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Nonlinear constants of motion for three-level quantum systems
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We use the eight-dimensional coherence vector S, recently introduced for three-level

quantum systems, to derive three independent nonlinear constants of motion. Two of
these were known previously, but not known to be related, and the third is new.

We have previously shown' the existence of a
number of unexpected nonlinear constants of mo-
tion that govern the density matrix of any 1V-level

quantum system. In this note we extend that
work. We concentrate on a three-level system and
show that under appropriate resonance and Cook-
Shore conditions the eight-dimensional coherence
space can be factored exactly into three smaller
subspaces, each with its own nonlinear constants of
motion.

We point out that two of these constants were
previously found in special contexts, while the
third is new. It should be clear from our deriva-
tion that the eight-dimensional coherence vector
(recently introduced in Ref. 1) plays a unifying role
in relating these constants to each other.

The dynamical evolution of a three-level atomic
system can be expressed in terms of its density ma-
trix p, which satisfies the Liouville equation

i' p =[H p] .
Bt

We have shown' that it can also be expressed in
terms of the evolution of an eight-dimensional real
coherent vector S, whose components are formed
in groups denoted by the symbols u, v and w and
defined by

tromagnetic waves incident on the atom. The total
electric field is given by

E(Z, t) = 8'12(t)e

1 d 12 + 12(t)
a(t) = —,Q»(t) = (4a)

1 d 23 +23(t)
p(t) = —,023(t) = (4b)

where djk is the atomic dipole moment between

levels j and k. The detunings b,jk are defined as
usual by

~jk Vjk ~jk (5)

where cojk is the frequency separation between lev-

els j and k.
Now consider the case of exact two-photon reso-

nance:

The equations of motion for the components of the
coherent vector S [defined in Eq. (2)] are given by

(3)

We define a(t) and p(t) in terms of the Rabi fre-

quencies Qjk(t) by

ujk ——pjk +pkj

vjk —l(Pjk Pkj ) y

wi= —[2/i(i+) )]'

& (p]1+p22+ +pll 1pl+1,1+1) ~

(2) CASCADE LAMBDA

where 1&j &k &3 and 1&1&2. The equations
obeyed by these components are given below.

We consider an atomic system (see Fig. 1) in
which nonzero dipole moments exist only between

levels 1 and 2, and 2 and 3. Let there be two elec-

FIG. 1. The three types of three-level atom having
nonzero dipole matrix elements between levels 1 and 2,
and levels 2 and 3. Our analysis applies to all three

types.
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2a" 12+PU23

W2= —v 3PU23

('7)

square of the length of the coherence vector S,
which is known to be a constant of the motion.

We first make the following linear coordinate
transformation:

1
U = (au12+Pu23),

a2+ p2

1
V = ( —av12+ Pv23 ),

a2+ p2

W = [ —(2a +P )W1
2(a'+P')

+ &3P w2+2aPu„],

a(t) =aQO(t),

p(t)=bno(t) .

(sa)

(8b)

Here a and b are arbitrary constants. We shall
refer to pulses of the form (8) as generalized
Cook-Shore pulses. Note that a subcategory of
considerable interest (monochromatic plane-wave

laser fields) is obtained by taking Qo ——const.
We now show that when conditions (6) and (8)

hold true, the time evolution of the eight-dimen-
sional coherence vector S can be analyzed in terms
of the time evolution of three independent vectors
of dimensions three, four, and one, rotating in
three disjoint subspaces of those dimensions. We
also derive three new corresponding constants of
the motion which represent the squares of the
lengths of these three vectors. Their sum is the

Our eight-dimensional coherence vector S is the
natural generalization of the pseudo spin or Bloch
vector of two-level systems, and these equations are
straightforward generalizations of the familiar
two-level Bloch equations. Those two-level equa-

tions are recovered if every symbol containing the
index 3 (or the index 1) is crossed out.

We novv assume that a(t) and p(t) have the
same time dependence but possibly different ampli-

tudes:

V]3 V13

1
Fig (Pu12 —au23),

2+ p2

1
(pV12+aU23) ~

a2+P2
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I
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Wy

W2

(10)

S = [—v 3P w, +{2a —p )w2
2(a +P )

—2W3apu13] .
This is an orthogonal transformation. Note that it
can be expressed as

p —a ) p a
M, =1,

2 p2 a P ' Q 2+p2 —a PMp ——

1
M3 ——

a2 +p2

—(a' —p )

—&3aP

—ap

——,{2a2+p')
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—W3aP
V3
2

—,(2a' —P')
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and where all of the M 's are orthogonal matrices.
Thus the transformation (10) preserves the length
of the vector S. That is, if we denote by T the
transformed vector and denote by M the transfor-
mation matrix on the right-hand side of Eq. (10),
we have from

U]3(t)
U(t) @( )

T3(t)= V(t), T4(t)= y-(t)
W(t} ~( )

(1S)
T=MS

and

the result

isi'= i%i'.

(12a)

(12b)

(13)

T,(t)=[K (t)] .

The central point is that, not only is the length of
T conserved, but because of the antisymmetric na-
ture of the A matrices, the lengths of T&, T3, and

T4 are also separately conserved. That is, in two-
photon resonance conditions, one has three exact
nonlinear conservation laws:

A remarkable consequence of this transforma-
tion follows from the observation that if the com-
ponents of T are ordered according to

U(t) + V(t) + W(t) =const,

U f3(t) + +(t) + P (t) + P (t) =const

(19a)

T(U, V, W;U)3, +,7,P;R ) (14) (19b)

then the equations of motion for T become

dt

where A is a block-diagonal matrix of the form

(15)

(16)

where each of the A's is antisymmetric. That is,
we have

R(t) =const. (19c)

The reduced equation of motion dT3/dt =A3T3,
and thus (19a), was first obtained by Brewer and
Hahn, and Eq. (19c) was first stated in a different
form (for the pure case) by Gray, Whitley, and
Stroud. The four-dimensional conservation law
(19b) is presented here for the first time.

Furthermore, we note that under exact one-
photon as well as two-photon resonance conditions
(6=0), A4 also becomes block-diagonal, and each
block is antisymmetric. Thus T4 can be further
decomposed into two two-component vectors
T4——Tz, 8 Tq~, each of which also has constant
length:

A3= 6 0 2e

0 —26 0

(17a)
~
+pg

~
U/3(t) + +(t) =const

~
+qb

~

= &~(t) + ~(t) =const .

(20a)

(20b)

where

(~2 ~p2) 1/2

0 —e 0 0
0 6 0

—4 0 —b 0 —e

0 0 e 0

(17b)

At=[0] . (17c)

Clearly we can now analyze the time evolution
of the eight-dimensional coherence vector T in
terms of the time evolution of three separate vec-
tors

In summary, we have shown that the familiar

equations for two-photon and one-photon transi-
tions in three-level quantum systems (7) can be re-

grouped with unexpected results. In the presence
of two monochromatic lasers (or Cook-Shore
pulses, more generally), and under two-photon-
resonant conditions, the eight-dimensional space
can be decomposed into three independent spaces.
The quantum evolution of the three-level system is
thus characterized by three independent coherence
vectors, each with its own nonlinear conservation
law. The overall coherence vector S used in our
discussion allows one to unify the two of these
conservation laws that were known before, with
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each other and with the third (new) conservation
law.

In addition, the block-factored form of A can be
shown to provide a unifying approach to the
theory of simultons. It also suggests that analo-
gies to quark-model results in particle physics may

be of interest in quantum optics. We will devote
separate papers to these additional topics.

The research reported here was partially sup-
ported by the U.S. Air Force Office of Scientific
Research and the U.S. Office of Naval Research.
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