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The excitation of electronic transitions in matter by a group of swift ions traveling

close together and at nearly the same velocity may depend on the spatial configuration of
ions making up the cluster. We have studied theoretically the effect of configuration on
the interactions of clusters with an electron gas and in collision with single atoms (vi-

cinage effect). The latter case is explored with a classical harmonic-oscillator model and

with quantum-mechanical perturbation theory. We discuss similarities between the vi-

cinage function for energy loss of a swift cluster in an electron gas and that for the same

cluster colliding with a system of noninteracting atoms at condensed-matter density. The
aligning effect of the wake potential on the trailing ion of a dicluster penetrating a solid

target, as first observed by Gemmell et al. , is not expected to occur in cluster collisions

with single atoms, and does not occur in collisions with gases at ordinary pressures.

Aligning forces comparable with those in solids require target densities of the same order
of magnitude as those occurring in condensed matter. The data of Lurio, Anderson, and
Feldman taken in a search for vicinage effects in inner-shell excitation are discussed. The
effect of wake fluctuations on cluster energy loss is shown to be negligible under ordinary
conditions. We evaluate the effect of residual molecular ionic structure on cluster energy
loss.

I. INTRODUCTION

When a swift molecular ion impinges on a tar-

get, only a few collisions may be needed to strip
the valence electrons from the projectile. The resi-
dual ionic fragments then begin to recede from one
another under the influence of interionic Coulomb
forces. At sufficiently small times following strip-
ping, the ions have velocities which are nearly the
same as that of the original projectile. When the
fragments are traveling close together, there may
be substantial vicinage (spatial configuration) ef-
fects on electronic transitions induced in the target.
A component of the force on one ion arising from
transitions induced in the target may be due to the
presence of other ions in the cluster. Then the en-

ergy loss of the cluster will not, in general, equal
the sum of energy losses experienced by each ion
when at large distances from all other ions.

Typical initial interionic separations in clusters
that have been studied experimentally are ) 1 A.
Cluster velocities v, are -2vo —10vo, where

vo ——e /%=2. 19)(10 cm/sec. For example, the
mean internuclear separation in the H2+ ion is
—1.29 A.

In this paper we analyze theoretically vicinage
effects for ion diclusters penetrating an electron
gas and in collision with single atoms.

Experimental studies of ion cluster penetration
have so far been concerned primarily with con-
densed matter. Neelavathi, Ritchie, and Brandt'
(NRB) pointed out that the oscillatory wake of
electron fluctuations trailing a swift charged parti-
cle in condensed matter may give rise to (a) wake-
bound electron states, (b) spatially correlated
dielectron structures, and (c) spatially correlated
ion clusters. Brandt, Ratkowski, and Ritchie
showed experimentally and theoretically that the
energy loss of proton clusters to valence-electron
excitations in solids displays a vicinage effect.
Tape et al. measured energy losses of diproton
clusters and of clusters of two oxygen ions travel-

ing at velocities such that the charge state of each
ion was +4+1. Their results also display a pro-
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nounced dependence on dicluster configuration.
Eckardt et a/. , have reported measurements of the
vicinage effect using H2+ ions in the energy range
of 12.5 to 139 keV per nucleon and have analyzed
their data using the theory of Arista and Ponce.
Laubert has studied the vicinage effect in detail by
measuring the energy and angular distributions of
emerging particles after thin carbon targets were

bombarded by H2+ and HeH+ molecular ions in
the energy range of 50 to 300 keV.

Gemmell et al. studied the angular and energy
distribution of protons emerging from crystals
bombarded with (HeH)+ ions under planar chan-

neling conditions. They infer that the wake of the
leading ion tends to focus the trailing ion in the
direction of the former. More recent observations

by this group demonstrate clearly the reality of
this aligning force. ' High-resolution studies of
the distribution in energy and angle of the frag-
ments produced when swift H2+ ions bombard

thin amorphous targets show a characteristic bimo-

dal energy distribution at directions nearly parallel

to the initial ion velocity. Observed asymmetry in

this distribution results from the wake forces. A
number of theoretical studies relating to the spatial
variation of the make have been published" follow-

ing the early work of NRB.
Lurio, Andersen, and Feldman' have searched

for such effects in the x-ray yield of thin solid
films under bombardment by Hz+ projecti1es. In
their experiments it is primarily the effect of

inner-shell excitation of individual lattice atoms

that is observed, as me show belom.
We employ idealized models in order to compare

vicinage effects in condensed matter, where in-

teractions among valence electrons are important,
and in collisions resulting in excitation of inner-

shell electrons, where interactions between electrons
on different ion cores may be neglected. The ener-

gy loss of a dicluster is examined using (a) a dielec-
tric model of condensed matter, (b) a classical
harmonic-oscillator model of electronic excitation
in a single atom, and (c) a quantum-mechanical
description of the excitation of an atomic system.
Vicinage effects on cross sections for inner-shell

ionization are also studied. ' We evaluate the ef-
fect of make Auctuations (Sec. VI) and residual
molecular ion structure (Sec. VII) on cluster energy
loss.

II. THE ENERGY LOSS OF A DICLUSTER
IN A VALENCE ELECTRON GAS

Suppose that two swift point charges z&e and z2e
proceed with velocity v in a medium characterized
by the dielectric function e(k, m). Separation be-
tween the charges is specified by the vector R with
components D and 8 in directions with, and per-
pendicular to v, respectively. In linear-response
theory and the first Born approximation, the ener-

gy loss of the cluster per unit length to electronic
excitation in the medium may be written

22e ~ Older —1 a)D
x dx Im z i +z2+2ziz2JO(x'8} cos

n.u u

=—(z) +zp )P'p+2ziz2&„(B,D) . (2.1a)

Here P'&, which is often written as —dE/dR, is
the energy loss per unit path length of a single pro-
ton having the same velocity as the cluster. The
vicinage stopping power P', becomes equal to Wz
as 8~0 (the united ion case) and goes to zero as
R —+ac. In Eq. (2.1},k =sc +a) /u and the medi-
um is assumed to be homogeneous and isotropic.
Jo(x} is the Bessel function of first kind and zero
order.

%'e do not consider energy loss to inner-shell
electrons in the context of a dielectric treatment,
since collective effects are much less important for
these electrons than for valence electrons. Instead
we employ atomic models to describe such excita-
tions in Secs. III and IV below.

The dielectric response functions of the valence
electrons of model solids have been investigated in
much detail. In Ref. 2 a plasmon-pole approxima-
tion to e(k,~}for an electron gas was used, and
numerical evaluation of W„was done. In order to
get easily surveyed analytical results, we employ a
simplified form which exhibits collective and
single-particle effects. We take

2

Im = 5{~—~p )8{k,—k)
'lT'COp

e(k, m) 2o)

(2,.2)
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where %cop is the plasma energy of the electron gas
and the choice k, =(2mcop/A)' allows the two 5
functions in Eq. (2.2) to coincide at k =k, in the
k-co plane. The first term in Eq. (2.2) describes the
response due to nondispersive plasmon excitation
in the region k & k„while the second term de-
scribes free-electron recoil in the range k & k, .
This approximate function satisfies the sum rule

f coIm[ —e '(k, co)]drv=~co~/2 for all values of
k and gives a good qualitative account of the vi-

cinage effect for the present purposes. The Heavi-
side step function is designated by 0(x) in Eq.
(2.2).

In this approximation

2e co dt's
KdK ImP ~v p p K2+~2/ p(k ~)

2 2e a)p ~pD
P'„(O,D) = cos ln

V2

1/2
2mv

ACOp

r

2mv 1 . p

f7 2 U

1.0—

where Ci(x) = —f cosu du /u is a tabulated func-
tion. Note that as D~O, W„~Wp as it must,

Z

since in this limit the two ions coalesce and
P', ~(z& +z2) P'p. Figure 1(a) shows a plot of the
ratio g(O, copD/u) vs (copD/v), for v =3vp and

2 2 2e cop 2mu
ln

V ACOp

(2.3)
g(O, D)

if u » (Wp/2m) Up This agrees exactly with
the Bethe stopping-power formula, ' except that
the plasmon energy of the electron gas Scop appears
instead of the usual mean atomic excitation energy.
Equation (2.3) represents the contribution of
valence electrons in a solid to the stopping of an
ion. Contributions from excitation of inner shells
should be added to this equation, of course, to ob-
tain the total stopping power of the medium, yield-

ing the nonrelativistic form

l.o

g(8,0) 0.5

+re Z2nw 2mv
4

.Sp —— in
mu I +

V Bu+/V

where I is the mean excitation energy, n& is the
atomic density of the medium, and Z2 is the atom-
ic number of the medium. The second term in the
braces accounts for inner-shell effects, and correc-
tions for the Z~ effect and other higher-order ef-
fects have been neglected.

Using Eq. (2.2) in Eq. (2.1), one finds

l.o

g(R) - 0.5

(c)

I

e co copD &, KJp(KB)
P'„(B,D) = cos f z

de.
U

I

V K +Np/U

7.

+ f cos Jo(QB)
C 2mU

(2.4)

where Q =k —(cok/v), s, =k, —co~/v,
cok ——Ak /2m, and k2 ——2mu/A. We examine the
cases B~O and D~O separately.

(i) B =0; one ion trails directly behind the oth-
er. In this limit and for v » vp,

IPu //V

FIG. 1. Ratio of the vicinage term in the stopping
power of an electron gas for a diproton cluster to the
stopping power for a proton having the same velocity.
The velocity is taken to be U =3UO and is assumed to be
&& (2hco~/m )', and the plasma energy of the electron

gas is fur~ =15 eV. (a) gives the ratio when one proton
trails directly behind the other by the distance D. (b)
shows the ratio when the two protons travel directly
abreast, while (c) shows this ratio averaged over all
orientations.
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Lu& ——15 eV. We define the vicinage function
g(B,D) =~„(B,D)/5'z, and similarly for other vi-

cinage functions considered below. One sees a des-
cent from unity at D =0 to a first zero at

D/v =1.5 and a characteristic oscillatoryv

Ref.behavior for large argument. As discussed in Re .
3, fluctuations in the stopping power of a medium
for a cluster as separation increases are due to elec-
tron density variation in the wake of the leading
ion. The wavelength of these fluctuations is
2m@/m~, where co~ is the collective resonance fre-

uuency of the electrons in the medium.
(ii) D =0; ions travel abreast. In this case we

find

e 2'~ ", aJp(lrB)da
v(8, 0)=

v K +Np v

if v » vz. Although the integral in this equation
is not tabulated, it approaches the modified Besse
function Ep(Brpz/u) as 2mu /fico& becomes large
compared with one. When 8~0, Eq. (2.5) shows
that g(0,0)=1. Figure 1(b) shows a sketch of
g(rp~B/u, o) vs (rp~B/U) computed from Eq. (2.5).

A more accurate representation of A„(B,D) may
be obtained by employing the plasmon-pole ap-
proximation to e(k, e)) in

28 ~ ~ NdCO —1
Av(B, D) = I ad~, Im

ND
XJo(KB)cos . {2.6)

The plasmon-pole approximation has been used ex-
tensively ' to represent the response function of an
electron gas. It may be written

e(k, rp) = 1+rp~/[ P'k'+Pi'k /4m'

cp(rp—+i y) ],
where P =3UF/5 is the square of the mean pro-
pagation velocity of disturbances in the system and

vz is the Fermi velocity of the electron gas. Both
collective and single-particle effects in an electron
gas areas are represented in e(k, m). Figures (2) —(4)

E .s owhow the results of calculations made using q.
(2.6a) in Eq. (2.6). The results are represented yb
the vicinage function g (B,D) =A„(B,D) IA~,
where P' is taken from Eq. (2.3). The constants
employed are specified in the figure captions. One
sees the same kind of general trends displayed in
Figs. 1(a) and 1(b). Crispations of wavelength
-h /mv corresponding to single-particle effects are
prominent in the region 1 &8 & 4 and 0 &D & 4,

O.B

O o
CD

CP

A vicina e function g (B,D)=W„(B,D)l&~ plotted as a function of B and D for stopping of a dicluster
f

nction E (2 6a). Atomic units are used.res onse of the n ium is a enf h ed' t k to be given by the plasnon-pole dielectric unction, q. . a.
n

' ' f 0529 A while the unit of velocity vp=e /%=2. 19X10 cm/Lengths are measured in units o . , w i e e
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0.8

'. 2ro riate to a medium suc as ah th t specified in the caption of Fig.FIG. 3. A vicinage function g (B,D) approp
'

and for a dicluster velocity u =3 a.u.

where B and D are measured in atomic units

(ap ——0.529 A).
tions clusters areIn many experimental situa

'

formed with random orientations o R..R. A vicinage
riate to this situation maystopping power appropriate

(2.7a)

where

be obtained by carrying out a spherical average
over R of the quantity A„ in Eq. (2.1). We find

(5 & ) = (z ~ +zp )Ap +2z]zp&„(R )

0.8 =.

-0.4

the ca tion of Fig. 2, anda ro riate to a me ium wid' 'th properties specified in the pFIG. 4. A vicinage function g(B,D) app p
'

for a dicluster velocity U =4 a.u.
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FIG. 5. A comparison of the vicinage function for
randomly oriented clusters penetrating an electron gas.
Computed from Eq. (2.7) employing the Lindhard
dielectric function of an electron gas (solid lines) and us-

ing the approximate formula of Eq. (2.8) (dashed lines).
The two upper curves correspond to a cluster velocity of
v =1 a.u. , while the lower pair correspond to v =1.5
a.u. The results become nearly the same for v &2 a.u.

P'„(R)= (P'„(R sinH, R cos8) )

2e "dk sjnkR vk —1
coda Im

k kR e(k, co)

(2.7b)

The approximation of Eq. (2.2) when substituted
into Eq. (2.7b) yields, ' for v » vz,

2 2e co& co&R
~v(R) =

2 S12
v

to the dielectric response function of an electron

gas for vicinage calculations may be checked in a
straightforward way for the case of random diclus-
ter orientation. We have evaluated numerically

Eq. (2.7b) using the Lindhard dielectric function'
of an electron gas. The density assumed was that
of the conduction electrons in Al metal (the one-
electron radius r, =2.07, %cod ——15.8 eV) and a
range of velocities was studied. Figure 5 shows
some of the results, which have been plotted as a
function of Rco&/v for purposes of comparison.
Data computed using the Lindhard e(k, co) are
shown as solid lines, while Eq. (2.8) yields values

plotted as dashed lines. For v )2 the correspond-
ing results are indistinguishable on this scale.
When v & VF

——0.93vo at r, =2.07, the approxima-
tion of Eq. (2.2) yields P'„(R)=0 when substituted
in Eq. (2.7b).

The effect of the presence of an energy gap in a
solid upon the vicinage function may be estimated

by employing the Callaway-Tosatti model dielectric
function' of a semiconductor in Eq. (2.7b). A
better approximation would be obtained using the
Brandt-Reinheimer' dielectric function, based on
the Penn model of a semiconductor. However,
because of the numerical complexity of this func-
tion, we have used the simpler Callaway-Tosatti
approximation and have employed an energy gap
which yields the same partition constant C(r„ez)
found by Brandt and Reinheimer at the same value
of r, . Figure 6 shows a plot of g (R) vs 2kFR at a
velocity v =3vo and for r, =2.07. The equivalent

energy gap value Eg is specified in the caption for

—si2(2m vR /R) (2.8) 1.0

where we take

~ sinu du sinx C.( )
x u2

(2.9) g(2k, R)

0.4

Figure 1(c) shows a plot of g (R) =A„(R)/P'z vs

(Rood!v) for the case v =3vo and for fico&
——15 eV.

As R ~0, g (R)~1 and as co&R /v becomes large
compared with 1,

0.2

0 2 4 6 8 10 12 14 16

g (R)—cos(co&R / 2mv

Scop

'2
cop R

. (2.10)
v

Oscillations in g (B,D) are strongest when the
trailing ion moves directly behind the leading ion,
Fig. 1(a). Orientational averaging leads to strong
damping of these oscillations.

The accuracy of the approximation of Eq. (2.2)

2k' R

FIG. 6. The vicinage function of a randomly oriented
dicluster penetrating a semiconductor. The Calloway-
Tosatti model of the dielectric function of the semicon-
ductor has been used in this calculation. The gap ener-

gy E~ is specified in units of the Fermi energy EF, and
the cluster separation is expressed in units of (2kF)
The cluster velocity v =3 a.u. , and the one-electron ra-
dius r, =2.07 in the model.
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each curve and is given in units of EF. The Fermi
wave number k~ ——muz/A. These results indicate
that cluster energy loss in material characterized
by a 81zablc cncrgy gap Eg 0.3 may differ by
several percent from the loss of the same cluster in
a metal with the same Fermi energy but with

Eg ——0.

III. ENERGY LOSS TO A CLASSICAL,
HARMONICALLY BOUND ELECTRON

e ~

Nl r+ NlQP r =V~
Z)e

I

r vt-b-,
I

Z2e
2

+
fr vt —b2I— (3.1)

The electron is bound to a center of force at the
origin of coordinates, and the uniform rectilinear
motion of the cluster is such that the projectile

Bohr's ' harmonic-oscillator model for the
response of an atomic electron to swift charged-
particle bombardment may be generalized easily to
include cluster colhsions. This model is very use-
ful in displaying the physics of charged-particle in-
teractions in matter and, as well, gives a good
quantitative description of optically allowed (di-
pole) electronic transitions in atoms under
charged-particle bombardment.

A bound classical electron, represented as an iso-
tropic harmonic oscillator with resonance frequen-
cy m, will evolve in time under the influence of a
moving dicluster according to Newton's equation,

Z2
+

fr vt —b-2I

(3.2)

where we now express hE, in terms of contribu-
tions hE& and ~2 from each ion plus a cross
term hE„. By straightforward manipulation the
integrals in Eq. (3.2) may be expressed in terms of
tabulated functions,

2
2

2 2 cOeLE =—z.
m '

cobj.
Kp

U

+g2 JQPb .

U

Here Kp(x) and K&{x)are modified Bessel func-
tions of the second kind, and zj and bj are the
charge number and impact parameter appropriate
to projectile j, respectively. In this notation
bi =

I
bi I

and»=
I b2 I

=
I
bi+R

I
T&e»-

cinage term is

(3.3)

with charge zje moves with impact parameter bj
relative to this center, where j =1 or 2. As in the
previous section, R= b2 —b~ describes the orienta-
tion of the dicluster.

At large velocities the impulse approximation
may be invoked; r may be set equal to zero on the
right-hand side of Eq. (3.1) after the gradient
operation is carried out. Then the net energy

EE,(b&, R) transferred to the electron at large
times following the collision may be written

b,E,= f dt e'"'
2tn

QP 8 QPD
AE„=4z)Z2 cos

IU U

b~'b2

b, b, '
Nb i E)

The trigonometric factor cos(~D/u) originates in

the fact that the time delay D/u between impulses
delivered to the electron by the ions may result in
constructive interferencc D/u -2nm/~, or destruc-
tive interference D/u-{2n +1)m/~. Here
n =0, 1,2... .

In most experimental situations involving cluster
bombardment, the range of impact parameters is
effectively unlimited. To obtain comparable
theoretical results, Eq. (3.2) must be integrated
over all b~ in order to obtain S, the stopping cross
section for this collision. Note that S has dimen-

r '= ' ff-f', d'q. (3.5)

Then
4,

x f f ", qe
'o "(z,+z,e-'q ") ',

(3.6)

sions of energy times area. This integration may
be carried out by utilizing the momentum represen-
tation of the Coulomb potential in Eq. (3.2), i.e.,
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S= Jr
4m.e (.& Q dQ

2 JP Q2+ 2/ 2
(3.8)

where the upper limit Q must be found outside of
the framework of the classical harmonic-oscillator
model. A reasonable approximate value of
Q =(k,„—co /u )'/ may be obtained by setting
(haik, „) /2m =%co. In effect this assumes that the
model breaks down when the momentum trans-
ferred to the struck electron, if given to a station-

ary free electron, would deliver energy to the latter
exceeding Ace, the quantum energy of the oscillator.

However, we may also choose a value for k ax

such that an additional contribution is obtained
from the region of small impact parameters where
the struck electron may be regarded as essentially
free after the collision and where large momenta

may be absorbed by it. This may be done by set-

ting Ak, „=2mv, the maximum momentum which
can be transferred to a free electron from a swift
massive ion in a head-on collision. This yields

where q=g+vco/u, q =Q +co /u2, and the in-

tegration is over the two-dimensional space of Q.
Expanding the absolute square in powers of zi and

z2 and integrating over bi with R fixed, we may
write

S= f f d'bhE, =(z'I+z2)S, +2 Iz2&. .

(3.7)

Here Sz is the stopping cross section of the elec-
tron for a proton with velocity v, which in this
model may be written

the stopping power of the target for a proton.
This expression corresponds to the nonrelativistic
form of the Bethe stopping-power formula. '

A comparable expression for the vicinage term
in the energy-transfer cross section is

44me coD

If BQ » I, we may write

4

S ( )
4me ci)D coB

mv

while for B~O,

(3.11)

4~e AD
l

max
(3.12)

4me 2mv
ln„2

for the bound electron, when 2mv && fun. This
atomic model may be generalized immediately to
one consisting of Z harmonically bound electrons
with the ith having oscillator strength f; and
resonant frequency co;. Then summing over i and
multiplying by nz, the density of atoms in the tar-
get, one finds

4 4

mv

0.5—

0.0

-0.2—

I I I I III

VICINAGE FUNCTION

FOR STOPPING
x=2rnv /%au

~ W

'ICI
I s s s s

I
s s 0 I I I

-O.OI

-0.02

I I I
[

I I Il[

y pox=40

x=00& ~~ gX,

002-

~ s a I ~ s ~ I ~ ~ s I s s ~ sl'

-0.03
04 ~ I I I I I IIII . I I I I IIIII

'
I

O.OI OQ5 O.l 0.5

IO

5 10

Rcu/V 2.15

FIG. 7. A vicinage function for stopping of randomly oriented diclusters. The quantity g (coR /u) = [si,(R co/u)
—sit(xRco/u)]/)nx, where x =2uiv /Irico. It is plotted as a function of Rco/v for several different values of x.



25 VICINAGE EFFECTS IN ION-CLUSTER COLLISIONS WITH. . . 1951

An average of S„over directions of R yields

S„(R)= (S„(B,D) )

4n.e . a)R
S12

mu U

2muR—S12

(3.13)

for the case where the dicluster orientation is com-
pletely random on incidence. Figure 7 shows a
plot of g(coR /v) =S„/Sz, computed from Eqs.
(3.9) and (3.13), as a function of coR /u for several

different values of x =—2mv /%co. This function g,
appropriate to the stopping cross section of a sin-

gle harmonically bound electron with resonant fre-

quence cu, may be used to make estimates of the
magnitude of the vicinage effect for optically al-

lowed transitions. As one sees by referring to Eqs.
(2.3) and (2.8), this function is also appropriate for
diclusters with random orientation traveling in an
electron gas. Note that in all of these results we

have assumed that v &&(Acoq/m)', where co+ is
the resonant frequency of the medium.

Even though the classical harmonic-oscillator
model is used only for qualitative comparison, it
seems clear that an interesting correspondence ex-

ists between the response to cluster bombardment
of a dielectric medium and that of the single oscil-
lator we have considered above. The similarities
between Eqs. (2.4) and (3.10) for the oriented case
and between Eqs. (2.8) and (3.13) for the case of
random incidence are striking. In summing over

impact parameters to obtain a stopping cross sec-
tion, Eq. (3.7), one in effect builds up a continuous
medium of noninteracting harmonic-oscillator
atoms, each with resonant frequency co. The net
vicinage response of this medium is quite compar-
able with the response of an electron gas with plas-
ma frequency cuz ——co. Plasma oscillations in an
electron gas are of dipole character and, though
originating in long-range Coulombic interactions
between nearly free electrons, have spatial exten-
sion depending in part on the speed of the ion.

The vicinage terms discussed above depend on
cluster separation R primarily through the parame-
ter Rco/u, where co is a characteristic electronic
transition frequency for an atom or the plasma fre-

quency for the case of an electron gas. A simple
physical argument justifying the appearance of this
parameter may be made. The quantity ~=R /v is
a measure of the time delay between impulses
delivered to a given electron in the medium by the
ions. If ~ is large compared with T =1/co, propor-

tional to the characteristic period of an oscillator,
one expects only small vicinage effects. On the
other hand, if ~/T =coR /v is comparable with, or
smaller than unity, appreciable interference be-
tween the effects of the ions making up the cluster
is expected to occur.

For purposes of qualitative comparison, we may
derive an expression for the cross section o for ex-
citation of the bound electron by the cluster. In
this model we need only divide Eqs. (3.7) —(3.13)
by fico, the quantum energy of the oscillator, and
also choose k,„=(2m'/A)' to obtain a qualita-
tive measure of the value of mornenturn transfer at
which the harmonic-oscillator model is expected to
break down, as discussed following Eq. (3.8). We
may then write

o =(z i +z2)o&+2zIz2o.„,2 2

where

(3.14)

and

4~e4
o& — ln

Sm~u2

' 1/2
2mv

%co
(3.15)

4' cdo„= S12
Amv co

—S12
2mN

' 1/2

R . . (3.16)

IV. QUANTUM THEORY OF ATOMIC
EXCITATION BY DICLUSTERS

Electronic transition of the atom from an initial
state designated by the eigenket

~

i ) with eigenen-

ergy E; to a final state corresponding to the
eigenket

~ f ) with eigenenergy E& is now con-
sidered. We choose the origin of energy so that
E; =0. As in Sec. III above, the position of the
charge zie at time t is taken to be b~+ vt = r,
while that of charge z2e is R+ r and the atom is
located at the origin. The probability, I'f;, that
this transition has occurred at large times after the
collision is given compactly in first-order, time-

dependent perturbation theory as

Equations (3.15) and (3.16) may be used to obtain
estimates of the vicinage effect for random orienta-
tion as manifested in the cross section per electron
for excitation of an optically allowed transition.
These expressions can be generalized by rnultiply-
ing Eqs. (3.15) and (3.16) by f;, the oscillator
strength for the ith transition in the atom and by
replacing co by co;, the frequency corresponding to
this transition.
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2

f rj b—i v—t
/ f rj —bi —R—vt

f

(4.1)

The sum inside the matrix element is over all coordinates, rj, of electrons on the atom of atomic number

Z2. Again employing the momentum representation of the Coulomb energy terms and carrying out the in-

tegrations over time, we obtain 5 functions which may be used to reduce the integrals over momentum to
components perpendicular to v only. Then

'2
2

7TRU

—iQ b)

f f d Q 2 FI;(q)[zi+z2e ' 'i '
]

Q'+qo
(4.2)

(4.3)

'2
2e

o = f d bPJ;(b)=
Av

X f f, ~Fp(q) ~'~z +z e ""~'.
4

(4.4)

Integration over directions of ejection of the elec-

trons in final states having fixed energies or sum-

mation over discrete final states having the same

energy EI may be carried out so that the form fac-
tor as written henceforth depends only on the mag-
nitude of q. In the case of continuum final states
o ~dt's IdEI Expanding t.he term in Eq. (4.4)
that depends on z1 and z2, we have

where q =(Q,qo), qo EI lfi——u, and Q is defined
such that v Q=O. Note the similarity between

Eqs. (3.6) and (4.2). The latter, of course, reduces
to the former when the dipole approximation to
Fj;(q ) is made (see below). The form factor

Z
~ ~

F~Iq)= f g e ' i)j=1
Z

~ ~
EgQ e ' i

j=1

where the final-state vector
~
EF,Q ) is denoted by

its eigenenergy Ey and by the direction 0 of the
ejected electron if the final state lies in the continu-

um.
The cross section o for the transition is ob-

tained by integrating Pj;(b) over all impact param-
eters with R fixed; thus

o„(R)=
'2

2e

Av

d2
x f f ~F~;(q)

~

cos(q R) .

(4.5c)

which replaces tr„(R) in an equation similar to Eq.
(4.5a) for the randomly oriented case.

At high velocities the lower limit of the integral
over q is small, and in this region the dipole ap-
proxiination for

~
FI;(q)

~

may be exploited and

sum rules may be invoked as in Bethe's derivation
of the stopping power of atoms for single ions. '

The analysis is facilitated by dividing the integra-
tion into two regions joined at some intermediate
value of q, designated as qI.

The stopping cross section S is obtained from

S= QEto~=(zi+zz)S&+2ziz2S„,
f

where

(4.7a)

For simplicity, we do not treat the case in which

the direction of R is fixed but instead proceed
directly to consider the ions composing the cluster
to be oriented at random. Averaging over direc-
tions of R and changing the integration variable
from Q to the magnitude of q =(Q +qo)'~, we

find
'2

a„(R)=2' f q
~
FI;(q) ~tv ~0 q qR

(4.6)

o~=(z i+z2)crz+2ziz2o„(R),

where

(4.5a) S„=g Ego„(R)
f

(4.7b)

and

(4.5b) and Sz is the total stopping cross section of the
target atom for a proton traveling with velocity v.
The sum over EI is understood to include an in-
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'2
2eS„=2~ I' f, ,f

+Z2 f ~"~" dq sinqR+
2m &r q qR

tegral over continuum values of E~. Appealing to
the sum rule g&EI ~

Fy;(q)
~

=ZqfPq /2m and

its small-q limit g&E~ ~
(x)I;

~

=Z2fi /2m, we

may write

make negligibly small contributions to S„ for
values of R presently obtainable in clusters. The
similarity in form between Eqs. (3.13) and (4.9) is

clear. When R ~0, S„approaches Sz, the stopping
power of the atom for a proton with velocity v.

When R &g R/2mv, the de Broglie wavelength of
an electron viewed in the frame of the moving pro-
jectile, the second term in Eq. (4.9) may be neglect-

ed compared with the first. Then further, if
EIR/Av )& 1,

The dipole matrix element is

(4.8)
4~e Z2 cos(E&R/Av)

S„(R)=
mv' (E&R /Av )'

(4.10)

Z2

(X)f =&f
~ g xj' ~i &

j=1
The finite upper limit in the second integral on

the right-hand side of Eq. (4.8) originates from the
fact that

~
F~ (q)

~

exhibits a "Bethe ridge" in the
q-E„plane for large q such that a negligible contri-
bution to this term occurs for q larger than
2mv/A. Then replacing Ey in the lower limit of
the integral on the right-hand side of Eq. (4.8) by
an average value E~, using the dipole sum rule to
evaluate the term, and combining the two integrals,
we find

We now consider the cross section 0.; for ioniza-
tion of a particular shell of electrons of the atom
by randomly oriented clusters. It may be obtained
by integrating Eq. (4.4) over all continuum ener-

gies, after averaging over the orientation of R as in

Eq. (4.6). Thus,

o= f do=(z~ +z )2&0+2z~ z2'0(R),

(4.11)

where crz is the cross section for ionization of the
shell by a proton with velocity v and

2I( )
2e

4m.Z2e Eg R
s12

mv'
2mvR—S12

where E~ is defined by the equation

(4.9)
(4.12)

EyR
fiv

2m EgR
HEI ~

(x)p
~

'si,
Z2 f

We may take Ey =E„,the mean excitation energy
of valence electrons in the atom, and set Z2~Z„,
where Z„ is the number of valence electrons in the
atom. Deeper-lying shells typically have binding
energies considerably larger than E„and so will

is the vicinage term in the total cross section for a
diproton cluster. Again, we may split the integra-
tion over q into an interval from qo to qr, in which
the dipole approximation to F~;(q) is acceptable,
and a region from qI to infinity. In the latter
range it is not necessary to use a finite upper limit,
since for large v the contribution from this region
is expected to be quite small compared with that
from the interval qo & q (ql. Thus

2

(4.13)

We may obtain an approximate value for the
second integral by assuming that in the region

qr & q, the form factor is peaked about the Bethe
ridge such that ~F~; ~

=5[E~ (fr /2m)q ]. Then-
we may write

o.„(R)=8n- — M si~
e 2 Bj'R
A'v v

f ~ dq sinqR
&r q3 qR

si2(qIR )

(4.14)
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where Aloof
——E isf—Ef is a mean value of Ee o f such that

2 COfR
S12

V

= f dEf i(x)f; i

2si
fiv

(4.15a)

and

M'= f dEf l(x)f; '

for optically allowed transitions
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FIG. 10. Plot of the vicinage function for ionization
of the A12p subshell. The data of Ref. 24 were used in
obtaining these values.

were, with a single exception, appreciably greater
than 1, if Rco/U is estimated by taking fBiequal to
the observed x-ray line energy, v to be the entrant
velocity of the ion and R the mean initial separa-
tion of protons after stripping (-1.29 A). The ex-
ception occurs in a measurement corresponding to
the excitation of L electrons in Al by 1.975
MeV H2+ ions. For this case Rco/U =1.05. This
estimate is expected to be low since it does not take
into account the continuous increase in R follow-

ing stripping in the film. However, for the experi-
ments of LAF this amounts to only a small correc-
tion. The vicinage term g(1.05) estimated from
Fig. 7 for x =2mv2/Ace-29. 2, corresponding to
the experiments of LAF, has the value -0.16. A
much better estimate can be found from Fig. 10
which is calculated from theoretical values of the
GOS for excitation from the 2p shell of the alumi-
num atom. One finds g(2.44)-0.07 for R =1.29k
and v =6.28uo, yielding. a vicinage effect which
exceeds by a factor of -7 that which would have
been experimentally detectable. Note that for a
proton dicluster z~ ——z2 ——1 and the vicinage func-
tion for ionization is

imately by the expression of the form given in Eq.
(4.14) divided by 0.» Eq. (4.15c).

2ziz2
[od;(R) od;( oo )]/o—g;( oo ) = ~ 2 g„(R)

z&+zz

=g, (R), (5.1)

V. VICINAGE EFFECTS
IN INNER-SHELL IONIZATION

The search by Lurio, Andersen, and Feldman'
(LAF) for cluster effects in the production of
inner-shell vacancies was unsuccessful; no such ef-
fects were observed within experimental error
(- l%%uo). Although their experiments were carried
out with solid targets, the adiabatic distance v/co,
where %co is the relevant excitation energy of the
inner-shell electron, was small compared with lat-
tice dimensions. Hence, collective effects between
atoms on different lattice sites should be small and
atomic models of these excitations should be ap-
propriate.

If the vicinage effect is to be significant in an
experiment, the considerations above lead to the re-

quirement that the parameter RB/v (1,where R
is a mean interionic distance during the Coulomb
explosion, u the ionic velocity, and Ace an effective
excitation energy for the level or levels involved.
In the experiments of LAF, the values of RB/v,
appropriate for the various bombarding energies

and the several target materials and x-ray energies,

where O.d;(R) is the cross section for ionization by
a dicluster with initial separation R, Eq. (4.11).

An explanation for the discrepancy between the
LAF results and the theory described above may
be found by noting that information relevant to ex-
citation of the Al L shell was inferred by LAF
from a study of the high-energy satellite of the K
line. The energy of the normal K line from Al is
-1490 eV. A high-energy satellite of this emis-

sion is a line at —1500 eV and is thought to ori-
ginate from a double ionization process in which a
projectile causes vacancies in both the K and L
shells. The energy required to ionize the K shell

when an L vacancy exists is somewhat larger than
when the L electron is present. In order for a
swift ion to eject both K and L electrons, it is
necessary for the ion to make a small impact-
parameter collision with the atom, i.e., it should

pass within the K-orbital radius if there is to be
appreciable probability for the double process. ~5

This means, of course, that the ion should pass
close to the center of the L-electron cloud. Such a
collision tends to give rise to very energetic contin-
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uum final states of the I. electron. Qualitatively

speaking, the probability of such transitions is ex-

pected to be insensitive to the presence of the other
ion in a dicluster as long as R is appreciably
greater than the I.-shell radius.

This is confirmed in an approximate calculation
of g(R) for the case of a swift dicluster incident
on an atomic system such that one of the ions is
constrained to pass directly through the center of
the atom, while the other ion assumes random
orientation at constant distance from the first.
This may be done by setting b» ——0 in Eq. (4.2) and

approximating the find-state vector ( r
~ f ) by a

plane wave, viz. , {r
~ f ) e-xp Ii k r I

IQ'~, where
0 is the normalization volume. The initial state
( r

~

i ) is taken proportional to e ". For the pro-
babihty amplitude of this transition, we find

4v vari(Zi) ~

Q»/~ du

A (u)= [ai+k (1—u)]u

N——k.vu/U
U

(5.3)

A=u k+(m —u k.v) v/v

and co =coo+ k /2 is the difference in energy be-
tween the final and the initial state. Atomic units
are used throughout this section. After differentia-

tion, a is set equal to Zp, where (Zp )
' is the ef-

fective screening length of the initial-state orbital.

K»(x) is the modified Bessel function of first or-
der. The first integral may be carried out exactly.
The probability of the specified double ionization
is obtained by summing

~ a~ ~

over all final states
and averaging over directions of R. After some
algebra, we find the approximate expression

(5.2)

Po(z, ,zi) = I k A +8 —4AB sin dk,32 . p p p v . 869
~ CX Rco U

where

Ua V a+a
A =z» —ln

v cf +6) Qp

R'n' 2muB=zg
(Ra'y 2'/v )'

' »/2

8
—uR /v

If we take the effective atomic number of the I.
shell in Al to be Z~ -8.85 from Slater's rules,
~0——2.65 a.u., v =6.28vo to correspond to the ex-
periment of LAF and R =1.29 A, we find the vi-

cinage effect to be measured by the ratio

Po(1, 1) =-1~5=1~0.045,
Po(1,0)

which is to be compared with the data of LAF,
who find 5= —0.019+0.02 and 5= —0.089+0.058
in experiments with two different foil thicknesses.
%e note that the calculation leading to Eq. (5.5) is
intended to illustrate only the qualitative depen-
dence of Po on the parameters of that equation. It
predicts that the vicinage term depends on the ra-
tio (aI /8), the square of the ratio of the I.-shell

radius to the cluster separation, and on 8~0/v.
One expects this to be confirmed in a more accu-
rate calculation. In view of the approximate char-
acter of our Eq. (5.5), the comparison with experi-
ment seems reasonable.

To recapitulate, in order to observe vicinage ef-
fects in inner-shell excitations, one must carry out
experiments at large enough projectile velocities or
small enough excitation energies fiB so that
Rg/u & 1. It appears that the single-excitation ex-
periments which have been carried out to date do
not satisfy this criterion. The multiexcitation ex-
periment of LAF, although satisfying this cri-
terion, does not determine the vicinage effect in
single-particle excitation. Further experimental
work at larger bombarding energies and, conse-
quently, larger u, would be very desirable.

VI. FLUCTUATIONS IN CLUSTER ENERGY LOSS

The vicinage effect discussed above is represent-
ed mathematically by a statistical average of a
quantity subject to quantum fluctuations. A mea-
sure of such fluctuations for a cluster may be
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found by computing 0, the variance of energy loss
about the mean loss.

As Niels Bohr has shown, " ' if dE is the energy
loss experienced by a charged entity in traversing
an infinitesimal thickness of a target, then
0 = ((dE) },where the brackets indicate an aver-

age over the probability distribution of energy
losses.

The appropriate probability distribution of ener-

gy losses for the case of clusters penetrating a
valence electron gas may be obtained from Eq.

(2.1) for the oriented dicluster, or from Eq. (2.7) in
the case of the spherically averaged cluster. Each
of these equations describes the mean energy loss
per unit path length and is written as an integral
over frequency ~. To reach an expression for the
distribution of energy losses, we must recognize
that the quantum of energy corresponding to the
frequency m is Rco. Then we may write for
(dP/dro },the probability that the spherically
averaged dicluster should lose a quantum of fre-
quency ~, while traversing the path length dR,

r

( dp 2~2 ~ dk 1 «~z2e ~ dk sinkR=dR (z)+z2) Im + Im
dQ) ~/v k g(k, ~) ~2 » k kR e(k,~)

(6.l)

Note that the second term in Eq. (6.1) may be negative under some conditions. This is related to the fact
that the wake of the leading ion may deliver energy to the trailing ion. The first term of Eq. (6.1) originates
from the reaction of each wake on its causative ion. The second term describes the distribution of energy
loss (or gain) of one ion due to the wake of the other. We take into account the fact that contributions to
the straggling from these two mechanisms of energy transfer must be statistically independent of one anoth-
er by writing 0 =(z&+z2)Q +2z~z20„, where

is the straggling parameter of a proton and

2fie ~
2

~ dk sinkR —1
QP dQ) Im~2 (} gp/g k kR, p(k ~)

originates in the vicinage effect. We may
ployed in obtaining Eq. (2.2), viz. ,

2
KNp

Im[ e(k, c—o)]= 5(co —a)k),
26)g

where

&ok ——(co~+A k /4m 2)'~2 .

We find

evaluate 0, using a model dielectric function related to that em-

A8 N
0, /dR =

2

f18 N

2U

2NlU/A Qjk
dk

~& /v

' 1/2

(1+ )1/2 1+ 1

' 1/2

—In [(l+y)'~ + l] 1+—

where y =(2mv /%co& ) . In the limit y ~g 1,

0, /dR =An.e n,
where no mruz/Awe

——is the electron density in the medium. The approximation of Eq. (6.5) agrees with a
result obtained by Bohr " ' on the basis of an atomic model. An expression for Q„may be found by a simi-
lar procedure; we obtain
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dR 2 P
—S12

2m Q)p
1/2

R -+
2

cos R
2mR 2

' 1/2
2m cop

fi

2mvR—cos

(6.6)

This approximate expression is valid for v ) (Ace~/
m)'"

Numerical evaluation of Eqs. (6.4) and (6.6) for
v =3vo, fico& ——24. 5 eV, and R =1.3 A. yields

0, /dR =0.81 a.u. = 1.133 X 10 (eV)2/A. and
Q„/dR =0.064 a.u. = 89.9 (eV) /L. Thus the
straggling parameter 0 for cluster energy loss
differs only by about 10% from that for the isolat-
ed ions at separations commonly encountered. We
expect this to be true for collision with single
atoms as well. The smallness of 0„/0, is due to
the fact that the long-range part of the wake,
which is the major contributor to the vicinage ef-
fect at representative values of R, is associated
with rather small energy and momentum transfers
to the wake. Thus the wake-trailing ion interac-
tions are expected to be gentle ones.

VII. THE EFFECT OF QUANTAL COHERENCE
ON CLUSTER INTERACTIONS

In the foregoing we have assumed that the ions
of a cluster are classical point charges moving on
deterministic trajectories. In part this is justified
by the fact that ionic masses exceed the electron
mass by several orders of magnitude. Thus in the
course of a collision with an electron, quantal un-

certainty of ionic motion may be neglected to a
very good approximation, and the effect of a given
ion on the electronic system may be calculated as
if the ion were executing classical motion. Follow-
ing this idea we have computed vicinage effects
above for two point charges at fixed separations,
averaging over orientation to correspond approxi-
mately to conditions of cluster bombardment in
which ion clusters are incident on a target with no
selection as to the direction of their figure axis:
this is the usual experimental situation.

In fact, molecular ions used in experiment are
expected to be in various states of rotational and
vibrational motion when they arrive at a target.
Upon losing valence electrons, the ions undergo
Coulomb explosion: The wave function describing
relative motion must expand and disperse as time
increases after stripping. One may compute the

time evolution of the wave function in a standard
way by computing the projection of the initial
wave packet on eigenstates of relative motion in a
repulsive Coulomb potential. This Coulomb in-

teraction may be modified appreciably in a con-
densed medium due to the dynamic properties of
the system. The sum of these projection coeffi-
cients, each multiplied by the corresponding
Coulomb eigenfunction and weighted by the factor
expI t'Ekt/—AI, where Ek is the energy of an
eigenstate of the Coulomb potential corresponding
to the quantum index k in center-of-mass coordi-
nates, gives the wave function at time t, if dynamic
screening by the medium may be neglected.

We do not enter into the details of this time evo-

lution but instead focus on structure effects at a
given instant of time. Velocities attained during
ionic explosion are quite small compared with the
center-of-mass velocity in all cases of experimental
interest.

For concreteness we consider a dicluster with
constituent ions that may be of charge, mass, and
coordinate (zie, Mi, r i) and (z2e, M2, r2), respec-
tively. We represent it by the state vector

R
(R, r ~i ) = uo(r),0

where fi~ is the center-of-mass momentum, R is
the coordinate of the center of mass, and uo( r ) de-
scribes the wave function of internal motion of the
dicluster in the initial state. The normalization
volume of the system is designated by fL. After in-

teraction, a target atom is excited from the state
described initially by the state vector

~

0) to the fi-
nal state represented by

~

n ). We assume that the
final wave function may be written as a product of
a momentum eigenfunction, that describes motion
in the center of mass of the two ions, and an eigen-
function in the relative coordinate r, that is a solu-
tion, corresponding to energy Ef, of Schrodinger's
equation with a repulsive Coulomb potential:

I Kf R

(R, r
~

f)= Pf(r) .
II

We take the energy of interaction between the
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Z2 2—zie

M2
R+ r —p.J

dicluster and the atom to be given by In Golden Rule perturbation theory, the cross
section for the specified excitation may be written

g I(f n
I
Vloi)

I
5(e; —e&),

U

2—Z28
(7.1)

(7.2)

Mi
R— r —pj

p

where pj is the coordinate of the jth electron in

the atom and p=M&+M2.

where e; and ef are the initial and final energies of
the total system, respectively, and v =Sue/p. Using
the Bethe integral form of the plane-wave matrix
element of the Coulomb interaction, we may write

3217 e3 4 IF ( ) I
&

no 'q
I 3 + —i(M&/p)q. r i(M&/p)q r

+Z2e u0(r)
UQ

2
1+5 N 0 (EO Ef) v q+

2p
(7.3)

In Eq. (7.3) N„0=E' —6'0 is the transition energy of the target atom in being excited from the ground state
to the nth excited state, and E0 is the energy of the dicluster in the initial wave-packet state. The form fac-
tor F„0(q) is specified in Eq. (4.3). We now argue that the wave packet u0(r) is expected to have a spatial
extension corresponding to atomic dimensions, e.g., l A. . Thus its momentum transform should be quite
small for momenta k/ much larger than l A. '. Since E~, the eigenenergy of the repulsive Coulomb eigen-
function, should have the form Ef-fi k//2iJ, when k/ is large, it should be an excellent approximation to

neglect both E/ and the term fiq~/2p in the argument of the 5 function in Eq. (7.3). This neglect allows us

to carry out the sum over f using closure to obtain

4 3

~.o= f d'rluo(r)I' f, IF.o(q)1'lxi+zze "'I'@~.o —v q —Eo).
U

(7.4)

The sum over q has been converted to an integral
in the limit Q~ ao and an irrelevant factor of

—i(M&/p) q
~ r

e ' has been extracted from the
absolute-squared expression.

This interesting result is in accord with the
semiclassical picture that during the early expan-
sion phase of a dicluster, before it has had time to
expand appreciably, its cross section for exciting a
transition in a given system may be calculated by
averaging the cross section for excitation of that

system by a classical dicluster with separation r
over the probability density

I
uo(r)

I
that the di-

cluster is found with that separation.
It is straightforward to generalize this approach

to apply to the calculation of the energy loss of a
molecular dicluster penetrating a solid target. If
one writes for M, (B,D), the energy loss of a classi-
cal point dicluster with separation D along the
direction of motion and separation 8 perpendicular
to that direction, then the energy loss of the quan-
tally coherent cluster may be written as

(A, ) = f d r
I
uo(r)

I
A, (r sin8, rcos0),

(7.5)

where 0 is the angle between r and the direction of
motion and where W, is given by Eq. (2.1).

We note that the great disparity in mass between
electrons making up the medium and the ions of
the dicluster results in nearly complete decoupling
between the cluster explosion and energy loss. We
then expect it to be an excellent approximation to
generalize Eq. (7.4) to yield a cross section cr„0(t)
at time t following the beginning of the cluster ex-
plosion. This time dependence is obtained by re-

placing
I
uo(r)

I
by the time-dependent probabili-

ty density
I gf (f I

uo)P/(r)e /
I

~. The re-

sulting expression could be averaged over the time
of adiabatic expansion and should be valid until
times such that elastic nuclear scattering has des-

troyed the coherence of the exploding wave packet.
To illustrate the magnitude of this molecular
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FIG. 11. Graphs of the vicinage function g vs cluster
speed v averaged over the probability distribution
corresponding to that of hydrogen molecular ions em-

erging from an ion source (Ref. 27). For comparison
the vicinage function evaluated at the mean internuclear
separation and at the rms internuclear separation are
shown also.

coherence effect, we have averaged the vicinage
function g =g (Rco/v), defined immediately below

Eq. (3.13) and plotted in Fig. 7, over the squared
wave function describing the internuclear separa-
tion of the hydrogen molecular ion in various
states of vibration and excitation. The populations
of the vibrational states were taken from the
Franck-Condon —type calculations of Walters
et al. The results of this averaging are shown in

Fig. 11. The solid curve labeled (g ) was comput-
ed as described above for an electron density corre-
sponding to a plasma energy of 23.2 eV (equivalent
to an amorphous carbon medium) and is plotted as
a function of the speed v of the cluster in atomic
units. For comparison we show as the dashed
curve the vicinage function as a function of v

evaluated at the mean internuclear separation, also
calculated from the wave functions given in Ref.
26. The dot-dash curve shows the vicinage func-
tion evaluated at the rms internuclear separation.

It is seen that the more realistic calculation of
the mean vicinage function gives larger values than
the function evaluated at either of the mean
separations. For v & 2 a.u. the differences are
—15% but can become considerably larger when v

is smaller.
It seems clear that if the time evolution of the

wave packet representing the cluster were known,
one should be able to compute vicinage effects
with reasonable accuracy by averaging the ap-

propriate vicinage function over the time-
dependent probability of finding the cluster separa-
tion in d r at r.

VIII. DISCUSSION

Theoretical expressions for energy loss of ion
clusters in condensed matter and in collision with
atoms at condensed-matter densities show strong
similarity when the atomic transitions induced by
the cluster are of dipole character (optically al-

lowed). It appears that the mathematical process
of summing energy transfer over the impact
parameter of a projectile with respect to an atom is
equivalent to building up a continuous dielectric
medium of noninteracting oscillators in which the
projectile may be considered to travel. Thus a for-
mal resemblance exists between the results for en-

ergy loss to an atom and to a dielectric medium.
However, one would not expect the cluster align-

ment effect, observed in solids by Gemmell and
co-workers, to manifest itself in collisions of clus-

ters with atoms in gases at ordinary pressures.
Indeed, no alignment effect could be found in ex-

periments on molecular ions bombarding gas tar-
gets. The origin of this pronounced difference
lies in the fact that the force on a trailing ion due

to the wake of a leading ion in a solid may be
thought of as a coherent superposition of displace-
ment fields associated with density fluctuations in
the medium and is directed toward the track of the
leading ion when D (v/co&. In the case of a clus-
ter collision with a single atom, the force on a
trailing ion depends on the impact parameters of
the ions (b& and b2 of Sec. III above) relative to
the atom, as one may see by considering the elec-
tric force on the trailing ion due to a dipole mo-
ment induced in the atom by the leading ion. This
force is not, in general, such as to align the trailing
ion when D & mv/co, where Ace is the excitation en-

ergy of the atom. Thus, unless a large number of
collisions with gas atoms or molecules occur dur-
ing the period after a cluster is stripped and before
it has expanded appreciably in a Coulomb explo-
sion, there will not be a net force tending to align
the trailing ion behind the leading one.

We now estimate the gas density sufficient to
ensure that alignment can occur when D (m.v/co.
During a time t, in which Coulomb explosion
causes the ions of a dicluster to change their rela-
tive separation from Ro to (1+f)RO, the dicluster
will travel a distance vt, . The number of gas
atoms passing the leading ion within the adiabatic
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distance, v/co, during this time can be written as
'2

v
vt, n,

CO

where n is the density of gas atoms. This number
should be greater than X, the minimum number of
atoms in collision needed to cause cancellation of
nonaligning forces to acceptable variance. We
choose f« 1 to restrict the averaging process to
times in which the effects of Coulomb explosion
are small. This results in the following criterion
for the gas density n:

1/2
z&zze

n ) n' v 2fMRp

where z& and zz are the ion charges and M is the
reduced mass of the dicluster. The time t, is cal-
culated assuming, for simplicity, that acceleration
in Coulomb explosion is constant over the time in-

terval considered. If we choose X= 10, duo = 14
eV, z&

——zz=1 Rp= 1 k v =Svp, and f=0.1, we
find that n should be greater than 0.017/ao, which
is typical of condensed-matter densities.

Thus we estimate that in order for alignment to
occur in dicluster collisions with gas atoms when

D & nv/co, the density of the gas should probably
be of the order of that occurring in condensed
matter.
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