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A theory of the motion of photons in physical space is presented. Operators

representing the photon density and the photon current density are defined in terms of a

pair of vector field operators in much the same way as the energy density and the

Poynting vector are defined in terms of the electric and magnetic fields. For
polychromatic light, this theory predicts an ideal photon-counting rate which differs from

that of the usual theory of photoelectron counting.

Many conceptual as well as practical problems
in quantum optics call for a description in terms of
the motion of photons in physical space. Although
the electric and magnetic field operators provide a
useful description of the location and flow of the
field energy [through the energy density
u =(8a) '. E +8:and the Poynting vector
S=(c/4sr):E XB:],they do not provide a clear pic-
ture of the location and motion of the photons. In
the theory of photoelectron counting, it is shown
that the counting rate of an idealized photon detec-
tor is proportional to the product E' 'E'+' of the
positive- and negative-frequency parts of the elec-
tric field. ' It is often inferred from this that the
photon current density C (or photon flux) must
also be proportional to E 'E'+' (C =aE' 'E'+'),
but if we attempt to make this idea precise, we im-

mediately encounter difficulties. Because the pho-
ton current density is clearly independent of the
detector used to measure it, the proportionality
constant a must be a universal one. But the only
universal constants pertaining to the photon are A

and c, and it is not possible to construct a dimen-

sionally correct a from these constants. There-
fore, the prevailing theory of photoelectron count-
ing fails to provide a complete description of pho-
ton transport. The purpose of this paper is to
present a general theory of the motion of photons
in position space within the constraints imposed by
photon localizability and without relying on any
particular model of the photon detection process.

To describe the motion of photons in physical
space, I introduce the following pair of vector field
operators:

i)'j(x)=(2L )
' g e &&a k&e' " ' ", (la)

k, A,

p(x) =(2L )
'~ g (k/k) X e z za k &e' " ' ",

k, A,

(lb)

where a k & and e k & are, respectively, the annihila-

tion operator and polarization vector for a trans-
verse photon of wave vector k and polarization
A,(=1,2), and L is the quantization volume. I
then construct from these field operators the
positive-definite Hermitian operator

D(x)=g (x) P(x)+P (x) P(x), (2)

0 k ~= —LCOkQ k ~+l(2&/AQ)k) J k ~,
where

I q ~
—I dix u'k i(x) J(x)

is the projection of the electric current density
operator J(x) on the transverse-mode function

u k &(x)=L e k &exp(ik. x),

(4)

one obtains from Eqs. (1) two field equations in-

and postulate that this operator represents the den-

sity of photons in position space. It is readily veri-

fied that the integral of D(x) over the quantization
volume (or over all space in the limit L —+ 00 ) is
the usual photon number operator,

I d xD(x)= Q a k ia k q .
k, A

To derive an equation of continuity for photons,
the field equations for P and th are required. Us-

ing the usual Heisenberg equation of motion for
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volving tiine derivatives of f and P. Two more

field equations follow from the fact that g and P
are transverse. The field equations are

M= g a-„za-„i+ g a;a, .t

k, A,

(10)

V /=0,
V /=0,

1 ayVxg+-
c Bi c

1 a@
V x((' ——

c Bt c

(sa)

(Sb)

(5c)

(5d)

is a constant of the motion for the field-detector
system, where o;=~2);;(1

~

and cr;=(1);;(2( are
the excitation and deexcitation operators of the ith
detector atom. The constancy of M means that for
each excitation of a detector atom, i.e., for each
count registered by the detector, one photon disap-
pears from the field. Using Eq. (3), the time
derivative of (10) may be written as

where

l~1/2 r 3, r d3k kxJ(x')
(2~)3 (~ )

1/2 k

i( x —x') kXe (6a)

n'i' i. d, , (. d'k kX[kX J(x')]
(2~)3 J J (~ )1/2 k 2

i( x —x') kXe 7 (6b)

+V C=Q,
at

where

C=c(1( 'X P —4 X g)

is the photon current density, and

Q=Si p+p Si+i(S2 Q
—p S2)

is the operator representing the number of photons
created per unit volume and per unit time by the
radiating current J.

The interpretation of C as the photon current
density was inferred from the position it holds in
the equation of continuity (7). Additional support
for this interpretation of C is provided by an
analysis of the response of an idealized photon
detector. For a detector consisting of N nonin-
teracting two-level atoms, it is well known that,
within the electric-dipole and rotating-wave ap-
proximations, the operator

are Hermitian source terms, here expressed in the
mode continuum limit (L~ oo). Now the time
derivative of the photon density, Eq. (2), is evaluat-

ed by substituting for the time derivatives of 1(, p,
1(, and p the expressions provided by Eqs. (5)
and their Hermitian conjugates. It is found that D
satisfies the equation of continuity

R= ——f d xD,d
dt

where R =d(g, cr; o;)l.dt is the counting rate of
the detector. Now suppose the detector atoms oc-

cupy a small volume Vd with surface S. Then, if
V' denotes the volume of space outside of the
detector, Eq. (11) reads

R = ——f d'x D f,d'x-
dt v~ &' Bt

(12)

The integral over Vd represents the number of pho-
tons that have entered the detector volume, but
have not been absorbed by the detector. In most
cases encountered in practice, this number of pho-
tons is entirely negligible. Therefore, I discard the
first term in (12) and convert the second term to
the form

R = II) da n C
S (13)

by means of the continuity equation in V'(BD/Bt
= —V C) and the divergence theorem, n being the
inward normal to the surface S. Thus the counting
rate of the detector equals the integral over the
detector's surface of the inward normal component
of C. This argument is easily modified to treat a
detector whose atoms each have a continuum of
excited states rather than a single excited state.
Such a model more closely describes the photoelec-
tric detection process. Equation (13) is again ob-
tained, but now R represents the rate of excitation
to the continuum, i.e., the rate of photoelectric
counts.

It must be emphasized that the present theory is
not equivalent to the usual theory of photoelectron
counting. The latter theory employs the formula
R ' =gE' 'E'+ ' for the counting rate, where g is a
constant describing the sensitivity of the detector.
For an x-polarized polychromatic plane wave trav-
eling in the z direction and a detector at z=0 with
a flat sensitive surface of area A normal to the z
axis, Eq. (13) yields the ideal counting rate
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R =cA(g„gy+Pyf„)

=cAL g akak,—3

k, k'

while the theory of photoelectron counting predicts
the rate

(14)

R r gE) )E(+ )

=2irgAL g (toktok ) aka~
k, k'

(15)

where the sums in (14) and (15) are restricted to x-
polarized field modes propagating in the z direc-
tion. The two expressions are essentially equiv-
alent for quasimonochromatic light, for in this
case (cokcok )' may be replaced by the center fre-

quency co of the radiation and may be taken out-
side of the sum in (15) to give R'=R, provided
g=cA/2ir)rta), which is the condition for unit quan-
tum efficiency. But if the radiation is, say, a su-

perposition of two monochromatic coherent states
with amplitudes a~ exp(iso&t) and a2 exp(ico2t) and
widely separated frequencies, e.g., two laser beams,
then the time-averaged expectation value of R,
namely,

(R ) =cA(
I
&)

I

'+
I
~2 I

')/L'

is the correct photon impact rate on the area 3
(since

I
a)

I
/L and

I a2
I

/L are the photon
number densities in the two beams and the photons
move with speed c), while the time-averaged expec-
tation value of R',

(R') =2~V(~)
I
~) I

'+ ~2
I
cx21')/L

is not proportional to the photon flux for any
value of g. In fact, for a fixed value of the photon
impact rate (R ), (R') can have any value from
2n(fico)(R )/cA to 2'(Aco2(R )/cA depending on
the ratio of the amplitudes of the two beams.
Therefore, Eq. (15) is an inappropriate expression
for the photon-counting rate when the radiation is

polychromatic, while Eq. (14) appears to be satis-
factory.

If one accepts the above interpretations of D and

C, then the operator nv representing the number of
photons in a volume V must be given by the in-

tegral of D over that volume,

n) f d x D(——x), (16)

and the operator nT representing the number of
photons that cross a surface S in the time interval

[t,t+ T] must take the form
f+T

nT f dt——' f da n C(x,t'),

pv(m)= Tr[p:n) exp( —nv):]/m!,

pr(m) =Tr[p:nP exp( nr ):]/m!, —
(18)

(19)

where p is the density operator of the radiation
field. Moreover, when S is the sensitive surface of
an ideal photon detector, pT(m) is the photon-count
distribution registered by the detector. The utility
of these results derives from the fact that the re-
quired conditions on V, S, and T are met in most,
if not all practical applications. Note that the
photon-count distribution pT(m) can differ appre-
ciably from that of the prevailing theory when the
radiation is polychromatic.

In calculating the fields f and P radiated by the
electric current J, the following results are often

where n is the unit normal to the surface S in the
direction of interest. The principle shortcoming of
the present theory is that nv and nT do not possess
all of the properties of number operators for arbi-
trarily small V, S, and T. This reflects the well-
known difficulty of localizing photons in position
space. According to the original criteria of New-
ton and Wigner for the localizability of elementary
systems, the photon is not localizable. This means
that, strictly speaking, there does not exist a proba-
bility density for the position of the photon, nor
does there exist a photon number operator for the
volume V. This last conclusion was challenged by
Jauch and Piron who, by modifying the criteria for
localizability, were able to show that an operator
representing the number of photons in a given
volume can be rigorously defined, but not as the
integral of a photon density operator. These re-
sults demand that D and C be reinterpreted as
coarse-grained representatives of the photon densi-

ty and current density, respectively; i.e., as opera-
tors that yield correct expressions for ni and nT so
long as V, S, and T are sufficiently large. This in-
terpretation is supported by a calculation which
shows that, when the linear dimensions of V and S
are large compared to the photon wavelengths A,

and T is long compared to the periods c/k of the
photons, nv and nT acquire all of the usual proper-
ties of number operators. The calculation, which
for the sake of brevity will not be given here, is
essentially equivalent to that presented by Mandel
in his analysis of the photon number operator for
the volume V. Given that nv and nT are number
operators, one can, by standard arguments, derive
formulas for the probability pv(m) that V contains
m photons and the probability pT(m) that m pho-
tons cross the surface S in the time interval

[t,t+ T]. The results are



25 PHOTON DYNAMICS 2167

quite useful. The non-Hermitian fields f, P are
derivable from a pair of transverse Hermitian vec-
tor potentials:

evaluating the integrals over k. The results,

3

S„'(x)= y I d x'K„'t(x x—')Jt(x'),
j=l

(24)

1(=VXa,——
c Bt

(20) where

Ba&
+i VXai.

c Bt
(21)

Si
V —— ab ————

c' gt' ' c
(22)

In terms of the potentials, the field equations (5)
read

3
K'tt(x)=3(2str tttc) g hatt xL/x ~ (25)

L=1

K'j(x) =(2'Hr )-'"(x'Wt —sx'xt) Zx'", (26)

provide a clearer view of the relation between the
photon source terms S& and S2 and the electric
current density J.

1 8 S2
V —— a = ——

c2 gt2 2 c

Finally, Eqs. (6) can be simplified somewhat by

(23)
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