaining "quantum fluctua-
tions" in the momentum is also evident from a
semiclassical treatment; see Eq. (10) of Ref. 15 or
Eq. (3.7) of Ref. 16. If within the mentioned equa-
tions the second-order terms are dropped, the gain
is lost.
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