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The details of the time-dependent output from a hybrid optical bistable device are in-

vestigated in the regime where the delay time of the feedback signal is much larger than

the response time of the device (determined by electrical bandwidth of the feedback loop).
The delayed feedback is produced by placing a computer equipped with fast A-D and D-A

converters in the feedback loop. This bistable system exhibits periodic and chaotic insta-

bilities as predicted by Ikeda. In particular, as the input intensity is increased, the device

output goes through a series of bifurcations (second-order nonequilibrium phase transi-

tions). First, the initially stable output changes to a periodic output (a square wave) fol-

lowed by a second periodic region whose period is twice that of the previous region. Up
to this point, the system behavior is in agreement with the period-doubling scheme of
Feigenbaum. However, the period doubling which is predicted next is only rarely ob-

served. Instead the system usually goes over into chaotic behavior. Within the chaotic
region, the device largely follows the reverse bifurcation scheme of Lorenz. In addition,
there is a small domain of frequency-locked behavior that exists within the chaotic
domain. These bifurcations are not only of fundamental interest but may find applica-
tions in practical optical devices.

I. INTRODUCTION

The nature of chaos, or equivalently of tur-
bulence, has been the subject of intense interest
throughout the last 20 to 30 years, and has played
a significant role in many diverse disciplines rang-
ing from cosmology and hydrodynamics in physics
to population genetics and evolutionary biology.
Recently, Ikeda et al. ' have shown theoretically
that instabilities and chaotic behavior can occur in
an optically bistable device due to the finite
round-trip time (delayed feedback) of an optical
cavity. In an earlier experiment, we used a hybrid
bistable device to demonstrate that these instabili-
ties occur, showing qualitatively that periodic and
chaotic temporal behavior is exhibited in the region
of instability. In this paper, we examine experi-
mentally the quantitative details of the unstable re-

gion of an improved hybrid bistable device.
The observation of chaos in optically bistable

systems is interesting because of the fundamental
nature of the process. It is also especially interest-
ing relative to the general field of turbulence be-
cause the optical devices are very simple by com-
parison to other cases in which chaos exists. '
As such, comparison of theory with experiment
should be more straightforward than in other
cases. Chaos is differentiated from noise insofar as

it is a result of deterministic rather than stochastic
dynamics. Chaos was originally regarded as just
very complicated behavior, " in which case the
division between chaotic and nonchaotic behavior
is arbitrary. A more recent viewpoint' is that
chaos is a distinct phase of a nonequilibrium sys-

tem, and is characterized by an output that is in-

trinsically unstable, insofar as all allowed trajec-
tories X(t) of the system when perturbed to
X(t) + 5X(t), result in an exponential growth of
5X. Such detailed time trajectories are noncomput-
able due to the fact that the effect of round-off er-
rors increases exponentially in time as the system
evolves, although average properties such as spec-
tra can be computed. Ikeda et al. have shown
that this feature of chaos should manifest itself in

special details of the output of our device, and we
find that these predictions are both correct and of
great value in visually distinguishing chaotic and

noisy behavior. This is discussed in detail in Sec.
III.

Much of the current interest in chaos is con-
cerned with the set of nonequilibrium phase transi-
tions (bifurcations) which lie between the stable
and chaotic behavior. We will restrict our discus-
sion to the phases that are expected in our case,
which involve limit cycles. These cycles differ
from each other in that the period of the cycle is
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doubled as one goes from one phase to the next in

the direction of chaos. ' Feigenbaum has recently
shown that while there may be an infinite number

of periodic phases in the period-doubling sequence,
the domains of these phases shrink geometrically
with a rate 5 so that the overall domain of periodi-
city is finite. ' Furthermore, he demonstrated that
the rate 5 is a universal property of period dou-

bling that is largely independent of the details of
the system. Previous tests of Feigenbaum's ideas
have been made in hydrodynamics with mixed re-

sults. Some cases work as he predicts and some
do not. Our system is one dimensional, as is the
case that Feigenbaum analyzed, and as such, its
behavior might be expected to follow his scheme
closely.

In Sec. II we describe the experimental ap-
paratus used and present the results obtained with

it. In Sec. III, a discussion is given of the behavior

expected theoretically using a model of the system

given by a simple difference equation. The model
predictions are compared to the results and over
most (-98%) of the parameter range of our study,
the agreement of experiment and theory is satisfac-
tory. Within the 2% range of disagreement, we

observe the second period doubling (called "period
eight") only rarely, we never see higher period dou-

blings, and we observe a frequency-locked output
that is not predicted by the difference equation.
There are two theoretical studies currently in pro-
gress"' of the difference-differential equation
that describes our device. These studies are not in

agreement in that they lead to contradictory in-

terpretations of our difficulties in observing period
eight. One of them does find the frequency-locked
behavior' (the other did not cover the regime in

which it exists). Preliminary results from these
studies are compared with the experiment in Sec.
III, and further discussion of the problem is given
in Appendix A. Finally, in Sec. IV, we summarize
our results and discuss possible experiments which

might resolve the remaining questions.

II. EXPERIMENT

The present experimental setup uses the hybrid
optical bistable device shown in Fig. 1. It is large-

ly the same as the one in Ref. 5 except that we
have replaced the Pb-based lanthanum-doped zir-
conate titanate (PLZT) electro-optic device with a
conventional potassium dihydrogen phosphate
(KDP) modulator and have used a different value
of dc bias. PLZT has an intrinsic hysteresis which
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influences the details of the system response in a
complicated fashion. With the new modulator, we
find that the bifurcation structure is much simpler
and is also in much better agreement with theory.
The key element that produces the instability is a
time delay in the feedback loop which plays the
role of the cavity round-trip time tz in an intrinsic
bistable device. We produce the delay by feeding
the output of the detector through an A to D con-
verter into a TRS80 computer. The signal is sam-

pled every 0.225 msec. The result is stored in a
buffer in memory and is then fed back through a
D to A converter to the modulator at a time tz
later. The two amplifiers in Fig. 1 are needed to
match the voltage requirements of the computer to
those of the detector and the modulator.

The equation that describes this bistable device
is

rX(r)+X(r) =re [ 1 —fcos[X(r r„)+ X, ]I—,

where X=~V/VI„Vis the voltage fed to the
modulator, V~ is the half-wave voltage of the
modulator Xb ——~Vb/ V~ is the bias, ~ is the
response time of the electronic circuit, and ( is a
coefficient that measures the ability of the modula-
tor to achieve extinction between the crossed polar-
izers. The bias is set so that Xb ———~/2 to within
1% (note that in the previous experiment, the bias
was set close to zero). The coefficient g is nearly
unity (we measured (=0.98+0.01). The bifurca-
tion parameter p =CG&GzI;„is proportional to the
gains Gi and G2 of the amplifiers and to the input
laser intensity I;„,and is the parameter that is
varied in the experiment. The constant p is meas-
ured directly by breaking the feedback loop be-
tween the final amplifier and the modulator. A
zero voltage is placed on the modulator and a volt-
age V is measured at the output of the final am-
plifier. From Eq. (1) this gives p= V/V~.

Ikeda showed theoretically and we confirmed
experimentally that instabilities associated with

CON'UTER )
p-A AIIPLIFIER dc BIAS

FIG. 1. Experimental layout: He-Ne; LP, linear po-
larizers (crossed); KDP, modulator; I~ diode that
measures transmitted light (the experimental output is
taken at this point). The other items are self-
explanatory.
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the difference term in Eq. (1) occur whenever

r « t~ (i.e., the "good cavity" limit of optical bi-

stability), while r && tz leads to conventional sta-

bility criteria for the device. We normally use

tz ——36 msec and r=0.8 msec so that r « tz. In

that case, it seems reasonable to suppose that much

can be learned about the behavior of the device by

dropping the term rX from Eq. (1), defining

t„=nt&,X„=X{t„),and using the nominal fixed

values of g= 1 and Xb ———m./2 to obtain

X„,=mp(1 —sinX„). (2)

A primary concern is the question of how well Eq.
{2) predicts the output of the experiment. This is

discussed in Sec. III.
The remainder of this section is divided into two

parts. In the first subsection we describe the major
results of the experiment insofar as they deal with

the issues of period doubling and chaos. In the

second subsection we discuss the features of the ex-

periment that relate to optical bistability.

A. Bifurcations and chaos

The basic experimental quantity of interest is the
time-dependent output of the bistable device shown

in Fig. 2. We also take the power spectrum of the
output voltage and make histograms of the func-
tion X(t).

Since the computer is mostly inactive during the
100 psec required for an A to D conversion, we can
use it to make the histograms of the output volt-

age. The voltage is digitized to eight-bit accuracy
and each voltage is associated with a sixteen-bit lo-

cation in memory. We add one to the appropriate
location in memory at each digitization step. The

histogram is regarded as complete whenever any

voltage is recorded 2' times. Since we digitally

sample the waveform at a rate which is four times

the highest frequency present, there are approxi-
mately 2' statistically independent samples. The
data are then combined to conform to the 48 &(

128 graphics display of the cathode-ray tube

(CRT). This corresponds to about 10 points for
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FIG. 2. Basic time-dependent outputs of the device taken from the lower branch. The rows are the data for dif-
ferent input intensities labeled by the measured value of p. The columns are (a) A sample of voltage V arbitrary units
vs time in units of t~. (b) The log of the spectrum of V vs ~ on a coarse scale. (c) The log of the spectrum on a fine-

frequency scale. (d) The histogram of the output voltage on an arbitrary scale.
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each unit on the vertical scale which means that
the maximum statistical error in the histogram is
about 3%. We record the time trace on a tape-
recorder so that we can subsequently take the
power spectrum of the time trace that gave the his-
togram. The value of p is also measured with an
accuracy of 1 —2%. We normally measure p first,
allow all transients to die away, and then take the
histogram and the time trace. We then measure p
again to insure against drift of the laser power.

Since our spectrum analyzer is unable to handle
the relatively slow time scales of the device, we

speed up the trace with variable speed tape-
recorders. The sped-up trace is fed into the spec-
trum analyzer and the output of the spectrum
analyzer is digitally averaged for greater accuracy.
During the recording of the trace, the dc com-
ponent is altered so that in all spectra its value is
arbitrary and is greatly reduced below its real
value.

In Fig. 2 we give representative examples of the
time dependence and statistics for the six major
time-dependent features of the device output and
the values of p. at which they were measured.
Note that all of these features come from the lower

branch of the conventional optical bistability hys-
teresis curve (transmitted intensity vs. input inten-

sity) as is discussed further in Sec. III. These
features are observable even when a few of the opt-
ical components are misaligned, or when the range
of voltages fed to the A to D converter is too small
which significantly increases the noise level. The
four columns in Fig. 2 are

(a) voltage in arbitrary units versus time in units
of t~,

(b) power spectrum on a logarithmic scale versus

frequency on a scale from zero to 20/tz,
(c) power spectrum, again on a logarithmic scale

versus frequency with the abscissa expanded to
show the low-frequency behavior,

(d) histogram with arbitrary scales showing the
probability of a given X vs X.

Row one shows the square wave whose period is,
as expected, close to the value -2{v.+tz), where
the factor of two in the period is responsible for
the nomenclature "period two. " Row two shows
the output of the first period doubling which is
called "period four. " Note that while the period
two is a nice square wave, there are overshoots of
the middle amplitudes of the period four. These

may be of significance in the nonobservance of

periods eight. ' Note in the spectra that the
subharmonics associated with period four are
much smaller than the period-two peaks; this is in

agreement with theory, ' both qualitatively and

quantitatively (see Appendix A). The width of all

spectral peaks in rows one and two are instrumen-

tally limited and the background noise is very low.
The spectrum in row one (broad scale) is in good
agreement with the periodic example in Ref. 3.

Rows three, four, and six correspond to outputs
that we call "period-four chaos", "period-two
chaos, " and "period-one" or "fully developed
chaos, " respectively. Note in the time trace the ra-

pid time scale on which the chaos occurs. This is
due to the unstable character of chaotic trajec-
tories, and is why chaotic traces can be readily

distinguished from noisy traces. Note also that, in

agreement with theory, ' the period-four chaos ap-
pears to be similar to the period-four case with a
small chaotic background. The histogram of
period-four chaos has four distinct domains of
nonzero amplitude and three well-defined domains

of essentially zero amplitude. In the passage from
period-four to period-two chaos, the outer two
zero-amplitude domains shrink smoothly to zero
width and the two lower and higher domains

merge into each other. This is in agreement with

theory. ' In the passage from period-two chaos to
fully developed chaos, we see that X(t) can wander
over the domain from X=O to X=mp with no

gaps in the histogram. The spectra of the chaotic
traces are broader overall than in the periodic
cases, and while there are still peaks corresponding
to period-two behavior, they have become broader
(they are no longer instrument limited). The spec-
tral background is very high and the peaks are
only a factor of 10 above the background. The
spectrum of fully developed chaos is in good ac-
cord with the chaotic example in Ref. 3.

The waveform shown in row five is an example
of the strange waveforms that we see in a very
small domain of p between period-two chaos and

fully developed chaos. The spectral peaks are
governed by r rather than t~ (changing tz does not
radically alter the main features of the spectra),
and the spectrum shows only weak structure asso-

ciated with tq. Within this zone, two or three dif-
ferent basic waveforms are observed, each having a
dominant frequency component that is locked to
an odd harmonic of the period-two waveform

(hence the name "frequency locked" ). Only the
odd harmonics whose frequencies fall within a
domain approximately described by k/~+1/tz give
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rise to a frequency-locked waveform, ~here k = —,

is an empirically determined constant. In general,
these waveforms are not periodic, but occasionally,

as in the example shown in row five, a high degree

of periodicity may be exhibited. The waveform

shown in row five has a fundamental frequency of
11/2', but it also has a substructure similar to a
period-four waveform. This gives the peak at
11/4'�.

The domain in p of the frequency-locked
behavior is so small that we cannot reliably meas-

ure it, but it is approximately 0.01 (i.e., &1% of
the range of p) and the subdomains of different

locking frequencies are even smaller. The tran-

sients in this region are very long lived (from 30
sec to 10 min) compared to those of the periodic

regime. Our laser is usually stable enough to stay
within these small domains for such long times al-

though it intermittently drifts. By comparison to
these domains, the predicted size of the period-

eight domain given in Sec. III is 0.016. This is

certainly much larger than the frequency-locked

subdomains, which is why we reject the idea that
our nonobservation of period eight is due to spuri-

ous device instabilities.

B. Relationship to bistability

In this subsection, we would like to address
those features of our experiment that relate to is-

sues of optical bistability. The most important
point we discuss is related to the nature of the bi-

stable hysteresis loop measured when the output is
averaged over time greater than t~ so that the in-

stability is not directly observable. For the set of
parameters chosen for this experiment, the time-

average bistable loop is very different from the
loop predicted when the instability is ignored. The
opposite is true in the case discussed in Ref. 5.
This has interesting implications for future experi-
ments in intrinsic devices. We also note the obser-
vation of a "precipitation" phenomenon.

For values of p & 1, the upper and lower
branches of our device lose their identity, both
theoretically and experimentally, and the output
wanders erratically between the two states. In this
regime, one neither expects nor finds that the
time-average power will be near either of the
branches, but rather is somewhere in between. In
Fig. 3, we show (a) the output voltage and (b) the
time-average output voltage versus input laser in-

tensity (horizontal axis—:p) as the intensity is
slowly cycled from zero to a maximum (p & 1) and

FIG. 3. (a) Output voltage V, which is mostly time
dependent and hence multivalued vs input laser intensi-

ty, where the input intensity is cycled from zero to a
maximum (p y 0) and back to zero. (b} Same as (a) ex-

cept the vertical axis is the time average voltage on the
same scale as {a).

back to zero. To obtain Fig. 3(b), the output volt-

age was measured after passing through a simple
low-pass resistance-capacitance (RC) filter with a
large time constant so that the time transients are
averaged out. The device parameters are the same
as Sec. II A.

Let us take Fig. 3(a) first. For small IM, the
stable output gives a trace which is a single line.
For higher IM, one gets the periodic regime in
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which the output jumps between two values. This
appears in the figure as a branching of the lower
state. The lines then split again to give period four
and beyond that there is chaos. The details of the
chaotic portion are not observable here, since we

cycle too quickly for the transients to settle down.
The chaos involves a wandering over a domain
0&X&~p and appears as a wash. Then, as inten-

sity is increased past @=1,the chaotic trace sud-

denly jumps so that it covers the domain
0&X&2'. As p is decreased, it is a stochastic
question which branch is selected. We show the
case of the upper branch, in which case chaos, fol-
lowed by periodic, then stable portions of the
branch are observed. At p, =0.7, the trace returns
to the lower branch where period-four motion is
resumed.

The time-average power, shown in Fig. 3(b), is
extremely different from what would be expected
theoretically if the Ikeda instability were not
present. The right-hand point where the loop
closes occurs at a value of the input laser intensity
which is much smaller than predicted by conven-
tional bistability theory (see Sec. III). Moreover,
the average power is manifestly not that of the
upper branch, which is what conventional bistabili-

ty analysis predicts. It may be possible to use this
difference in the time-average output to observe an
instability in an intrinsic ring device which was the
original problem considered by Ikeda. The known
nonlinear media with very short r have relatively
small nonlinear coefficients, and thus Q-switched
lasers are needed to make nonlinearities occur.
One will need short cavities to make the device
have an adiabatic response to the Q-switched laser
pulse, and this will make it very difficult to resolve
the time dependence of the instability.

We also note that we observe an Ikeda instability
even if r=3tz, although the domains of instability
are greatly altered for r & tz. This is encouraging
from the standpoint of verifying the existence of
the instability in a cavity using cw lasers. Certain
materials such as Na and GaAs have response
times r=20 nsec and large enough nonlinearities to
be used in a 2 —3-m cavity with a cw laser. There
should be no difficulty in resolving the time depen-
dence of the output in this case.

When the bias is set at slightly less than —~/2,
the chaotic upper state spontaneously drops into
the chaotic lower state. This has been called a
"precipitation. "' This is the first experimental ob-
servation of such a phenomenon in optical bistabil-
ity. Precipitation has been predicted to occur in

self-pulsing instabilities' as well as in our case. '

Since we have been predominantly concerned with
instability in the lower branch, we often fail to en-
sure that the electrical system is linear in the upper
state. This nonlinearity causes the upper branch to
be stable for all p considered here. In that case,
for p & 1, the unstable lower state precipitates to
the upper branch. This is the type of precipitation
that has been predicted for self-pulsing instabilities,
but in that case, it is always the lower state that is
stable and the upper state which is unstable.
Another interesting phenomenon occurs when the
detector is slightly saturated (by using large input
intensities and lower amplifier gains) while on the
lower branch. We then see period-three solutions
in the chaotic domain. In this case, one can find
examples where both period-three and chaotic out-

put occur for the same device setting, which is the
essence of the theorem of Ref. 19, namely, that
"period three implies chaos. "

III. THEORY AND COMPARISON
WITH EXPERIMENT

Many of the basic ideas which underly the
current understanding of chaotic behavior have
been generated by studying equations that are simi-
lar to Eq. (2)."' We were motivated to choose
the case /= 1 and Xb ———ir/2 so as to reproduce
all of the important features of the parabolic map
X„+&——pX„(1—X„),since it is the case that has re-
ceived the greatest attention in the literature. '

The steady states of Eq. (2) are the same as
those of Eq. (1) and are defined by X„+i

(1)=X„=X . In Fig. 4, we show the steady state as
a function of p for 0 &p & 1, which is part of the
usual "S"curve of optical bistability. The lower
branch continues out to a value p » 1 where con-
ventional theory predicts that the device should go
to the upper branch [(note that this is in direct
conflict with the experimentally observed loop in
Fig. 3(b)]. In the experiinent, we concentrated on
the instabilities in the lower branch of the curve.
For that reason, we do not introduce notation that
differentiates the upper and lower branches.
Should ambiguities arise from this notation, they
are resolved by applying the results only to the
lower branch. For convenience, let us denote the
right-hand side of Eq. (2) as f (X), and its deriva-
tive with respect to X as f'(X). The steady state is
then stable if and only if

~

f'(X)
~

& 1. The
steady-state curve in Fig. 4 is divided into seg-
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8~4~C X( (X3 (X4 (Xz(4) (4) (4) (4) {3)

point p =p, 2. One finds seven steady-state solu-

tions of X +4
——f' '(X„)of which X5

' ——Xi ',

X6 ' ——Xz, and X7 ' ——X"' are unstable, and the
timing sequence of the four stable solutions is de-
fined by X;+, f(X——; ), i=1,2,3 and Xi f(X——4 ).—(z)N
At this point, it is convenient to let X& be the
smallest stable solution, in which case one finds
that

I

0.5
I

I.0

ments, and only the segments labeled "1"are
stable. All other portions are unstable. The
dashed portion is the unstable branch which plays
no role in the dynamics and is ignored from now

on. If the steady-state output becomes unstable at
some IM (denote this as p =pi), the next equation to
check is the first iterate of Eq. (2), namely,

X„+2——f' '(X„),where f' '(X) =f(f(X)). If one

inspects this equation for its steady states, one
finds that a bifurcation takes place at the point

p =p&. One finds three steady states for p & p&,
which we denote as X;, i =1,2,3, such that
X3 ' ——X'" {i.e., the old steady state) is unstable by
the stability criterion

t
f' '(X3 ')

~

& 1, and XI
and Xq ——f(Xi ) are stable. Because X, is the(z) (z) (z)

iterate of Xz, this describes a time-dependent out-(z)

put of the device of period two. This is labeled as
"2" in Fig. 4. As one increases p, the steady states
of f' ' become unstable at p =@2. Except for
bookkeeping and notation, the analysis of the bi-
furcation of the period-two system is exactly the
same as period one, since the initial function was
arbitrary and could have been chosen to be f'~' in

the first place. Hence, the next step involves look-
ing at the first iterate of f'2', namely, f' '(X)
=f' '(f' '(X)). This is found to bifurcate at the

FIG. 4. The portion of the "S"curve of our bistable

device over the domain 0&p & 1 of the experiment. Xl
is the customary steady-state output (here mostly un-

stable) vs input laser intensity scaled as p. The dashed

portion is unconditionally unstable. The theoretical

curve is labeled 1,2,4,8 to indicate period-one (stable),

period-two, etc. Note that periods sixteen and higher on

the lower branch and four and higher on the upper
branch cover very small domains that are not shown.

The label "C" indicates chaos. The experimental bifur-

cation structure is indicated along the horizontal lines.

The domain of the frequency locked (FL) anomally is

too narrow to be shown (hp &0.01). Note that the un-

certainty of locating the bifurcation points experimental-

ly is quite large (-5%) due to critical fluctuations.

This establishes the basic pattern of the period-
four system which we always observe experimen-
tally. Notice also that the bifurcation is such that
as p~pz, X ~X& and X3 ~X& (the others(4) (z) (4) (z)

—( )
approach Xz ). This means that near the bifurca-
tion point, the period-four solutions are very simi-
lar to the (unstable) period-two solutions. Note
also that 0(Xi (X~ with similar restrictions on(4) (z)

the other stable amplitudes.
This stability analysis is then iterated through

periods 8, 16, . . . , 2"+' where the bifurcation
points are at p =p„.One of the important theoret-
ical advances' in understanding these bifurcations
is the realization that the theoretical analysis of the
period-2" +' case can be scaled into the analysis of
the 2" case with a scaling relation that depends
only on f being parabolic in the neighborhood of
its critical point. Among other things, this scaling
implies that

lim ~5=4.669
Pn —Pn -i

~ Pn+1 Pn
{4)

and hence, the domains of stability vanish
geometrically (p„+i—p„~5 ") and the sequence
of bifurcations stops at a finite value p=p, such
that for p &p, one has chaotic behavior. The
theoretical and experimental domains over which
the periodic waveforms in Fig. 2 are observed are
given in Fig. 4. The experimental bifurcation
points are in fair agreement with theory, given the
difficulty (due to critical fluctuations) of defining
these points experimentally (the different chaotic
domains also show qualitative agreement with nu-
merical estimates of the domains). The ratio of
the period-two domain to period four is 4.3+0.3,
which is in qualitative agreement with Feigen-
baum's hypothesis, given that the scaling is only
approximate for low periods.

In terms of the gross features of the bifurca-
tions, the experiment is in good agreement with the
period-doubling and universality ideas, except for
the absence of period doublings from period eight
on. While we observe period two and period four
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with complete reliability, we observe period eight

only rarely (i.e., less than 1% of the times that we

sweep through the bifurcation sequence), and we

never observe periods sixteen and higher. It is not
a straightforward matter to determine whether
these observations are in conflict with the period-
doubling hypothesis. First, by Eq. (4), the domains
of higher period shrink rapidly. Moreover, as we

discuss in Appendix A, the domain of highly stable
period-eight behavior shrinks even more rapidly
than Eq. (4) predicts. A crucial question, then, is
whether our device is stable enough to stay in this
small domain, given the fact that our laser power
drifts sometimes by several percent, due to thermal
effects. We contend that this cannot be the basic
reason why we observe period eight so rarely, since
the experimentally observed domain of frequency
locking is smaller than the period-eight domain
predicted by Eq. (4) (p, —pz ——0.016). While
frequency-locked behavior is occasionally erratic, it
is usually quite well behaved, and we can see a
stable substructure over still smaller domains.

An explanation of the results may lie in the fact
that our optical bistable device obeys Eq. (1), i.e., a
nonlinear difference-differential equation, rather
than Eq. (2). No systematic mathematical studies
of such equations have been reported in the litera-
ture to our knowledge. Limited numerical calcula-
tions of Eq. (1) have been given in Ref. (3) and we

have been shown a number of other numerical re-
sults. ' *' We have also been informed of an ana-

lytic study of these equations currently in pro-
gress. These are preliminary results only and we
were informed of them after our experiment was

finished. Moreover, these results do not agree with

each other on the issue of period eight. Chow'

contends that the nonobservation of higher periods
is inherent in the bifurcation structure of Eq. (1)
due to its differential nature and we are observing

precisely what the equation predicts. Ikeda's nu-

merical results' show a period-eight behavior.
Chow also asserts that the following can be
demonstrated analytically:

(1) The sequence of period doubling terminates
after a finite number of bifurcations at a point

p =@~&p, . The termination point is not universal
and occurs in our case near the point p, =pq (the
latter is a numerical result), i.e., at the bifurcation
between period four and period eight.

(2) For p~ (p (p„the chaotic output is what
we call period-four chaos.

(3) For special initial conditions and special p,

the higher periods can be seen, but this is a very
improbable occurrence.

(4) The mixed-amplitude state (see Appendix A)
is unstable, and it decays into the square wave.

(5) There should be strong "overshoots" appear-
ing on the periodic waveforms prior to going over
to chaos.

These results apply independently of z (provided
«& tz) and they do not go over into a case
described by Eq. (2) in the limit ~~0.

Our experimental results are in complete agree-
ment with these predictions. With respect to item
(3), we observe period eight perhaps once in every
few hundred to one thousand attempts (we have
seen it three times) in a fashion independent of the
device stability and the level of noise. In this re-

gard, it has been demonstrated in a hydrodynamic
experiment that the observed bifurcation structure
is very insensitive to noise.

On the other hand, the noise levels of the experi-
ment and the slow convergence times of our device
in the domain of interest also permit an explana-
tion in terms of critical fluctuations. This explana-
tion and why we feel it should be considered as a
possibility are given in Appendix A.

Let us turn next to the chaotic domain and re-
strict our discussion to the case p & 1, since for
p & 1 the trajectories are no longer confined to
separate domains centered about the upper and
lo~er branches of Fig. 4. A chaotic trajectory of
Eq. (2) starting from initial point X =X(0) is de-
fined as having the property that a neighboring
trajectory starting from X =X(0) + 5X diverges
exponentially from it. ' Within the chaotic
domain, Eq. (2) has both chaotic and periodic solu-
tions, where the periodic solutions have odd
periods. We have observed these odd-period solu-
tions only when the device was not properly
aligned. From private communication, ' we are
led to believe that odd-period solutions of Eq. (1)
do not actually occur in the chaotic domain.
Furthermore, our calculations show that these
periodic solutions of Eq. (2) should not exist in the
presence of the level of noise in our experiment
(which comes from the digitization accuracy of A

to D and D to A steps).
We therefore assume that we can ignore the

periodic solutions of Eq. (2) for p &p„in which

case the theory' of the chaotic domain of Eq. (2)
is straightforward. As p is increased, one finds
that the domain of X over which the chaotic solu-

tion wanders is subdivided into 2" sub-domains



2180 HOPF, KAPLAN, GIBBS, AND SHOEMAKER 25

which we have called "period-2"" chaos. The way
the chaotic solution changes with increasing p re-

verses the order of period doubling, i.e., n decreases
with increasing p. The ordering in magnitude of
the 2" consecutive amplitudes (starting with the
smallest) is the same as the ordering in the periodic
solution of 2". Hence period-four chaos is expect-
ed to have the sequencing of Eq. (3), and should
look like a period-four solution with a superim-

posed chaotic background. This is just what is ob-

served. The value of p at which period-two chaos
becomes period-one or fully-developed chaos has
received considerable attention in the mathematical
literature, ' since it is the point at which transients
of odd period become possible. We observe the
frequency-locked behavior at this boundary, which
sometimes has subharmonic components of period
three (these are usually not stable for long times).
Since this case has periods related to ~ rather than
to tz, the waveforms should not be related to any
mathematical properties of Eq. (2). Ikeda's prelim-

inary results' show the existence of frequency-
locked behavior at this point (he sees it at p =0.8
which agrees with experiment to within the experi-
mental error), but his theoretical frequency spectra
are quite different from our experimental results.

We have compared the experimental histograms
shown in Fig. 2 directly with histograms generated

by Eq. (2). We find that there is some agreement
on the basic structure, but many details are dif-
ferent. The domains of zero amplitude in period-
four and period-two chaos agree quite well. The
singularities at X=O and X=X,„areexpected
theoretically in all chaotic cases of p & 1, and are
seen experimentally only in the cases of period-two
and period-four chaos. There are additional
theoretical peaks which are not systematically ob-
served. The histogram of fully developed chaos
(row six in Fig. 2) is in poor agreement with

theory, which predicts a histogram that looks very
much like the histogram of frequency-locked
behavior shown in row five.

The relationship between the chaotic solutions of
Eq. (2) and the resulting solutions of Eq. (1) have
been discussed in Ref. 3. Because nearby chaotic
trajectories diverge exponentially, and because ini-
tial amplitudes of X(t) are never precisely constant
in time, chaos implies that the amplitude cannot
remain constant over a time tz. Instead, it must
break up into short-time-scale behavior that is sta-
bilized by the time scale ~. This is quite different
from the effect of small-amplitude noise on the
periodic solutions. There the fluctuations are large

only when the response time of the device is very
slow due to critical slowing down (See Appendix
A). Hence, noisy fluctuations occur on time scales
t~ or larger. For v. && tz, these are easily dis-
tinguished from each other. The only ambiguity is
discussed in Appendix A, in which mixed-
amplitude" transients, rather than noisy transients,
cause the confusion.

IV. CONCLUSION

In summary, we have observed, in detail, the bi-
furcation structure in an optically bistable hybrid.
In a general sense, this structure is in good agree-
ment with theory. The system bifurcates to chaos
through two period doublings. The ratios of the
domains of the doublings and of the Fourier am-
plitudes of the spectra are in adequate quantitative
agreement with Feigenbaum's' universal coeffi-
cients 5 and a (see Appendix A) given that the
scaling relations that lead to these coefficients are
only approximate for low periods. We rarely ob-
serve the predicted bifurcation to period eight, and
we never observe bifurcations to period sixteen or
higher. A recent calculation suggests' that this is
a generic property of Eq. (1) and is not a defect in
the experiment. From an experimental point of
view, our difficulties with the higher periods are
also equally compatible with the notion that criti-
cal fluctuations obscure the phenomenon, rather
than there being any intrinsic defect in using
Feigenbaum's analysis in this case. The observa-
tion of these fine details of the bifurcation struc-
ture will be greatly aided by using a very fast hy-
brid that will allow for an all-electrical or optical
delay line. The computer is the chief source of
fluctuations (digitization noise) and the A-D, D-A

steps cannot be made fast enough so that we can
look at the spectrum in real time. This measure-
ment would greatly clarify whether or not higher-
period bifurcations occur.

The overall structure of the chaotic domain fol-
lows the reverse-bifurcation scheme discussed by
Lorenz. ' One see partially developed chaos first,
with an overlying period-four and period-two
waveform, and only for larger input intensities is
fully developed chaos observed. The statistical
properties of the chaos are in reasonable agreement
with theory except for the histogram of fully
developed chaos.

Between the partially and fully developed chaot-
ic domains, we see a new frequency appear that is
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clearly associated with the response time (band-

width) of the feedback loop. Hence, this is a spe-
cial property of the difference-differential equation
and it has been recently found theoretically. ' The
new frequency is observed to lock to a high har-
monic of the period-two frequency. Such
frequency-locked behavior is commonly observed
in hydrodynamic turbulence, . and it is interesting
that it occurs in a system as simple as ours.

One of the urgent matters in the near future is
an experiment that determines whether the Ikeda
instability occurs in an optical cavity. Our experi-
ment is encouraging in that regard, since the exam-

ple we consider here has the property that the
time-average behavior of our device is very dif-
ferent from what is predicted if the instability is
absent. This suggests looking for the instability

using pulsed lasers with rapidly relaxing nonlinear-

ities and very short cavities for which it may be
difficult to resolve the instability in time. In addi-

tion, we find that instability exists, with a substan-

tial modification in domains, even for relaxation
times that are more than two times longer than the
delay time. This is encouraging news from the
standpoint of doing a cavity experiment using cw
lasers and media with relaxation times in the
nanosecond range, and also for the possibility of
building practical all-optical oscillators.

Note added in proof Dr. Ikeda. has brought to
our attention the article by J. Crutchfield, M.
Nauenberg, and J. Rudnick, Phys. Rev. Lett. 46,
933 (1981),which shows that the bifurcation se-

quence can be truncated by noise in a manner that
is consistent with our experimental results. Our re-
cent experiments with a fast hybrid have suggested
that this is an important, and perhaps the dom-
inant mechanism for eliminating period eight.
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APPENDIX A

An alternative explanation for the fact that we
can observe period eight only rarely may lie in the
existence of critical fluctuations in the system.
Since the bifurcations are nonequilibrium phase

transitions, it follows that, near the bifurcation
points, the system approaches the asymptotic state
very slowly, and the waveforms are observed to be
noisy (i.e., there are critical fluctuations). The
noisiness of the waveforms is the chief source of
uncertainty in precisely locating the bifurcation
points. As the system bifurcates to higher periods,
one expects that the recovery time will increase in
proportion to the period (this follows from the
scaling). Since the noisiness is a function of the
recovery time, as the system goes to higher periods
an ever increasing percentage of the domain will be
subject to critical fluctuations. Near the center of
each domain, there is a small sub-domain in which
the waveform recovers very quickly. Following
Feigenbaum, ' we call this a "superstable"
waveform (this is also often referred to as a "criti-
cal orbit"'). In light of the previous remarks, the
portion of the domain that is superstable shrinks
quite rapidly with increasing p.

By itself, this increasing sensitivity to fluctua-
tions is not enough to rule out period eight, since it
is fairly easy to distinguish noisy traces from
chaotic ones. There is, however, a transient wave-
form that is very annoying, which occurs when
several of the stable amplitudes occur within one
time ta. For example, in the case of period two,
one could have the sequence X,X2,X~ occur(2) (2 (2)

within a time t& followed by X2,X&,X2 within
—2) -(2) -(2)

the next tR, etc. Equation i2) by itself allows such
behavior, but the numerical calculations ' and ex-
perimental evidence show that the stable waveform
of Eq. (1) has Xi for one tz followed by X2 for
the next tq, i.e., a square wave, (see also Sec. III
for a report of Ref. 16). There is no theory to
guide us here in determining how rapidly these
mixed-amplitude transients should decay, but we
have substantial experimental evidence from the
period-twa and period-four behavior that suggests
that these are likely to decay very slowly, and
hence they will be a major source of difficulty with
period eight. As a rule, mixed-amplitude tran-
sients are observed to decay at a much slower rate
than the rate at which the steady-state amplitudes
are established. They also decay much more slow-
ly in the period-four case than in period two. Fi-
nally, within the period-four domain, waveforms in
which the nearest-neighbor amplitudes (e.g.,
Xi,X3 ) are mixed decay much more slowly than

(4) (4)

the ones on which the more distant ones (e.g.,
Xi,X4 ) are mixed. We also note that the scaling

(4) (4)

rule implies that the nearest-neighbor amplitudes
that come in with peirod eight are closer together
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compared to those amplitudes of period four. This
is stated quantitatively by noting that the new

Fourier amplitudes that appear at co=(2"tz) ' for
the nth bifurcation fall off as a " where a =2.9 is

a universal constant related to 5.' The existence
of long-lived mixed-amplitude transients would ac-
count for our difficulties in seeing period eight.
The problem here is one of perception, namely,

that a noise-driven mixed-amplitude transient (we

have observed this noise-driven process directly)
and period-four chaos are difficult to distinguish

with our apparatus. Moreover, we are puzzled by
the fact that when we do find period-eight wave-

forms, , then they are extremely long lived; we
would have anticipated that in light of their in-
herent improbability [item l3) in Sec. III] and their
observed noisiness, that they simply should not ex-
ist at all if the theory of Ref. 16 is right. We are
currently constructing a much faster version of our
device and this will enable us to examine the spec-
trum in real time which should resolve these ques-
tions.
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