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Ionization in heavy-particle collisions: Multichannel treatment
with discretization of the electronic continuum
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A theoretical treatment of ionization in atomic collisions is developed for quantum-

mechanical and semiclassical relative motions. It is based on a molecular-wave-function

expansion containing both discrete and continuum spectrum states. The continuum is

discretized by further expansion, which leads to normalizable "electronic state packets. "
A procedure is described to calculate scattering amplitudes that avoids having to orthogo-

nalize continuum states to all the (usually unknown) discrete ones.

I. INTRODUCTION

Collisions between pairs of atoms can lead to
ionization in which an electron is emitted and the
heavy (atomic) particles are left in bound or
scattering states. As examples, we mention first
collisions at thermal kinetic energies between a me-

tastable atom A* and another atom B, with ioniza-
tion resulting from electronic energy transfer as in

A*+B A +B++e (PI)

-AB++e- (AI),

which are known as Penning ionization (PI), and

associative ionization (AI). Secondly, in ion-atom
collisions at energies in the range of 1 kev/amu,
an electron may be emitted from outer electronic
shells as a result of transfer of relative kinetic ener-

gy into electronic motions. For example, for an

ion A q with charge q, the process is

A~+B Aq+B++e- .

If the emitted electron comes from an inner shell

of B, the process is instead

A &+B A &+(B*)++e

where (B*)+ indicates an electronically excited ion.
To describe such collision processes it is neces-

sary to include in expansion basis sets electronic
states for the continuum of electron kinetic ener-

gies. This leads to infinite sets of coupled scatter-
ing equations, which must be treated by special
methods to discretize in some way the electronic
continuum. Early work on this subject was dis-

cussed by Bloch' in his review of the many-body

theory of nuclear reactions. The mentioned PI and

AI processes were studied with a discretization

procedure leading to finite sets of coupled differen-

tial equations. In the area of heavy-particle col-

lisions, related work has been done on the dissocia-

tion of diatomic molecules in atom-diatom col-

lisions, and on scattering of atoms by solid sur-

faces, where a continuum of states is required to
describe the phonon modes of the solid surface.
Discretization plays also a prominent role in recent

studies of photoionization, where, however, the

emphasis is on the evaluation of integrals over den-

sities of states. We instead shall focus on the prop-

erties and use of the expansion basis of electronic

states.
We develop a formalism general enough to in-

clude the processes mentioned at the beginning, but

to simplify matters we consider here only collisions

where the active electrons have velocities greater
than the relative velocities of nuclei. In this case it

is appropriate to use molecular electronic states,
where the electrons move in orbitals around both

nuclei. We postpone to the discussion an analysis

of extensions of the theory and of other applica-
tions of the present molecular-state approach.

We extend the previous formalism by introduc-

ing electron state wave packets, which are square
integrable, i.e., L states, whenever certain condi-
tions are satisfied in the ionization process. The
continuously infinite set of coupled scattering
equations is then transformed by expansion in

these L states into a denumerable set. We prove
within this approach a number of relations which
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can be satisfied by introducing a new basis of L
electronic states chosen for computational conveni-

ence. Expanding the scattering wave functions in

the new basis leads to sets of coupled equations,
like the ones arising when only bound electronic
states are considered. These equations can be
solved with standard computational methods to
obtain the asymptotic amplitudes of wave func-
tions. Physical scattering amplitudes result from
linear combinations of those asymptotic ampli-
tudes.

We also develop a semiclassical (SC) version of
our theory. Some previous SC approaches to ioni-

zation have used complex potentials, with the ima-

ginary parts representing electron-emission widths.
We instead explicitly allow for coupling of contin-
uum and discrete electron states along a classical
trajectory of the heavy particles. This has also
been the starting point for calculations of ioniza-

tion in the weak-coupling limit. Here we develop

the SC treatment in terms of electron wave pack-
ets, as done for the quantum-mechanical case, to
obtain a denumerable set of time-dependent first-
order differential equations for transition ampli-
tudes. An SC calculation of cross sections for PI
has already been carried out for a special case of
the present theory and agrees well with quantum-
mechanical results. '

In what follows, Sec. II presents the starting
scattering equations and boundary conditions for
neutral or ionized heavy-particle products, intro-

duces the expansion in electron wave packets, and

ends with an example of the expansion procedure
for electron emission. Section III contains the
semiclassical theory in a simple version, chosen to
focus on the special problem of ionization. In the
discussion, Sec. IV, we briefly consider the relation
of the present approach to other theories and men-

tion several other possible applications.

where (S,Mq) are the electronic spin quantum
numbers in a space-fixed frame, A is the projection
of the orbital electronic angular momentum on the
molecular axis, and (L,MI ) are electronic angular
momentum quantum numbers in a center-of-mass
space-fixed frame. The index v in the continuum
state 4 stands for

(4„(R)
~

4„(R)) =5„„

(4„(R)
~

4„(R)) =0,
(4„(R)

i
4„(R)) =6(v —v') .

(la)

(1b)

(1c)

These states may be adiabatic or diabatic" with

respect to changes in R, but in all cases their limits
for R ~ 00 are eigenstates of the electronic Hamil-
tonians of the atomic fragments, with eigenenergies

E„&0and E,&0. The total molecular state

~

+'+'(R) ) for electronic and nuclear motions may
be expanded as

~

4'+'(R) ) = g C&„(R))F„(R)

(2)

with amplitudes F satisfying outgoing wave boun-

dary conditions for an incoming wave in state
n =a and total energy E g 0. The integral over v
stands for both an integral over ~ and a sum over
a=(n+ k@0.). Furthermore, letting s =n or v,

r i ~ a' + ~ a aR —ka'R)]

v=(n+~kpo),

where n+ is defined for the diatomic ion as n

above, ~ is the electron wave number, (k,p) its an-

gular momentum and projection quantum

numbers, and 0. its spin projection quantum
number. The states 4 are furthermore normalized

so that

II. QUANTUM THEORY

A. Expansion in molecular electronic states

i[k R+P, (R)]

+f„(k„k,)
R

(3a)

We introduce a complete set of electronic states

in a space-fixed frame, f ~

@„(R)),
~

4„(R))j for

each internuclear position R, where the bra and ket
notation is used to indicate states over electronic
variables. The index n in the bound state 4„
stands for a collection of quantum numbers

if E, &E, and

F,(R)-A„(k„k,) (3b)

if E, & E, where y=qzq~m /A in terms of the net
charges q„and qa of A and B, and P, (R)
= —(y' /

~
k,

~

) ln(2
~
k,

~
R) with y' referring to

the exit channel. Also,

n =(no E =A k, /(2m)+E, , (4)
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and haik indicates a relative momentum for the
atomic nuclei. The f factors are scattering am-
plitudes, while the A are asymptotic amplitudes
for exponentially decaying states in closed chan-
nels.

We introduce the nuclear kinetic energy operator
K = —A V~/(2m) and electronic Hamiltonian H,~,

2 2

and replace Eq. (2) in the Schrodinger equation

(K+H„E)
i

q—'+'(R)) =0

to obtain by projection the continuous infinite set
of coupled equations

+[5„„(K E)+—V„„+C„„]F„

(9a)

gg; (s.)g; (s')' =5(K—K ), (9b)

we let v=(K, a) and expand

F„=gg;(a)F; (10)

Replacing in Eq. (2) and rearranging,

~

0'+'(R)) = y ~

e„(R))F„(R)

Introducing a complete, normalized set of func-
tions Ig;(s)] satisfying

fdsg;(Ir)*g; (s)=5;;,

n'

+fdv(V„„+C„„)F„=O,

fdv'[5(v v')—(K E)+ V —~ +C ]F~

+g( V +C„„)F„=O,
n'

(6a)

(6b)

+y ~
4,(R))F,(R),

where I=(i,a) and

~
41(R))=fdlrg;(s)

~
+„(R)), (12)

where

V„(R)= (4,(R)
~
H, ) ~

'P, (R) ) (7a)

so that

~
4„(R))=gg;(s) ~@r(R)) . (13)

C„.(R,f„)= —(C, (R)
~
V„a, (R)) V&

m

(4,(R)
~

V'g4, (R)) . (7b)
2m

Solving these equations with the boundary con-
ditions of Eq. (3), we obtain the ionization cross
sections per unit solid angle and electron wave vec-

tor from

d2
=(k„/k, )

~ f (k„,k )
~

where 0 is the solid angle of k„ in a reference
frame with z axis along k„and we have assumed

that the emitted electron state has a 5(K—K ) nor-

malization.

B. Electronic state packets

The infinite set of coupled Eqs. (6) are not in a
convenient form for solution because the continu-
ous index K required an integration over v. A
basic aspect of the present approach is that Eqs.
(6) may be transformed to a more familiar form
whenever the amplitudes F„are square integrable
functions in the variable K. This has been observed
to be the case for the ionization processes to be
discussed later on.

The functions 41 are orthonormal by construction,
since

&@( I
+I'&= fdxg((s)'f dK gi (K )~4

= fdKg (K)*g; (s)5 =5II (14)

gg;( )s* 4(„14 ~1=0 . (15)

For each n and a index, this may be considered a
set of linear equations for the unknowns

(4„~41 ) . Choosing as many a =Ir; values as
there are unknowns, Eq. (15) becomes a set of cou-
pled linear equations with coefficients g;(K; ). By
properly choosing the K; values one can assure that
det[g;(a; )']+0, hence one must necessarily have

(4„
i
4i) =0.

The preceding development constitutes proof
that 4'+' can be expanded in a set of square in-

The 4q are electronic state packets in the sense that
they are square integrable. Hence Eq. (11) gives an

expansion of 0"+' in two types of square integrable
electronic states. Furthermore, the states 4„and
41 are orthogonal, as seen from Eqs. (1b) and (12).
In actual calculations one would begin with the 41
states and would require that the 4„in Eq. (13)
satisfy Eq. (1b). This can be done as follows.
From Eqs. (1b) and (13)
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tegrable, orthogonal basis functions, provided the
amplitudes F are square integrable functions of ~.
In applications, the functions @„would be known
from the outset, but the 41 would have to be con-
structed and orthogonalized to all the 4„. This
procedure can be simplified by introducing a new
basis set. Let us consider a set of orthonormal
electronic states

I j,R) which diagonalize the
asymptotic form of H, I, so that

fJ, (Q)= — (kJj I
T

I
k,a),

2m'A
(22)

where we use for heavy-particle states the normali-

zation (k
I

k' ) =(2m) 5(k —k' ),
I j)=lim

I j,R),
and

I
a ) =lim

I 4, (R) ) for R ~ oo, and where the

orientation of kJ is given by Q. Similarly, in the
4„(R) representation we have

VJJ (R) — 5JJ'EJ .
R~oo

(16)
f„,(Q)= — (k„vI T

I
k,a),

2
(23)

I
4„(R))=g

I j,R)bJ„(R),
J

(17a)

For R ~ oo, some of the EJ values will be negative
and others positive. Hence the set I I j,R) I spans
the spaces of both bound and continuum electronic
states. We expand next

XI J&&jI =1 (24)

where
I

v) =lim
I

C&„(R)) for R ~ oo. We can re-

late the amplitudes in Eqs. (22) and (23) by re-

stricting ourselves to k„=kJ and
I

v) =
I vJ), the

latter meaning that E =EJ, so that the total ener-

gy is always E. Using the completeness of the

I I j) ) set in the space of electronic states,

I
ey(R)) =y

I j,R)bJI(R) .
J

Substituting these in Eq. (11) we obtain

(17b)
we find

f„,(Q)=(k vJ I
T

I k,a)

I

+'+'(R)) =g
I j,R)FJ(R),

J
(18)

which replaced in the Schrodinger equation may be
solved for the FJ with asymptotic conditions

=g(vJ
I
j'&(k,j'I T

I
k,a) .

(25)

EJ )E,
i[ k - R +(y/k ) In(k.R —k ~ R )]

J J~

(19a)

Furthermore,
I vJ ) and

I
j') are solutions at

R~ 00 of the same electronic Hamiltonian for the
atomic fragments, so that (vj I

j') =0 if EJQEJ .

The result is

where

i[k-R +P.(R)]
e+f" R EJ (E, (19b) f„J,(n)= y (vJ IJ')fJ, (n),

j'(E'=E )

(26)

E—p~k2/(2m)+E (20)

g[5JJ'(K E)+ VJJ +CJJ ]FJ—(R)=0
J

(21)

with matrix elements defined as in Eqs. (7) but for

the I I j,R) I basis.

It remains to express the scattering amplitudes

f (0) in terms of the calculated fJ, (Q). From
the Lippman-Schwinger transition operator T, in

the
I j,R) representation, one has

The infinite set of coupled-channel Eqs. (6) become

a standard set,

hence f„,(Q) may be obtained for each energy EJ
as a linear combination of all the fJ, amplitudes
for asymptotic states

I
j') of the same final energy

EJ ——EJ.
Comparing the expansions of Eqs. (11) and (18)

we find that the second one is more advantageous
because it does not require a knowledge of all

bound states
I
4„), to which the

I
41 ) must be

made orthogonal. The set of states
I j,R) must

only be large enough to properly represent the

I
4„) states of interest and to give enough states

within the continuum spectrum to allow for inter-
polation of transition amplitudes.
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C. Two examples

The basis Ig;(s) I should be chosen so that the
electron distribution can be described with the
smallest possible number of expansion terms. In
one application already carried out the functions

g;(~) were chosen as

g;(s)=a;(e)=(bE) ' ', i =1 to Nd

for e; —Ae/2 & e & e;+he/2 and zero otherwise.
Here s=fi s /(2m, ) is the kinetic energy of an
electron of mass m, and e; is the energy of the ith
band of width he. This simple choice provides a
basis which is orthonormal and complete in the
limit i) e~O. Replacing Eq. (27) into Eq. (12) one
finds that the state packets 41 have energy spread
he and tend to 4„ for De~0. In the applications,

l

Ae was decreased and Xd increased to cover the
same region of e values, until convergence of
scattering amplitude values was achieved.

In a second example, consider a case where it is
experimentally known that the energy distribution
of the emitted electron decreases exponentially at
large K. %e choose

g;(Ir)=e "r'L;(a), i =0, 1,2, . . .,

where L; is the I.aguerre polynomial of ith order,
so that Eq. (9a) is satisfied. Indicating with

X„~ (r, g} the spin orbital of the electron that flies
away, where (r, g) are position and spin electron
variables, we define

I;x„(r,g)= I drrg;(s}X„~ (r,g),

~
I,R& =Cr&

~
4„(R)X;x„&,

where CI is a normalization constant and M is the
electron antisymmetrizer. To be more specific, let
the electron that flies away be in the free s orbital

X~(r ) =r ' sin(~r)/(&2m)

normalized to 5(Ir —s'). Replacing it and Eq. (27)
in Eq. (29a), and temporarily replacing the index i
by j, we obtain

( —I )'Im( —, +ir} 1+'
L'J-oo( r ) =

+2m r( —+r2$+~

(31)

j=0

00
00 0"--

) 0

/
-20— /

j=l

FIG. 1. The first three state packets of Eq. (31) for
an electron with zero angular momentum versus the ra-
dial electron position, in atomic units.

a=1
(32)

Then the pth molecular spin orbital
~
ri~, R & will

be equal to
~ p,„I& for ri =a =1 to N~, and equal

to
~

X.„o & for ri=N&+ I, . . .. We can next con-

struct the X-electron states,

p=1
(33)

to diagonalixe in this basis the operator H, ~
at

R~ao. This results in a set of states
~ j,R&, each

of which is a superposition of configurations ob-
tained by solving an S-electron bound-state prob-
lem, to be used in Eq. (18).

Next we can orthogonalize the
~
I,R& states of

Eq. (29b) to the X-electron bound states
~

4&„(R)&

to obtain from the first ones the states
~
41(R) &

in Eq. (11). More directly, to avoid orthogonaliza-

tion, we can introduce a discrete basis of one-

electron molecular spin orbitals I ~ g&, R& I for

each electron p, 1 &p &X, and construct X-electron
states as follows. %orking in a reference frame at-

tached to the diatomic nuclei and indicating with

IP,„, a =1 to %~ I the collection of known molec-

ular orbitals of bound electrons with quantum

numbers p, we construct the orthogonalized molec-

ular orbital packets

where Im means the imaginary part of the follow-
ing complex expression. These packets are square
integrable, decreasing as r for rheo, and have j
nodes each. Their form is shown in Fig. 1.

III. SEMICLASSICAL THEORY

When wavelengths 2mkj
' for relative motion

are small and potentials V&J are slowly varying, the
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i
c (t;k„p)

i

. = l .
j

(35)

Also, provided the initial state
~

a ) coincides with
one of the states

~ j ), the initial conditions are

relative motion may be described classically. In
the present approach we use the simplest semiclas-
sical treatment, where quantum corrections such as
path interference and tunneling are neglected. ' To
further simplify the discussion, assume that Vjj
and CJJ in Eq. (21) depend only on the radial vari-
able R. Then the orbital angular momentum is
conserved and its quantum numbers (I,m) are
fixed. Choosing m =0, i.e., orbital motion in the
x,z plane, the discrete value I may be transformed
into the continuum impact parameter p through
the relation p=(1+ —,)/k„where k, is the initial

wave number. A classical traje:tory may be intro-
duced for an average interatomic potential V(R) so
that R is a function of time t for each tk„p), and
one obtains the angular deflection function
0(k„p).' The amplitudes Fj in Eq. (18) may be
replaced for each (I,m =0) by the correspondence

—i t. .(h') Ch'/1
Fjlo ~cj(t,k„P)e

where ÃJ
——VJJ [R(t;k„p)]. The coefficients cJ,

which denote the time-dependent transition ampli-
tudes, satisfy the normalization condition

(39)

From this, the double differential cross section for
emission of an electron with angular momentum

quantum numbers (A, ,p) within the wave-number

increment d~ and with the nuclei scattered into
solid angle d 0, assuming a unique relation between
8= ~8~ and p, is'

- cl
d 0'~

d~dQ
(+,k„8}~, (40)

a

valid provided neither 6 nor k, are too small. Fi-
nally, the integral cross section do„, /da for ioni-

zation within the differential d~ follows from

dx'

"' =2' dpp
~
c„,[+;k„8(p)]

~

',
(41)

while the total integral cross section for emission
of an electron with (A,po. ) is

The transition amplitudes required for calcula-
tion of cross sections are not the cJ.,(t~+ oo ) but

instead c (t ~+ oo ) corresponding to the physical
transition a~v. By analogy with Eq. (26) the
latter are given by

c„,(+ oo)= g (vJ
~ &p,'(+ oo))c,', (+ oo) .

J j '(E =E.)

cJ(t~ oo,'k„p) —=5J., (36)

Further defining
~
yJ(t)) =

~
j,R(t)) one obtains

the following set of coupled equations for given

(k„p) and initial state a:

o'„",'(k, )= J die

IV. DISCUSSION

(42)

t. t
i J f &J(h') —&).(h'))dh'lA (37)

The matrix elements (
~

d/Bt
~

) may further be
transformed into two terms using the relation

~ () Ak, p—=R + iL
a~ aR

(38)

where L~ is the y component of the orbital angular
momentum operator. This expression gives rise to
radial matrix elements (

~

8/BR
~

) with the re-
striction A'=A and the rotational matrix elements
( ~iL» ) with A'=A+ 1. A program for solving
Eq. (32) in the case where the trajectories are of
the Coulomb type has been developed by Piacentini
and Salin. '

We have developed an expansion procedure for
the treatment of the electronic continuum states in

heavy-particle collisions, in terms of (L ) electron-
ic state wave packets 4l. We found that this ex-

pansion is justified whenever the channel wave
functions for ionization are square integrable func-
tions of the emitted electron wave number. Also,
we have proved that the use of the 41 satisfies the
requirement of orthogonality between discrete and
continuum spectrum states. However, to impose
this orthogonality it was found more convenient to
introduce from the outset a new basis

~
j,R). The

final expressions are summarized in Eqs. (19), (20),
and (26) for the quantal treatment and Eqs. (36),
(37),and (39) for the semiclassical one.

Two theoretical problems must be considered in

applications. If the velocity of the active electrons
is not appreciably larger than the relative velocity
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of the nuclei, then the momentum coupling terms

CJJ, in Eq. (21) cannot be ignored. Secondly, if the
basis set is not large enough, one should include
electron-translation factors to satisfy the correct
asymptotic conditions. '

Total wave functions of the form of Eq. (18) ap-

pear in Sturmian and pseudostate methods. ' To
some extent, our procedure justifies the use in these
methods of L states for the continuum.

Besides the application of the present theory to
the processes mentioned in the Introduction, other
problems could be treated, such as photoioniza-
tion, ionization processes in the presence of strong
electromagnetic fields, ' and neutralization and

electron emission in ion-surface collisions. ' The
possibility also exists for studying the role played

by the electronic continuum in collisions leading to

bound-to-bound state transitions of the diatomic
electrons. '
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