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A graphical procedure is presented for evaluating each term in the equation satisfied by

the first-order transition matrix for an arbitrary (open-shell) atom. For those terms in-

volving the interaction of excited virtual pairs of electrons with the ionic core, we intro-

duce the approximation that there is no exchange of orbital or spin angular momentum

with the ionic core. This approximation is shown to lead to the random-phase approxima-
tion (RPA) equations in the closed-shell-atom case; we use it to define the RPA for open-

shell atoms. The single equation satisfied by the first-order transition matrix is used to
obtain a set of N +N' coupled differential equations for N final-state radial functions and
N' initial-state radial functions, which together, completely determine the first-order tran-

sition matrix for an atomic system having N final-state channels. {The relation of N' to
N depends on the particular atom studied. ) The N +N' differential equations are shown

to reduce to familiar forms in the following cases: (1) When initial-state correlations are

ignored, one obtains the close-coupling equations and (2) when closed-shell atoms are con-

sidered, N =N' and one obtains the 2N coupled differential equations of the Chang-Fano
version of the RPA. Finally, our RPA first-order transition matrix is used to evaluate the
matrix element of the electric-dipole operator for an arbitrary (open-shell) atom. These
RPA electric-dipole transition matrix elements may be used to calculate nonrelativistically

all experimentally observable quantities resulting from a single-electron atomic photoab-

sorption process.

I. INTRODUCTION

Theoretical understanding of photoionization
cross sections for closed-shell atoms is currently
based on the random-phase approximation
{RPA).' In addition to the usual final-state in-

teractions that are treated by Hartre -Fock or
close-coupling calculations, the RPA also treats the
eA'ects due to excitations of virtual pairs of valence
electrons in both the initial state and the final

state. A major result of such virtual excitations is
the reduction of the eAective strength of final-state
interactions. Experience has shown that the partic-
ular electron correlations included in the RPA for
closed-shell atoms are necessary to obtain good
agreement of theoretical calculations with experi-
mental data. In particular, the importance of these
electron correlations has been confirmed for

closed-shell atoms by other theoretical methods,
such as the many-body perturbation theory, the
R-matrix theory, ' and the multiconfiguration
Hartree-Fock theory. Theoretical understanding
of the influence of electron correlations on the pho-
toionization cross sections for open-shell atoms, on
the other hand, is less developed. This is due to
the greater theoretical diAiculty of dealing with
atoms which are not spherically symmetric and
which thus have a greater number of final-state
channels. While RPA theories have been
developed to treat open-shell atoms, ' ' these have
been given in the form of matrix or integral equa-
tions which require the use of large numbers of
basis functions for their solution.

In this paper we define a random-phase approxi-
mation for transition matrix elements in a way that
is independent of whether one is dealing with a
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closed- or an open-shell atom. We begin by calcu-
lating the first-order transition matrix' ' for a
general (open- or closed-shell) atom using a graphi-
cal method. This transition matrix may be used to
calculate matrix elements of a general one-body
operator having rank A, in orbital space and o in

spin space. In particular, it may be used to calcu-
late matrix elements of the electric-dipole operator
(having k = 1 and o.=0), from which one may ob-
tain the photoionization cross section as well as
other experimentally measurable quantities related
to photoabsorption processes. The graphical
evaluation of the first-order transition matrix great-
ly simplifies the treatment of antisymmetrization
and of angular-momentum algebra and in addition
affords an insight into the physical processes in-

volved that is similar to that afforded by the dia-
grams of ordinary many-body perturbation theory.

In evaluating the first-order transition matrix we
follow Chang and Fano' in assuming that the
ground state may contain pairs of virtually excited
orbitals. While our graphical procedure allows us
to evaluate the interactions of the virtually excited
orbitals with the residual ion, such interactions are
exceedingly complex. These particular interaction
diagrams are evaluated approximately here. We
assume, firstly, that when the virtually excited elec-
trons interact with the residual ion there is no ex-

change of orbital or spin angular momentum, and,
secondly, that the Pauli principle is ignored. Since
we find that these approximations give the ordi-

nary RPA equations in the closed-shell case, we

define our RPA by these approximations whether

we are dealing with either an open- or a closed-
shell atom.

As a result of our RPA we find that the first-

order transition matrix for an atom having N
final-state channels is determined by a set of N
final-state radial functions and N initial-state radi-
al functions which satisfy N +N' coupled differen-

tial equations. (The relation of N' to N depends on
the particular atom studied. ) Large numbers of
basis functions are thus not needed in a calculation

by this method. The (N+N') coupled differential
equations reduce to familiar forms in the following
limiting cases: (1) When initial-state correlations
are ignored we obtain the N coupled differential
equations of the close-coupling approximation, ' (2)
When the atom has only closed shells, N =N', and
we obtain the 2N coupled differential equations of
the Chang-Fano version of the RPA. ' '

In Sec. II we review the properties of the transi-
tion matrix. In Sec. III we describe our graphical

method for evaluating the various terms in the
equation satisfied by the transition matrix and in-

troduce our random-phase approximation. In Sec.
IV we obtain (N +N') coupled differential equa-
tions for the (N+N') radial functions which define
the transition matrix. These equations are shown
to reduce to familiar forms in special cases. Final-
ly, in Sec. V we calculate the RPA form for the
electric-dipole reduced matrix element. Prelimi-
nary reports of our graphical method' and of our
definition of the random-phase approximation'
have been given elsewhere.

II. THE FIRST-ORDER TRANSITION MATRIX

We assume that in a certain transition an N-

electron atom may be described by an initial state
(i

~

and a final state
~
f). The first-order transi-

tion matrix for this transition, ( r~
~

I
~
r~ ), is de-

fined as

For simplicity of notation, each rj{1&j &N) in-

cludes also the spin coordinate of the correspond-
ing electron. The matrix element of any one-body
operator 0 ' (r) of rank A, in orbital space and
rank o. in spin space may be determined from the
first-order transition matrix by means of the fol-

lowing one-electron integral:

(i )0"'
~

f)= f drN f dry(rIv

XO ' (rw)5(r N
—r~) .

(2)
The forms of the final-state wave function
(r i r Iv

~
f ) and the initial-state wave function

(i
~
r, . r~) as well as the one-electron orbitals

of which they are comprised must be specified in
order to determine the first-order transition matrix
and thereby, the desired matrix elements in Eq. (2).
The forms of the initial and final states that we as-
sume in this paper are specified below. First,
though, we note that for any states

~

i ) and
~ f )

the outer product
~ f ) (i

~

must satisfy the follow-

ing dynamical equation if the atom is described by
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the Hamiltonian H:

iruuIf&(i
I
=H If&(i

I

—If&(i IH.
Here fico is the transition energy, E~ —E;. If Eq.

(3)

(3) is integrated over N —1 coordinates then on the
left-hand side we obtain irioi( rb

I
I

I
rz &, while on

the right we obtain partially integrated matrix ele-
ments of H between the initial and final states:

S—1

fico&rb If'I rb &=Ã g f f dr&drj(r i
' ' rw IH If&&i

I
ri rN&

j=1
N —1

NP—f f dridrj(ri rIv
I
f&(i IH

I
ri r~& . (4)

For any particular form of the states
I f & and (i

I
in terms of one-electron orbitals, Eq. (4) represents a con-

sistency equation for these orbitals which must be satisfied.
We consider in this paper one-electron transitions from the open subshell nplp of an atom having any

number of other, closed subshells. We assume that there are q electrons in the open subshell, where

2&q &41p+2. The closed-shell-atom case, q =41p+2, is thus treated on the same footing as the open-shell-
atom case. Note that in the single-subshell approximation considered here the special case q =1 is trivial
and is not treated explicitly. On the other hand, going beyond the single-subshell approximation (by consid-
ering excitations out of one or more of the closed subshells as well as out of the open subshell npIp)

represents a complicated but nevertheless straightforward generalization of the theory presented here. For
simplicity of notation, therefore, we do not consider such a general case in this paper.

For the class of excitations to be considered in this paper, then we assume the ath final state to have the
form

lf &: g I
"olo

S I'
(5)

Here a specifies a particular set of final-state quantum numbers, P, , i, (r) is an unknown radial wave

function for the excited electron, and the ionic core wave functions are assumed to be neutral atom Hartree-
Fock wave functions. ' The initial state is assumed to have the following correlated form:

(i
I
=(noloL;S;

I
+ g g b(LS,L&Sr, l~)(nolo (LS)g,gb(L&S&)L;S;

I

LpSp LSI~

(6)

Here p, and pb are the radial wave functions for a

pair of electrons excited out of the initial-state con-
figuration, each having the orbital angular momen-

tum l~. (A more general form for (i I, not con-
sidered here, would permit p, and pb to have dif-

ferent orbital angular momenta. ) The coefficients b

(L S,L&S&,1&) give the weighting of the correlation
terms. The orbital wave functions of the confi-

q q —2
gurations nplp and npl p are also taken to be the
neutral atom Hartree-Fock orbital wave func-
tions.

The purpose of this paper is to present the cou-
pled differential equations that one obtains (upon
substituting Eqs. (5) and (6) in the dynamical equa-
tion (4) ) for the unknown final-state radial wave
functions tl, -, , (r) and certain linear combina-

tions of the unknown initial-state radial wave func-
tions p, (r) and pb(r) Once these u.nknown radial

functions are determined, the transition matrix is
completely defined by Eqs. (5) and (6) and the de-

finition in Eq. (1). In the next section we present a
graphical method for evaluating the integrals in

Eq. (1) and on the right in Eq. (4).

III. GRAPHICAL EVALUATION OF TERMS
IN THE DYNAMICAL EQUATION

A. Generalities

The dynamical equation, Eq. (4), relates the
transition matrix to interaction matrix elements in-

volving both the final state(first term on the right
in Eq. (4)] and the initial state [second term on the
right in Eq. (4)]. These matrix elements may be
evaluated graphically. We have adapted for this
purpose the graphical rules of Briggs for
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representing state vectors and for evaluating matrix
elements of one-body operators and of the electron
correlation operator g, r,j . Brigg's graphical

rules, however, must be modified to accommo-
date our integrating over only N —1 electron coor-
dinates in Eqs. (1) and (4) instead of all N.

The general idea of the graphical method is to
represent an atomic state vector as the addition of
the net orbital and spin angular momenta,
represented graphically by lines, for each atomic
subshell to form the total orbital and spin angular
momenta of the state. The addition of each pair of
angular momenta is affected analytically by
Clebsch-Gordan coefficients, which are represented

graphically by nodes having three lines attached,
with one of the lines, having a bar attached,
representing the resultant angular momentum. The
angular-momentum properties of any operators
which connect initial- and final-state vectors are
also given a graphical representation. An algebraic
expression for a given transition matrix element is
then obtained by suitably joining the corresponding
initial- and final-state vector graphs with the ap-

propriate transition operator graph to form a
standardized angular-momentum diagram. This
procedure effects implicitly all necessary summa-

tions over magnetic quantum numbers as well as
integration over angular and radial coordinates; the
antisymmetry of the initial- and final-state vectors
as well as the equivalence of electrons are taken

into account by an appropriate multiplicative

weighting factor. This resultant diagram may be

reduced analytically to the product of a number,
which is the desired angular factor, and a reduced

radial matrix element.

the book by Jucys et at. ' for a more general dis-
cussion of angular-momentum graphs and to the
review by Briggs for the graphical representation
of state vectors and interaction operators. Each
line in Fig. 1 represents both an orbital and a spin
angular momentum. These angular momenta are
added at each node to resultant orbital and spin
angular momenta whose lines have a thick bar at-
tached. Thus the node on the left in Fig. 1(a)
represents the addition of the single-electron orbital
angular momentum Ip and, implicitly, the spin —,

to the orbital and spin angular momenta L and S
q —1

of the configuration nplp to obtain the resultant
orbital and spin angular momenta L; and S; of the
initial configuration nplp. Note that in cases such
as this where a single electron is split off from oth-
er equivalent electrons in the same subshell, a
square node is used as a reminder that a coefficient
of fractional parentage should multiply the angular
factor represented by this diagram. The signs on
each node indicate the order of addition of the an-

gular momenta, + indicating a clockwise ordering
and —indicating a counter-clockwise ordering.
The phase convention chosen is that, when all orbi-
tals are ordered downward with increasing energy
(i.e., an electron from subshell n &I& is written above
one from subshell n212 if the orbital energies are
such that e„ I ~ e„ I ), then all nodes in the left-

hand state vector diagram have a —sign and all

nodes in the right-hand state vector diagram have
a + sign. Each of our diagrams will have initial-

ly four so-called "free" lines, which are lines at-

no( (LS j

n, (, (Lg) + L~Sf

B. Notational rules

Our graphical representation for the first-order
transition matrix, defined analytically in Eq. (1),
when the final and initial states are represented by
Eqs. (5) and (6), is shown in Fig. 1. Except for the
lack of integration over the Nth electron's coordi-
nates, Fig. 1(a) represents the overlap of the final
state (on the right) with the major configuration of
the initial state (on the left). Figure 1(b) represents
the overlap of the final state (on the right) with the
doubly excited configurations contained in the
ground state (on the left).

In what follows we shall use Fig. 1 to illustrate
the basic graphical angular-momentum notational
rules used in this paper. The reader is referred to

LS,

nolo (LS)

flplp(Lgj

(L 5 i ~ i'
+ LESt

FIG. 1. Graphical representation of the first-order
transition matrix where (a) indicates the overlap of the
final state with the uncorrelated part of the initial state
and (b) indicates the overlap of the final state with the
correlated part of the initial state.
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Vi} = X Z
n, [, &

n& I&

np lp
n~ l~

FIG. 2. Brigg's graphical representation of the
Coulomb interaction operator.

lines for the Nth electron in the initial- and final-
state diagram represent the associated radial, angu-

lar, and spin wave functions for the Nth electron.
The bar on the lowest line in Fig. 1(b) represents
the overlap (pb l /~~+i &, ) of the wave functions

Pb(r} and P, —,, (r ).

tached to only a single node. Two of these
represent the initial (i.e., L; and S;) and final (i.e.,
Lf and Sf) angular momenta and two represent the
Nth electron orbital, in the initial and final confi-

guration, whose coordinates are not integrated
over. These four lines have well-defined orbital
and spin magnetic quantum numbers whose signs
are positive when the arrow is directed away from
the associated node and negative when the arrow is
directed toward the associated node. [Note that
when the free ends of two lines having the same or-
bital and spin angular momentum are joined—
taking care that the arrows are aligned~ne is im-

plicitly performing a summation over magnetic
quantum numbers and an integration over electron
coordinates. The LS line in Fig. 1(a) is such a
"closed" line, i.e., one bounded at each end by a
node. ] Finally, the vertical bars on the ends of the

C. Coulomb interaction graphs

Figure 1 represents graphically the first-order
transition matrix appearing on the left in Eq. (4)
for final and initial states of the forms given in

Eqs. (5) and (6). The scalar one-body operators ap-

pearing in the Hamiltonian on the right of Eq. (4)
have similar graphical representations. The two-

body Coulomb operator in H leads, however, to a
number of final- and initial-state correlation dia-

grams. These are obtained by joining the graphical
representation of the initial and final states in Eqs.
(S) and (6) to Brigg's graphical representation for
the Coulomb interaction operator, shown in Fig. 2.
When coordinates r; and rj are both integrated
over, the cross in Fig. 2 represents the following re-

duced matrix element:

( —l) X(k;nil, n212, n31$n414} =(—l) R (nil&n212, n&1&n414)(lillC'"'ll12)(12llC' 'll14), (7a)

where

A k1'}
(1

l l

C(kl
l l

1 ) ( l)l[1]l/2[1 ]i/2l }000
and where R is the Slater integral of order k,

(7b)

00 00 P(
R "(nilin212, nil3n414)—:f f dr;dr~ k, P„ i (r;)P„ i (r/)P„, i (r; )P„ i (rj ) . (Tc)

In Figs. 3 —6 we show the graphical representation for all Coulomb interactions involving the subshell nplp

that occur on the right-hand side of Eq. (4). Figure (3) represents the direct and exchange interaction of the
final-state excited electron, having the radial wave function P, —,, with the subshell nolt (L S ) The fi-.[L S )el''
nal state is overlapped with the uncorrelated part of the ground state [first term on the right in Eq. (6}].
Notice the gap which indicates that the Nth coordinate is not integrated over. The vertical bars indicate the
wave functions of the electrons in the initial and final states having coordinate rz. Because the Nth coordi-
nate is not integrated over, the cross on the Coulomb interaction operator is taken to represent, instead of
Eq. (7), the following reduced matrix element ':

00 f
( —l)"(12llV (ni1i n213,'r~)ll14)—:( —l)"f dr k+i P„ i (r)P„,i, (r)(lillC'"'ll 2)( 2IIC"'111,),
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np lp (L 5 ) no lo (L S)

nplp (L 0))(
I~I~

np lp(L, S,)

lp

BL

(a)

lp

a
&(Ls).

~ ~

q-1
ifnplp (LS)

LISf nolo (Lf Sf') LpSp

'f & no lo {Q'')

J l+

Q (f"5)e I' Lqs)

~ ~

np lp (LS) )i

Ip

nQIQ (L S )

q I I i

i np I p (L S)

FIG. 5. Initial-state interaction, involving the un-
correlated part of the initial state, overlapped with the
final state.

npIp (L S )-I~ I~e e
n I, (L, S, )

(b)

Lf Sf

lp "k lp

I
8 ~ I

FIG. 3. Final-state direct (a) and exchange (b) in-
teractions overlapped with the uncorrelated part of the
initial state.

where r &
——min (r, rz) and r& ——max (r, rz). Thus,

for example, in Fig. 3(a) the cross represents

( —1)"(1
~ ~

V"(nolo, nolo, rz)
~ ~

1') while in Fig. 3(b)
the cross represents
( —1)"(1

~ ~

V (nolo, g. , - . . ;r~)
~ (

4).
Similarly, Fig. 4 shows the graphical representa-

tion of final-state direct and exchange Coulomb in-

teractions within the nplo subshell which are then

np (q (L 5), I,

L Si
L

n I
q (LS),

L;S;

lp

"n l (LS)l ~

no(() (L S')

npl (L S)

olo (L S)

n l (LS)
+(L' 5'

j c('
l f Sf

nplqp (L S") (b) (LK ) E(
Lf Sf

Ip
I ~

+ nplp (L" S")

nplp (L 5)ii
4E

L;S;

(a)

n I (LS")

n I (LS)

&'nptp (L'5')

Lfsf

np(p (LS), i
A E

~s,

(c)

n,l", (LS")

+IL S)cl'

nplp {L 5)

If nplp (L 5 )
Ear

L&Sf

nplq(I (L5)r

L, S

(b)

nplqp'(t

+

nplp (LS')

+

LISf

np lp (L5) ii

lp

4 E

l

, (k
I I lp

il nplp (l S )
I

~ ~ +

«t «I
, I nplp (L S )

FIG. 4. Final-state direct (a) and exchange (b) in-
teractions overlapped with the correlated part of the ini-
tial state.

(d) LfS

FIG. 6. Initial-state interactions, involving the correlat-
ed part of the initial state, overlapped with the final state.
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overlapped with the correlated part of the ground
state [second term on the right in Eq. (6)]. Figure
5 shows direct and exchange Coulomb interactions
within the uncorrelated part of the ground state
which are then overlapped with the final state. Fi-
nally, Fig. 6 shows direct and exchange Coulomb
interactions within the correlated part of the
ground state. These involve the interactions of the
functions p, and pb (only those involving p, are
shown) with the np1p subshell. These correlated
ground-state wave functions are then overlapped
with the final-state wave function. Note that the
diagrams corresponding to those in Fig. 6 in which

p, and pb are interchanged di6'er only by the
I. +S

phase factor ( —1) ~

D. Removal of magnetic-quantum-number dependence

The magnetic-quantum-number dependence
represented by the four free lines in each of the dia-

grams in Figs. 1, 3, 4, 5, and 6 may be factored out
by a graphical procedure analogous to the Wigner-
Eckart theorem that results in diagrams with only
closed lines. Figure 7 presents the details of this
graphical procedure. In Fig. 7(a) are shown
schematically the four free lines appearing in each
of the diagrams in Figs. 1, 3, 4, 5, and 6. The or-
bital and spin angular momenta of the electron in
the initial and final state with coordinate rz are ex-
panded in Fig. 7(b) in terms of the sum A. of the
orbital angular momenta and the sum 0. of the spin

Ib I/2

I/2

X,cr

b ~~ yl&

rp'
~/

(b)

(c)

FIG. 7. Graphical procedure for separating out the magnetic-quantum-number dependence of the diagrams in Figs.
1, 3, 4, 5, and 6. See discussion in text.



2142 ANTHONY F. STARACE AND SIAMAK SHAHABI 25

angular momenta using the graphical "summation
rule. " ' In Fig. 7&c) the three parallel lines in

Fig. 7(b) have been joined together and separated
using the well-known graphical "rule of multiplica-
tion. " ' The diagram with the four free lines on
the right in Fig. 7(c) represents the algebraic ex-
pression given in Fig. 8, which summarizes our

graphical rule for the removal of magnetic quan-
tum number dependence from our diagrams. The
double tensor operator W ' appearing in Fig. 8

is defined as the following combination of angular
and spin wave functions for the electron with coor-
dinate rz (Ref. 14):

(lb, rb
~

W~ ~ ~
l„r, )= g Y~ (r, )Y~ ~, (rb)( —1)' '(l&mb, l, —m,

~

Am~)
ma mb

in' ~n( —1) ( mb, —m.
l

0'm ) .
1/2 —m

m ~mma mb

(9j

In Eq. (9) the Fs represent the spherical harmonics for the Nth electron in the initial and final states and

the X's represent the corresponding two-component spin wave functions.

LJSf ~G($ ~b g LfSf

Z Z [X]& [o]2
X,(T l7l) Al g

(L; X Lf)/S; & SfX (M, ~-~,j(~,
'

m, ~, 'b, ( Wm„'.~ a a] ~a(r. )(]l), (rb)
I

FIG. 8. Summary of graphical rule for separating out the magnetic-quantum-number dependence of the diagrams in
Figs. 1, 3, 4, 5, and 6.
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E. The graphical RPA rule F. Reduction of the diagrams to
algebraic expressions

Our treatment has thus far been exact, given our
choice of final and initial states in Eqs. (5) and {6)

and our neglect of any virtual double excitations of
the kind shown in Fig. 5 for any subshell other

than nplp. Those diagrams shown in Figs. 4 and 6
representing the interactions of the virtually excited
orbitals p, and pb with the initial subshell nolo,
however, have very complex analytic expressions.
The complexity stems from the presence of coeffi-
cients of fractional parentage which do not permit
the analytic summation over the angular-momen-

tum quantum numbers L "S"of the configuration

nplp . These complex interactions occur also
when nplp is initially a closed subshell with

q =4lp+2. A simple approximation, however,

permits the analytic summation over L "S"and

leads in the closed subshell case to the usual RPA
interactions. For this reason, we denote our ap-
proximation the "graphical RPA rule" and use it
to define the RPA in the open-shell case. Physical-

ly, the approximation implies that when the corre-
lated ground state functions P, and Pb interact with

the nplp core as in Figs. 4 and 6, there is no ex-
change of orbital or spin angular momentum

Furthermore, Brigg's weight factor —,(q —2) for
these interactions is replaced by 2(2lp+1), imply-
ing that the Pauli exclusion principle is ignored
and all core magnetic quantum numbers are
summed over. The increase in weight factor thus
tends to compensate for the inclusion of only zero
angular-momentum exchanges.

The graphical RPA rule is shown in Fig. 9. At
the top of the figure we show the general structure
of the interaction diagrams in Figs. 4 and 6 as well

as the weight factor —,(q —2) and the summation

over the quantum numbers L"S"of the n pl p

configuration. The block labeled P indicates an in-

teraction of one of the nplp electrons with the elec-
tron represented by P, (cf. Figs. 4 and 6). The
middle part of Fig. 9 shows an exact expansion in
terms of the orbital and spin angular momenta A,

'

and o' exchanged between the core nplp and the
interaction block P. The expansion is an example
of the well-known graphical summation rule.
Upon keeping only the term in the summation
having k'= sr'=0, the summation over L "S"may

1

be performed analytically. Replacing —,(q —2) by

2(2lp+1), we obtain finally the simpler diagram at
the bottom of Fig. 9, which is our approximation
to the interaction diagram at the top of Fig. 9.

%'e summarize here the steps needed to obtain
detailed algebraic expressions for each of the terms
in Eq. (4) for the first-order transition matrix using
graphical methods.

(i) Draw the graphical expression for the first-
transition matrix on the left-hand side of Fig. 4,
and for each of the interactions on the right-hand
side of Eq. (4) using initial and final states having
the forms in Eqs. (5) and (6). For this purpose the
rules (i) —(ix) given in Sec. 6.1 of Briggs's review
are used taking account of the necessary modifica-
tions, indicated in Secs. III B. and III C. above,
needed because the Nth electron coordinate is not
integrated over. The resulting graphs for the first-
order transition matrix and for the major electronic
interactions are shown in Figs. 1, 3, 4, 5, and 6.

(ii) Give each diagram a standard phase by ap-
plying the following two modifications of rules {iii)
and (iv) from Sec. 4.2 of Briggs's review

{a) Reverse the direction of the arrows on all
lines which appear as "2nd coupled" at each node
of the diagram of the left-hand wave function and
as "1st coupled" at each node of the diagram of
the right-hand wave function. Note that if a given
line whose arrow is reversed is also part of a
Coulomb interaction diagram (cf. Fig. 2), then its
continuation through the node with the k line also
has its arrow reversed.

(b) Reverse the signs on all nodes in each dia-
gl am.

(iii) Use our graphical rule shown in Fig. 8 to
factor out the magnetic quantum number depen-
dence of each of the diagrams.

(iv) Use our graphical RPA rule shown in Fig. 9
to give an approximate simplified form for the dia-
grams of the type shown in Figs. 4 and 6 involving
interactions of the excited electrons p, and (bb [cf.
Eq. (6}]with the ionic core.

(v) Separate each diagram into a spin angular-
momentum diagram and an orbital angular-
momentum diagram [cf. rule (i), Sec. 4.2 of Briggs's
review ]. Note that the Coulomb interaction, be-
ing spin independent, appears only in the orbital
diagram; in the spin diagram the k line (cf. Fig. 2)
and its associated nodes do not appear.

(vi) Multiply each diagram by the factor
[X]'~—:(2X+1}'~ for each thick line having an-
gular momentum X.

(vii) Each diagram is now in standard form and
may be manipulated to obtain an algebraic expres-
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sion for the angular factor it represents by means
of standard graphical rules as set out, e.g., by Jucys
e~ al."

IV. THE OPEN-SHELL RPA EQUATIONS

pled diA'erential equations for the individual final-
state radial functions P —. . . (r) and for certain

(L S )el'

linear combinations of the virtually excited electron
radial functions P, (r) and P~(r)

Section III has presented graphical techniques
for the evaluation of individual terms in the equa-
tion of motion [Eq. (4)]. One obtains thereby, a
single rather complex equation involving the un-

known excited electron radial functions

t/i~~, z,
~

&, {r),P, (r), and P&{r). In this section we

reduce this complex single equation to a set of cou-

A. Separation of final-state
and initial-state correlations

The magnetic-quantum-number dependence of
each of the interactions in Eq. (4) has been extract-
ed analytically by means of the rule, shown in Fig.
8, which involves an expansion over orbital and

3
(

Z —
( -2) lp,

L"S"
flip (L 5) J

)n{q (L5)

-(q-2) Z [&1((~ 1
LS" 2 Xa

jP
4 E )

nl (L S)
'2

nip (L S)

I.L' SS'
X=&'=0

FIG. 9. The graphical RPA rule. See discussion in text.
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spin angular momenta k and cr. We may single

out of Eq. (4) particular values A.
' and o' for these

quantum numbers and eliminate the magnetic-
quantum-number dependence altogether by first

multiplying each term in Eq. (4) by the product,

Li A'' Ly Sl cr' S

)) M; m~ —MI) (Ms m ™sIj
summing over M;, MI, Ms, and Ms, and makingf
use of the orthogonality of the 3j coefficients. For
each interaction in Eq. (4), we are left then with a
closed diagram multiplied by the following factors
(cf. Fig. 8): For the final-state interactions, those
shown in Figs. 1(a) and 3{a)have the factor

(l, r z ~
W~,~, ~

lp, rz)P„~ (rbt)tP —,, (rbt),

(loa)

while those shown in Figs. 3(b) and 4 have the fac-
tor

I I

(l, r&
~
W, , ~

lp, rz)P„ I (r&)p„& (r&);

(10b)

for the initial-state interactions, those shown in

Figs. 1(b), 6(a), and 6(c) have the factor

while those shown in Figs. 5, 6(b), and 6(d) have

the factor

(lp, r~
~ W~, ,~, ~

l, r~)P„( (rN )P„ I (rz) . (11b)

In Eqs. {10)and (11) the double tensor operators
I I

W~, m, have been defined in Eq. (9) and the wave

functions with coordinates rz and rz describe the
last electron in the initial and in the final states,
whose coordinates are not integrated over. Noting
that the double tensors

(l, r~
~

W
~

lp, r~)

and

(1p, r ~ i
Wm, m ~ I

1 rw )

appearing in (10) and (11), respectively, are linearly

independent, we may set their coefficients separate-

ly equal to zero. Thereby, one obtains a single

equation for final-state interactions and a single
equation for initial-state interactions. The final-

state interaction equation has the overall factor

P„ I (r~) and the initial-state interaction equation
Rp p

has the overall factor P„ I (r~). NIultiplying these

equations by P„ I (rz) and P„ I {rz), respectively,

and integrating over rz and rz, respectively, re-

places these overall factors by unity. In the
case—not considered here —where excitations are
permitted from several subshells, this latter pro-
cedure would give separate equations for each sub-

shell.

B. Definition of new virtual excited orbital functions

We have thus far reduced Eq. (4) to two coupled equations, with particular values of A,
' and o' and no

magnetic-quantum-number dependence, which describe, respectively, final-state and initial-state correlations.

These two equations are still quite complicated. Careful examination shows, however, that in each term in-

volving the virtually excited electron radial functions p, and pb the following rather complex summation

may be identified:

g gb(LS,L,S,, l&)(lp
LS pSE L S I

X(q —1)' '([L;][S;][Lf][Sf][L][S ][L'][S'])'~2~&

X[/ (rNNb
l

1(' ' ' )+( 1) fb(r)(y. I 1(t„-'; „,. )] (12a)

where W and A represent the orbital and spin angular-momentum graphs shown in Fig. 10. W and P'
may be written algebraically in a number of ways, depending upon the choice of dummy summation indices
(which we have labeled A and X), one of which is
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r

L;+L,+i'+L+I.,+L,L LI ~ Lp ly
[A] '

lo ly A A L L; LI L' lo
(12b)

(
1)s;+Sr+1/2+S+sr+S ~ J

X

S) g' 'Sp

1

X

s
2 2

S S; Sg

]
X 2

S'
2

(12c)

Equation (12) shows firstly that only the particular linear combination of P, and Pb shown in brackets in

Eq. (12a) appears in our equations. Secondly, many of the angular factors can be included together with

this linear combination of P, and i))b to define new virtually excited orbital functions satisfying a less com-

plicated differential equation. To this end we rewrite Eq. (12a) as

4(r) =——[L ][S ][Lg1[SI] Li Lf A Sj Sf 0'

r rf [A][~]
/ I A & & 0(A, x)l (") ~

[Iy][—, ]
(13a)

where

P~„@~i (r) = g g g b(LS,L~S~, l~)(lo LS
J jlo LS)[(p —1)[l~][—,][L][S][L][S ]j'~

LSl LS LpSp

1+L,+Lp+L+L+l~+Lg
L l l LAl'
A L L; Ly L lp

1 1 1

Sp —, — S X
S,.+S +S+S+1/2+S~,

X[&.«)«b
I &~Lsi,i)+( 1) '— (13b)

Note that we have introduced a factor
—[1&]'~2[1/2]'~ in Eq. (13b) and simultaneously
divided Eq. (13a) by this factor in order that

P~~x~i (r) reduce exactly in the case of closed-shell

atoms to the correlation function P(r) defined in

Ref. 14. Note also that the allowed values of the
summation indices A and X are determined from
the properties of the 6j coefficients in Eqs. (13a)
and (13b) to be given by the triangular delta func-
tions jloLIA ], [L;i~A], [L1~A j, [ —,SIX],
[ —,S,.gj, and [ —,SXj, where each triangular delta

function I abc j implies

~a bJ &c &a+b . —

C. The coupled equations for individual

illus„, (r) and P~„z&i (r) functions

We still have two differential equations, one

I

describing final-state interactions and the other
describing initial-state interactions, each of which
now involves the many unknown radial functions

Q~Lz~, i(r) and P~~z~i (r) which we must obtain. A

set of coupled differential equations for each of
these individual unknown radial functions may be
obtained by using a well-known orthogonality rela-

tion for the 6j coefficients. This relation serves

to project out of our final- and initial-state equa-
tions a set of equations for individual values of L,
S, and A, X, respectively. For this purpose, then,
we multiply our final-state interaction equation by

L; L~ A.
' S; S& cr'

[l'][a']
I lp L

2 2

and sum over A,
' and o.', we multiply our initial-

state interaction equation by
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L; Lf A,
' S; Sf 0'

2 2

and sum over A,
' and 0.'. Simplifying the results of

this procedure we obtain the following set of cou-
pled equations for the individual radial functions:

1 d Z 1 I(l+1)+ o 0
E—t

—eo y — (r)
dp' r T

(LS )el

+nolo 2[1 ]1/2

+ g g (Ill Vk(Pn, t,P„ t, r)
I I

I & tr2 5koy(r~)a(r)

+ ( i& + (I
I I

V (P t @(est t'r&f

fit�&

P+ t (t')

+ g g [A(L',S', I', k)(III V (Pn t,P„ t , r) f f
I'')g (r)

L'S'l

+B(L',S', I', k)(l
I I

V"(P„,t, , zg , ,„'r)
I

-flo—)P, t,(r)]

g C(A, X,I~,k)(I
I I

V (P&„g&t,P„ t, ,r) f IIo)P„,t, (r) =0,
AXl~ k

(14a)

where

A(L', S',I', k) = ( —1) f ' [L]'i [L']'i ( —&)5s,s

I
X g( —)) (lo LS[

I
Io LS)(lo LS

I ]Io L'S')
LS L'

L L Lf I' L'

Ip k 'k L I
(14b)

B(L',S', I', k) —= ( —1) ' (q —1)([L][L'][S][S'])'2

L

X g(lo LSf
I
lo LS)(lo LS

I jlo L'S'). Io
LS

L I

lp L
S

k I
I

I' Lf

Sf
1S
2

(14c)

C(A.XI~.k)=- ' ",
(It]

I
Io LS)(q[Ip][ll2])'

&ss L; Lf k L ~ Lfk+S —X

[S,] I Io L Io lp A

+lo+ l&+L,.+Lf +L+ h sX5- k A L k A L

[S] L Io lb Lf I Io' (14d)



2148 ANTHONY F. STARACE AND SIAMAK SHAHABI 25

Z 1 ly(ly+1)
2dr r 2 r

——+- +~ —e I (t((itx(! {")Sp p

+n( Io P[1 ]
1/2

+ g g (lyl I

V"(F.
,I, F., i, r)l 'lip)5kp

n)l) k [l ]1/2

+ ( 1) (l
I I

V (It(Ax)I~, P., I, r)I ll'y)
l

+ g g[D{A + ly k)(lp IIV {p I F I r)
I lip)it„'&'II, «)

A' X' I ' k

+E(A', &', lp, k)(1pl I V"{y(,, )I,p.,i, ,r) I I ly)p. I,(r)]

g F(L',5', 1',k)(l
I I

V"(P„,I, ,Q( . I„.,'-r)—I Ily)F, I,(")=0
L'S'I'

(&Sa)

where

2[l ]1/2
D(~,X,I4,k)= 5~~5&&5I I, 5

I&I& [l~ ]1/2

1+I +! +I. +L +A+A' [A ][1)]
xx' [l ' ]1/2 L ly ly Lf lp lp

(15b)

E(A', X', lp, k)=5, ,5, ,5, +( —1)* * + 5
Lg L k Lg L (t'

AA' ' xx' '
I~I~ [l ]1/2[l ]1/2 i f [l ]1/2[S.] lp ly A' lp ly A

(15c)

F{I. S l k)= ( —1) '
( —1)( [l ][-][I,' )[S' ])'"

)& g g( —1) s[L](/2[s]1/2(l+;s;[
I l(1 Ls)(l(1 Is(

I
l(1 Ls)(l(1 Ls

I Il(&
L's')

LS LS

L lo L
L A l'

x . l'k l,
Lf L' lo

A lp L;

fS X —,
'' 'S

Sf S
2 Sg

1

X 2

S 2

(15d)

In Eqs. (14a) and (15a) the one-particle operator
terms in the first set of parentheses are calculated
from diagrams similar to those in Figs. 1(a) and

1(b), respectively. The terms in the second set of
parentheses in Eqs. (14a) and (15a) describe the in-
teraction of an excited electron with the closed sub-
shells n, l, &n pip The final-stat. e interactions in

Eq. (14a) having the angular factors in Eqs. (14b),
(14c), and (14d) are obtained from the diagrams
shown in Figs. 3(a), 3(b), and 4, respectively. The
initial-state interactions in Eq. (15a) having the an-

gular factors in Eq. (15b) are obtained from the di-

agrams in Figs. 6(a) and 6(b); those having the an-

gular factors in Eq. (15c) are obtained from the di-

agrams in Figs. 6(b) and 6(d); and those having the

angular factor in Eq. (15d) are obtained from the

diagram in Fig. 5. Note that orthogonality of the
functions it((z&I,I(r) and ((((&~II {r) to bound orbitals

having the same angular momentum is easily im-

posed by adding certain inter-action terms in Eqs.
(14a) and (15a) whose form is dependent on the
choice of core orbitals.
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D. Special cases of the equations

In the special case where ground-state correla-
tions are ignored (i.e., setting all P functions equal
to zero), Eq. (14) reduces to the simplest form of
the usual close-coupling equations. For example,
in the case of atoms having an open p subshell p~,
our equations reduce to those of Smith et al.
The direct interaction potential in their Eq. (19)
and the exchange matrix element in their Eq. (22)
correspond exactly with the direct and exchange
interactions in our Eq. (14a).

In the important special case of closed-shell
atoms our equations reduce to the usual RPA
equations. One notes that in this case if the excit-
ed state is produced by an electric dipole transition
then L =L'=lp, S=S'= —,, L; =S; =Sf——0,
Lf ——1,q =4lp+2, and also

(l '
[ i

l 'LS)=41 +1 41 (2 ( 1)L)t/2[L ]1/2

[l ]1/2(4l + 1 )
/

(a}

S

S

lo lo k

cl ig2 ~II' ~k 0
[ll

{16a)

The coefficients in Eqs. 14(b), 14(c), 14{d), 15(b),
15(c), and 15(d) become

+(b}
FIG. 10, Graphical representations for the angular

factors W [shown in (a)] and P' [shown in (b)] appear-
ing in Eq. (12).Il'

cl 1 k1+
[1]

(16b)

k I I

(16c)

2[lo]'" , +, +k I& I& k
Dc& =

)/2 ) ) ko+( —1)
[141] 4 4 o o

{16d)

where the subscript cl denotes closed shells. In the
special case of a closed p subshell from which only
d excitations are considered in both final and initial
states (i.e., I =I'=I~ ——I&

——2), substitution of Eq.
(16) in Eqs. (14a) and (15a) gives exactly Eqs. (21a)
and (2 lb) of Chang and Fano' [after substituting
their Eqs. (7) and (9)].

V. ELECTRIC-DIPOLE MATRIX ELEMENTS

, 1+1,+1, 2 [ 411
t:1 '

[14I]
k1

I I'
1 )1+k

[l ~ ]1/2[l ]1/2

Fa = —
&

5k 1+ ( —1)'+ g ( —1) [L )
E'

Ip Iy k Ip ly 1

I' Ip L I ' Ip L

(16e)

(16f)

The radial functions 1I)1&s1 &(r) and $1~&11 (r)(LS )el

which are obtained as the solutions of Eqs. {14)
and (15) can now be used to compute matrix ele-
ments of any one-body operator according to Eq.
(2). The graphical procedure for calculating such
matrix elements is to insert the graphical represen-
tation for the operator (which indicates its
angular-momentum properties) into the graphical
representation for the first-order transition matrix
shown in Fig. 1. The graphical representation of
Briggs for the qth spherical component of the
electric-dipole transition operator is shown in Fig.



2150 ANTHONY F. STARACE AND SIAMAK SHAHABI 25

11. The double bar on the "1"line represents the
following reduced dipole matrix element:

& ni I i I
lr

I
ln 212 &

n) I(

n& I&

~2 RN
n I

where

=( I) ' ' I'~ J P„,t (r)rP„ t,(r)dr,

(17a)
FIG. 11. Brigg's graphical representation of the qth

spherical component of the electric-dipole operator.

I &
——max(1&, 12) . (17b)

The graph in Fig. 11 is inserted between the gaps
(indicating the electron with coordinates r~,Q&) in
the diagram for the first-order transition matrix,
shown in Figs. 1(a) and 1(b). One may use Briggs's
rules to evaluate the resulting diagram. One ob-
tains for the reduced dipole matrix elements the
following expressions:

D, = g G(L,S,I)&P.,t, llrllW(ts)et &

LSI

+ y H(A» Iy)&(b(AX)l, llrllP. ,1, &

AXl~

In Eq. (18c) the symbol [S;—,X] represents the so-
called triangular delta function, which is unity if

1 1the relation,
l S;——,

l
& X & S;+—,, is satisfied and

zero otherwise. All measureable quantities related
to single-electron, electric-dipole transitions such as
absorption intensities and photoelectron angular
distributions may be calculated theoretically from
the dipole amplitudes D, .

where

G(L,$,1)=ass ( —I) f +
~ /2(I
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