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Resonant Rydberg-atom —Rydberg-atom collisions
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The experimental investigation of the resonant collision process
Nans+Nans ~Nanp+Na(n —1)p which occurs when the levels are tuned with an elec-

tric field so that the ns level lies midway between the two p levels is described in detail.
The observations are shown to be in good agreement with a long-range resonant dipole-

dipole interaction.

I. INTRODUCTION

Resonant collisional energy transfer, the process
in which atom (or molecule) A loses as much inter-
nal energy as its collision partner atom (or mol-

ecule) 8 gains, is a process which has been of in-

terest for some time. %'hile it has been studied
theoretically in some detail, both for atomic and
molecular collisions, ' the experimental explora-
tion of this subject has been hindered by the neces-

sity of finding chance coincidences in the separa-
tions of the energy levels of the collision partners.
In spite of this obstacle considerable insight has
been gained into the nature of resonant collisions
using the available coincidences. '

The study of resonance effects in collisions is
greatly facilitated by the use of Rydberg atoms.
First there is a high probability of finding chance
coincidences because of the systematic variation of
the energy separations with principal quantum
number n and orbital angular-momentum quantum
number /. This allows much more systematic stu-

dies than were previously possible. For example,
the variation of energy separation with n produces
a comb of allowed transition frequencies which is
nearly continuous in some spectral regions, and
this has been used to probe resonance effects in
electronic to rotational and vibrational energy
transfer. Using the resulting discrete step tun-

ing it has been possible to determine the widths of
these collisional resonances to be 6 cm ' and 50
cm ', respectively, although the exact widths are
somewhat uncertain due to the comb-like nature of
the energy spacing. It is interesting to note that in
both these cases, at resonance the cross sections are
slightly smaller in size than the geometric size of
the Rydberg atom, and the dominant interaction in
these collisions is thought to be the quasifree elec-
tron scattering of the Rydberg electron from the

perturbing atom or molecule.
Since Rydberg atoms have large dipole moments

their energies are easily shifted by the application
of very modest electric fields thus allowing the
study of resonant collisions with continuous tun-

ing. Previously we described the first application,
to our knowledge, of such an approach to study
resonant collisions of two Rydberg atoms. %e
notice that in nuclear magnetic resonance, magnet-
ic field tuning has been used to observe roughly
analogous resonant energy transfer between nuclear
spins in solids. ' Although several mechanisms are
responsible for the observed effects, such processes
are frequently termed cross relaxation. '

Specifically, we have studied the sharply
resonant thermal-collision process Na ns +ns
~np +(n —1)p which occurs when the Na ns lev-

els are tuned with an electric field so that the ns
level lies midway between the two p states. As
shown by Fig. 1 for the 17s, 16@, and 17@ states,
there are in fact four collisional resonances due to
the splitting of

~

mt
~

=0 and l levels in the elec-
tric field. %e shall designate the four resonances
by the

~
mt

~

levels of the lower and upper p states,
respectively. Thus in order of increasing field the
four resonances are (0,0), (1,0), (0,1), and (1,1).

Cross sections —10 times greater than the
geometric cross sections of the atoms with reso-
nance widths of -0.03 cm ' were observed. Both
of these striking features are consequences of the
large dipole moments of the Rydberg atoms which
allow an efficient long-range resonant dipole-dipole
interaction. Such an interaction was termed a "ro-
tational resonance" by Anderson, and has been ob-
served, although not systematically, in molecular
resonant rotational energy transfer.

It is our purpose here to give a more detailed
description of the experimental approach and ob-
servations as we11 as a simple treatment of resonant
collisions.
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FIG. 2. Geometry of the collision of two dipoles. p&

is at rest and p& passes with velocity v and impact
parameter b. The dipoles are separated by r.
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FIG. 1. Energy-level diagram for the 16p-17s-17p
states in a static electric field. The vertical lines are
drawn at the four fields where the s state is midway be-

tween the two p states and the resonance collisional
transfer occurs.

II. RESONANT COLLISIONS

Since the formal theory of long-range dipole-

dipole collisions has been developed from the
scattering point of view and can be found in
several places, ' there is little point in repeating
such a treatment here. Rather we present two
treatments derived from radio-frequency spectros-
copy. The first is an order-of-magnitude argument
derived from Purcell's" treatment of electron-
collision-induced hydrogen 2s-2p transitions. The
second more elaborate treatment serves mainly to
produce an explicit analytic expression for the
width of the collisional resonances. In both we use
atomic units.

The treatment based upon Purcell's work gives
quickly the approximate values of the cross sec-
tions and resonance widths. Imagine that we have
two two-state atoms 1 and 2, one in its upper and
one in its lower state, which have transition matrix
elements p~ and p2 for transitions at the same fre-
quency co. Further, these atoms pass each other
with relative velocity v and impact parameter b as
shown in Fig. 2. Atom 1 may be viewed as a clas-

where r is the distance between the atoms. For
this field to induce a transition of atom 2

P2Et —1, (2)

where t is the interaction time. Since E is only ap-
preciable when r -b, we may use E =pi/b and
t =b/v in Eq. (2) and rewrite Eq. (2)

P 1P2o.-b =
V

Similarly the width of the resonance 1/t is given

by
1/2

V

P&P2

(4)

(5)

Since for these Rydberg transitions p& -p2-n,
then Eqs. (4) and (5) can be written as

n40'=
U

and

(6)

3/2
1/t =

n2
(7)

Thus the cross section scales as n and the interac-
tion time as n .

In atomic units the thermal velocity v —10
thus the cross sections are —10 times larger than
the geometric cross sections. In more familiar un-

its, at n =20, o -10 A. and t —1 nsec.

P&P2

b 2U

This yields the value of the impact parameter for
which the resonant-energy transfer will occur with
unit probability. Thus
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The fact that we are able to sweep through the
collisional resonance suggests that we treat the
problem in such a way that the resonant behavior
emerges in much the same way it does in treat-
ments of radio-frequency resonance. Accordingly,
the following discussion, which leads to a simple
expression for the width of the resonances, draws
heavily upon the two-state magnetic resonance
treatment of Ramsey, ' and is formally identical to
the perturbation treatment of Kleppner. '

Consider two colliding atoms as shown in Fig. 3.
One of the atoms is assumed to be stationary at
the origin and the other, passing the first atom
with an impact parameter 6 at x =0, is moving in
the x direction, perpendicular to the page, with

velocity U. %'e shall assume that the second atom
travels in a straight line and is not deflected by the
collision. In addition we shall assume that there is
a static electric field in the z direction. This choice
of axes matches our experimental configuration.
%e construct the product states

(sb)

which we take to be the eigenvalues of the unper-
turbed Hamiltonian Ho of two noninteracting (in-

finitely separated) atoms in the static electric field.
For finite internuclear separations the states 3 and
8 are coupled by the dipole-dipole interaction

&4 1~i&4)=(4~, —, a).
(11)

Here r is the vector between the two atoms.
Strictly speaking the assumption of an undeflect-

ed path for the moving atom does not allow the
(0,1) or (1,0) resonances, as the change in the orbi-
tal angular momentum must come from the trans-
lational motion. However, because of the large im-
pact parameter the amount of energy transferred is
negligible, -1.6X 10 cm '. Thus the approxi-
mation of undeflected paths is quite good.

The interaction matrix elements may be simpli-
fied by taking the RMS value of Eq. (11) over the
angle 0 in Fig. 3. This yields for the (0,0) transi-
tion

(ns
I p) I np )(ns

I pp I
n —1p )(4 I

~
I
1('a) =

where Pnl describes a Stark-state wave function
that is adiabatically connected to the corresponding
zero-field n, I Coulomb wave function. The total
wave function for the system may be written as

e(t) =CACA(t)+eBCB(&» (9)

~a= ~.p+ ~(n-~)p

where all the time dependence is in the coefficients
Cq(t) and Cs(t). The energies of the two states A

and 8 at r = oo, where r is the internuclear separa-
tion, are given by

(10a)

that is the product of the two dipole-matrix ele-

ments divided by r . Similar expressions are ob-

tained from the other resonances.
Inserting the wave function of Eq. (9) and the

Hamiltonian Ho+ V yields the pair of equations

i' ——8'q Cg(t)+ VCg(t),

iCs = V'C„(t)+ +'~Ca(t) . (13b)

For V real and 8'z ——0, this may be recast in the
form

~ 0 V 0

iCg+Cg ———V Cg+iWgCg .
V

Recall from Eq. (12) the form of the matrix ele-

ment V. It is nearly zero everywhere except where
r =b, where it reaches a maximum. Inspection of
a graph of V vs x suggests the approximation

E

i&tom 1

X b b
for ——gx ~—V, b3 2 2

(1S)

FIG. 3. Geometry of the collision of two atoms.
Atom l is at rest at the origin. Atom 2 is moving in the
x direction, perpendicular to the paper, with velocity U

and impact parameter b. At x =0, the plane of the pa-

per, the vector from atom 1 to atom 2 makes an angle 8
with the z axis, the axis of quantization.

0 else~here .

Here X= (ns
I p) I

np ) (ns
I p2 I

(n —1)
I p ). This

makes the V/V term =0 and suggests choosing
the time origin so that the interaction time is
0 & t & b /U. Thus the problem is reduced to pre-



T. F. GALLAGHER et al.

Cq(t) =
—i'

cos S1Il
2

Xexp(i8'&t/2)

—i 2+ . at
Cz(t) = sin —exp(i Wz t /2),

$3

cisely the magnetic resonance problem described by
Ramsey.

Initially both atoms are in the s state, thus

Cz(0)=1 and Cz(0)=0. With these initial condi-

tions, for 0 & t g b/u, Cq and C~ are given by

8'~ ——0, whereas in the treatment of van Kranen-
donk it occurs for Ws+0. This difference comes

from the fact that we have discarded the term con-
taining V/V in Eq. (14).

To evaluate the cross sections and collision
widths we must use the actual values of the aver-

age collision velocity u =1.6X10 and dipole mo-

ments LMi
——p2 ——0.60n* . Here n* is the effective

quantum number of the ns state of binding energy
8'= —1/2n' . Using our results, Eqs. (21) and

(22), these values lead to cross sections and widths

(FTHM) given by

o.=1.03&10 n*

where a'=( P'g2+4X2/b6)'~~. The probability P of
finding the atoms in the two p states is given by
Cz(b/u). Thus we may write the probability as

/~ . 21 ~2 4X
sin —8'z+

$fT2 +4+2/$ 6 2 b 6

6=2.64& 10 n'

In laboratory units

o =2.90&10 n* A

and

(26)

For P =1 at resonance (8'z ——0) this defines an

impact parameter bo..

6=1.74&10 n* 6Hz . (2S)

(20)

o.=2.3m.b 0 (21)

in good agreement with Anderson's result which
is

The cross section is given by

o = I 2nbP(b)db .

Taking I' = —, for b g bo to approximate the rapid

oscillations and numerically integrating Eq. (20)
for b )bo, we find

III. EXPERIMENTAL APPROACH

In the experiment, an effusive beam of Na
passes between a plate and a grid as shown in Fig.
4 where it is excited in two steps by two pulsed
dye lasers, the first, yellow laser, tuned to the 3s-3p
transition at 5890 A, and the second, blue laser,
tuned to the 3p-ns transition at -4140 A. The
laser excitation and subsequent collisions occur in a
dc electric field which ranges from 80—800 V/cm
in these experiments. At a variable time after the

o=m ( —,)bo.

From Eqs. (18) and (19) it is apparent that the
width of the resonances is given by

' 1/2

(23)
x

which is in good agreement with the result of van
Kranendonk,

5(FWHM) =5u/bo,
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for dipole-dipole collisions if we make the reason-
able approximation that 1/bo is the average value
of 1/b. We notice that in our treatment the max-
imum probability occurs exactly on resonance, at

DC BIAS

FIG. 4. The interaction region of the apparatus,
showing both laser beams perpendicular to the atomic
beam.
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laser excitation a positive high-voltage pulse is ap-
plied to the plate field ionizing the Rydberg atoms
and accelerating the resulting ions into the electron
multiplier. The electron multiplier signal is aver-
aged using a boxcar averager and recorded with a
chart recorder.

The selectivity of electric field ionization enables
us to identify states present at the time the field-
ionizing pulse is applied. In this work we chiefly
use the temporal resolution of ion signals from dif-
ferent states at a fixed ionizing-field amplitude.
As noted previously, it is possible to discriminate
between states of different n, I, and ! mr! using
this technique. ' Thus we are able to monitor the
populations in the ns, np, and (n —1)p states as
functions of tiIne after the laser pulse an dc elec-
tric field.

Although most of the details of the experimental
apparatus may be found elsewhere' we note here
points of particular importance for this experi-
ment. First, the atomic beam is collimated to a
0.4-cm diameter in the interaction region, has a
density of -10 cm, and is assumed to have the
modified Maxwellian velocity distribution charac-
teristic of a 500'C beam.

The laser beams are focused to 0.5-mIn diameter
in the interaction region, are usually approximately
collinear, and cross the atomic beam at right an-
gles as shown in Fig. 4. To vary the excitation
volume the blue laser is sometiInes introduced
along the atomic-beam axis counterpropagating to
the atomic beam. With both laser beams crossing
the atomic beam at 90' the excitation volume is a
cylinder of volume 10 cm . Typical dcIlsiflcs of
excited atoms are -10 cm

The electron multiplier gain is measured to be
5 X 10, and has a specified quantum efficiency of
30%. Including the 20 db (power) gain of the am-

plifier after the multiplier, we find that overall,
one Rydberg atom leads to —1.9& 10 ' C of sig-
nal.

the field. An exaInple is shown in Fig. 5, a record-
ing of the population in the 17@ state as a function
of dc field 2 @sec after the 17s state is populated
by the lasers. The sharp increases in signal at 516,
537, 544, and 566 V/crn are due to the resonant
17s + 17s~16@+ 17p collisions which occur as
shown in Fig. 1. As mentioned earlier, the reso-
nances are labeled by the ! mI! values of the final
lower and upper p states, which are determined
from the field-ionization behavior of the signal in
the lowest n states studied. Since the field-
ionization identification for the lowest n states is
consistent with the energy levels of Fig. 1, we as-
sumed this to be true for all n values we studied.
In addition, the resonant signal is approximately
quadratic in the power of the blue laser, whereas
the total population is linear, as shown by Fig. 6.
This suggests that the resonant signal is either due
to an effect which depends upon collisions with
photoions produced by the absorption of two blue-
laser photons or to an effect varying as the square
of the number of excited atoms. Since there are no
photoions observed we can immediately rule out
the first possibility. Considering the small size of
photoionization cross sections for Rydberg atoms
by visible photons' and the likelihood of a
resonant process this seems unlikely in any case.

Thus the process must be either a collision be-
tween two excited atoms or some sort of coopera-
tive effect involving the ns, np, and {n —1)p
states —such as superradiance. Since superradiance
occurs quite easily in Rydberg-atom systems, it is
interesting to consider the possibility of a coopera-

(0,0)

(1,0)

IV. OBSERVATIONS

A. Qualitative observations

Before describing in detail the cross-section
measurements it is useful to present qualitative ob-
servations which both identify the collision process
and suggest the method used to measure the cross
sections. The most striking feature of our observa-
tions is the sharply resonant increase in the popula-
tions when the levels are tuned into resonance with

500 520
I

540

E(V/cm)

FIG. 5. The observed 17@ ion signal after population
of the les state vs dc electric field, showing the sharp
collisional resonances. The resonances are labeled by the

~
ml

~
values of the lower and upper p states.
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17p resonant collision signal (O ) and 17s signal (0) after
population of the 17s state showing the quadratic depen-

dence of the resonant signal.

tive phenomenon to show why we have ruled it out

in this case. For a cooperative effect to occur a
macroscopic dipole must be set up in the medium

and the effect must occur in a time short com-

pared to the relaxation tines. '

In a two-level Rydberg-atom system prepared
entirely in the upper level the dipole is usually es-

tablished by amplified blackbody radiation.
Whether or not the dipole is actually established is
determined by the amplification or gain of the
sample for the transition under study. ' Typically
there nust be a gain of -1 in the sample. Stated
another way, in traversing the sanple a photon at
the correct frequency has a probability of one of
inducing an atom to emit a second photon. This
occurs when n„ool -1, where n„ is the number
density of atoms in the upper state, 0.0 is the opti-
cal cross section, and I is the sample length. This
requirement is easily met by the zero electric field
Nans states, for example, because of the large,
-n, dipole moments connecting them to the
{n —1)p states. Under this circumstance the ther-
mal blackbody radiation is amplified and estab-
lishes the macroscopic polarization. In the electric
6eld case we are considering here in which the
transitions ns-np and ns-(n —1)p, absorption and
stimulated emission, respectively, are at the same
frequency, and whether there is gain or absorption
depends upon the magnitude of the dipole-matrix

elements. Since they are the same to within a few

percent in this case, there is apparently no net gain
to establish the macroscopic dipole.

Even though, in principle, it appears impossible
for a cooperative effect to occur we have a direct
experimental check, the tine scale of the observed
effects. In zero field the Nans states exhibit super-

radiance in times g 300 nsec after the laser pulse.
We never observe a time delay greater than 300
nsec indicating that the relaxation times are g 300
nsec. When we begin to apply a dc field we find
that the superradiance disappears at 50 V/cm for
16s and 3 V/cm for 20s. We attribute the decrease
in superradiance in these fields, which are ten
times smaller than the fields in which the resonant

collisions occur, to a diminishing of the ns-(n —1)p
matrix element with the electric field and broaden-

ing by electric field inhomogeneities. For 27s we

never observe superradiance. In this connection it
is interesting to note that as n goes from 16 to 27
the wavelength of the ns ~(n —1)p transition in-

creases from 0.3 to 1.6 mm, i.e., from smaller than

the sample size to larger than the sample size. It
has been suggested that under such circumstances
superradiance will not occur because of the direct
dipole-dipole interaction between the atoms. ' '

From the considerations above it is clear that in

the field the relaxation times are certainly less than
300 nsec, and if the effect is cooperative it must
occur faster than 300 nsec. However, that is not
the case as shown by Fig. 7 which shows the time
evolution of the 20p signal after the laser excitation
of the 20s state for the on- and off-resonant cases.
As shown by Fig. 7 the resonant increase in the
population of the 20p state occurs over a 1-psec
period (determined by the sample geometry), cer-
tainly not in a time fast compared to 300 nsec.
(The fact that the nonresonant signal is not zero at
I; =0 indicates that we are partially ionizing the
parent 20s state as well; however, this has no effect
upon our conclusions. )

To investigate whether number or number densi-

ty of excited atoms was important, we introduced
the blue laser along the atomic beam, perpendicu-
lar to the yellow laser, so as to excite a smaller
number of atoms but the same number density.
We found the relative magnitudes of the resonant

and nonresonant signals to be the same. Equiv-

alently, if when the laser beams are parallel the
blue laser is attenuated to produce the same initial

number of 20s atoms as are produced with the
laser perpendicular, the resonant signal is propor-
tionally much smaller. These observations indicate
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0-

cross section for the process, V is the sample
volume, and N, is the initial ns state population.

Equation (29) may be easily inverted to give the
cross section. In doing so it is convenient to re-

place X, and Np by the signals we observe N,
'

and

Np which are related to N, and N~ by I the
overall sensitivity, given in Sec. III. Thus we may
write

Np V

I UT

Q

0,2
I

0.4 0.6 0.8

Q
0.2 0.4 0.6 0.8

t Ip sec I

FIG. 7. Time dependence of the 20@ signal after the

population of the 20s state with the two laser beams

parallel to each other. In each case the upper trace is

on and the lower is off resonance. Thus, the difference

is the buildup of the resonant collision signal. The off-
resonance signal at t -0 is from partial ionization of the
20s state. (a) A scan of -4 psec showing the 1-psec
time scale of the process. (b) A scan of —1 psec show-

ing the early development of the signal. (c) A scan of
—1 psec with the laser power reduced to 40%%u~ of that
used in (b). Notice the drastic reduction of the resonant

signal.

that the effect depends upon the number density of
Rydberg atoms as expected for a collision process.
When the above observations are considered to-
gether it is difficult to imagine that the process is
cooperative, not collisional.

B. Measurement of the cross sections

If we allow collisions to occur for a time T (not
to be confused with the collision time t) during
which time a small fraction of the initial popula-
tion in the ns state is collisionally transferred to
the np and (n —1)p states then the population Np
in the np (and n —1)p state will be given by

X,ouT

V

where U is the average collision velocity, o is the

By measuring the ratio Np/N,
'

as a function of n

we may determine with good accuracy the n

dependence of the cross section. Measurements of
the quantities in curly brackets give the absolute
cross sections.

Basically the cross-section measurement consists
of measuring Np the population in the np state,
and N~, the total population in np, ns, and

(n —1)p states, as the dc electric field is swept
through the collisional resonances. Specifically, we

field ionize the atoms 2 psec after the laser pulse
and set the amplitude of the ionizing field so that
all the ns, np, and (n —1)p states are ionized, with
the (n —1)p state being just barely ionized. Be-
cause of the large difference in the fields at which
the Na ns and np states ionize these two are in all
cases easily time resolved. Owing to the small
difference in the fields at which the ns and
(n —1)p state ionize these are not always clearly
resolved under these conditions; however, this has
no effect on the determination of the cross sec-
tions. %'ith a 50-nsec wide gate we observe only
the np state signal, which comes first, yielding Np,
and with a 500-nsec wide gate we observe at the
same time the entire ion signal NT from the np, ns,
and (n —1)p states. A typical example of a sweep
through the collisional resonances is shown in Fig.
8 for the excitation of the 23s state for two laser
powers. Figures 8(a) and 8(b) are recordings of
N23p, the number of atoms in the 23p state at two
laser powers. Figures 8(a') and 8(b'), in the inset,
show the corresponding simultareous measure-
ments of NT, the number of atoms, in the 22@, 23s,
and 23@ states, which is clearly unaffected by the
collisional resonances. In Figs. 8{a) and 8(b) the
quadratic dependence of the resonant signal on
blue-laser power is quite apparent, whereas the
background (nonresonant) signal in Figs. 8(a) and
8(b) as well as the signal in Figs. 8(a') and 8(b') is
clearly linear. Figures 8(a) and 8(b) were obtained
on sweeps of increasing and decreasing field,
respectively, which leads to apparent slight offsets
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at least two laser powers for each state. Quantities
of particular interest are the locations of the reso-
nances, their widths, and the ratio of the signal X~
to the signal X~.

In Table I we give the values of the electric field
positions at which the resonances occur. In Fig. 9
we show the n dependence of the positions of the
(0,0) and (1,1) resonances, whose locations are
given by

CL.

Z

and

E„(0,0)=1.21(2)n' ' ' ' V/cm

E„(1,1)=1.42(2)n'-""" V/cm .

(31a)

(311)

0.5

E {V/cm)

100

in the positions of the resonances due to the time
constant of the signal averager. Where necessary
we averaged positions obtained with increasing and
decreasing field sweeps to obtain the positions of
the resonances. Data such as Fig. 8 were taken for

FIG. 8. (a) The population of the 23p state 2 psec
after the population of the 23s state showing the colli-
sional resonances. Notice that the (0,1) and {1,0) reso-
nances are not resolved in this trace. (b) The same as (a)

except with 40% of the blue-laser power. (a') A record-
ing of the total populations in the 23s, 22p, and 23p
states taken simultaneously with {a). (b') A recording of
the total populations in the 23s, 22p, and 23p states tak-
en simultaneously with (b).

~fso k,
3

where 4~,0 is the fine-structure interval of the

(32)

The field widths (FWHMi of the resonances are
given in Table II. We are reasonably confident
that these widths, which are —1% of the applied
fields, are not appreciably broadened by spatial in-
homogeneities in the applied dc field because the
widths appear the same whether the blue laser is
brought into the interaction region parallel or per-
pendicular to the yello~ laser, thus radically
changing the volume occupied by the sample of ex-
cited atoms.

Physically it is the frequency width of the reso-
nances in which we are really interested, and we
have used an approximate method, based on a
suggestion of Cooke, outlined in the Appendix to
make the conversion. The frequency widths of the
resonances are given in Table III. The widths of
the resonances are the sum of the collisional width
and unresolved fine structure as shown in Fig. 10.
Note that the

~
mi

~

= l states are split by Ai,
which is given by

TABLE I. Positions of the resonances (V/cm).

Resonance

16s
17s

18s
20s
23$
25$
27$

741(15)
516(10)
364(8)
201(4)
91(2}

56.5(13)
36.6(8)

770(15)
537(10)

387(8)
210(4)

94.5(20)
59.0(13)'
38.7(8)'

781{15)
544(10)

393(8)
214(4)

95.9(20)

813(16)
566(10)

405(8)
222(4)
100{2}

63.1(14)
41.4(8)

'The average location of the unresolved 0, 1 and 1,0 resonances.
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1000

E

200

18 20 6(1,1)—5(0,0) vs n' and show the calculated
value of hf, „p~,+hf, i,„„which is in good agree-
ment with the data. In calculating Af ppa and

Afg)Q~C, r we have used the previously determined np
fine-structure intervals. '

From the previous discussion it is clear that the
(0,0) resonance is the only good probe of the colli-
sion width. The n* variation of the width of the
(0,0) resonance (F%HM) is given by

5(0,0)=235(40)n* ' ' ' 6Hz . (33)

100

50

1.Q 2.Q

n "4 (105)

FIG. 9. The positions of the 0,0 (~ ) and 1,1 (1, )

resonances.

zero-field p state and k is the a111ount of p charac-
ter remaining in the nominal p state in the electric
field. At these fields k -0.85 and 0.73 for the
lower and upper p state, respectively. From Fig.
10 it is clear that only the (0,0) resonance reflects
only the collisional width, the other resonances
have additional width from the unresolved fine
structure. The (0,1) and (1,0) resonances should

each be broader by an amount hf pps and li~akf

respectively. Similarly, the additional width of the
(1 1) resonance wollM lje kfggppr+kfg/(&~gyp scaling
as n . Here we are implicitly assuming that
there is no observable spin selection effect, which
seems reasonable in view of the fact that we do not
specify the spins of the s state atoms. In Fig. 11
we plot the difference in the observed widths,

In Fig. 12 we plot the observed widths of the (0,0)
resonance and calculated dependence from Eq.
(26). Note that 6(0,0}scales as n", in agreement
with the predicted n* scaling, and is in reasonable
agreement with the calculated magnitude.

The cross sections themselves are taken from the
ratios Nz/N,

' . For Nz we use the height of the
resonances above the flat background signal in
recordings such as Figs. 8(a) and 8(b). The average
value of N,

'
while collisions are occurring is ob-

tained by extrapolating the observed NT signal
back to 0.5 psec after the laser pulse, the middle of
the time interval during which collisions occur.
For the extrapolation we use the 0 K radiative life-
time, not the 300 K radiation decay rate of the
ns states since in addition to the ns state we detect
the np and (n —1)p states which account for
g 80% of the blackbody radiation induced decay
of the ns state. In some of the higher-lying
states, at the highest laser powers used the resonant
collisions were depleted the s state by 30% in
which case Eq. (30) is not valid and we used an ex-
pansion of which Eq. {30) is the leading term. To
simplify the presentation we have corrected the ob-
served Xz/N,

' ratios to account for depletion and
present them in Table IV along with the radiative
lifetimes of the ns states, The Nz/N,

' ratios are
proportional to the cross sections and give the vari-
ation of the cross sections with n.

TABLE II. Field widths of the resonances (V/cm).

State 0,0 0, 1

Resonance

1,0

16s
17s
18s
20s
23$
25$
27$

4.0(8)
3.4(7)
2.7(6)
1.8(4)
1.35(50)
0.8(2)
0.55(20)

6.7(14)
4.8(10)
4.0(8)
2.7(4)

4.6(9)
4.2(8)
3.6(8)
2.7(5)

7.2(14)
5.3(11)
3.9(8)
2.4(5)
1.45(30)
1.15(22)
0.67(140)
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TABLE III. Frequency widths of the resonances (GHz).

0,0 0, 1

Resonance

1,0

16s
17$
18s
20s
23$
25$
27$

1.11(25)
1.08(23)
0.94(20)
0.77(16)
0.74(16)
0.50(12)
0.40(10)

1.95{50}
1.53(40)
1.45(35)
1.19(30}

1.32(34)
1.34(40)
1.31(40)
1.19(30)

2.31{6)
1.70(42)
1.52(38)
1.08(27)
0.88(22)
0.81(20)
0.51(13)

gy evaluating the quantity in the braces oi Eq.
(30}we obtain absolute values for cross sections.
The values used are I =5.2X 10' atoms/C, T = 1

psec, v=3.5X10 cm/sec, and V=10 cm . %e
estimate the errors in this normalization to be at
most of a factor of 5. With the error bars of the
relative cross sections from table IV, the observed
cross sections can be expressed as

which is in good agreement with the calculated
values of Sec. II. In Fig. 13 we plot the observed
cross sections and the theoretical result, Eq. (27)
logarithmically vs n' .

VI. CONCLUSION

dipole-dipole collisions with little contribution
from higher multipole or hard-sphere effects. As
such it is of interest from a fundamental point of
view because it is theoretically tractable and experi-
mentally very accessible. For example, systematic
studies of the collisional resonances involving the
manifold of Stark states should allow one to probe
the effect of varying dipole moments without
changing the size of the atom. In addition the
long time duration of the collision, —1 nsec, and
the large dipole moments imply that it should be
straightforward to study perturbations of the colli-
sions. For example, using microwaves it should be
possible to do experiments analogous to laser-
induced collision experiments. Finally we notice
that the magnitude of the collision cross sections
suggests that they must be considered in applica-

The observed resonant-collision process is
perhaps one of the best examples of resonant

16
2.0

1S

f

20 23 25 27

I I

np

~fso,

mp =+1,
my=+1,

I~~s

m = +1/2
s

m = +1/2s

x
(3= 0.5
C)

mq =O, m =+ 1/2s

mg
= + 1, m = + 1/2s

m~ = +1, m =+1/2
s

0.2—
0

I

ELECTRIC FIE LD

FIG. 10. The fine-structure levels in zero field and at
the field of the collisional resonances.

I ~ I tel
0.5 1.0 5.02.0

n"" (105)

FICjr. 11. The difference in widths of the 1,1 and 0,0
resonances () and a plot of the calculated value of hf,
( ———)
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tions such as far-infrared or microwave detection
requiring samples of Rydberg atoms which are
somewhat dense. While at first such process-
es appear to be a nuisance, it may be possible to
put the effect to good use.
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APPENDIX

To convert the widths from their field values to
frequency we use the following approach. In Fig.
14 we show the atomic levels in an electric field.

TABLE IV. Radiative hfetimes, relative and absolute cross sections.

State
Lifetime'

{p,sec)

Xp /N,
'

(Relative cross section)
(10' C-') (io' 4')

16$
18s
20s
23$
25s
27$

4.34
6.37
8.96

14.0
18.3
23.3

1.45(35)
2.31(23)
4.0(12)
6.0(9)
7.1(19)

10.7(33)

0.78(18)
1.25(13)
2.16(66)
3.2(5)
3.8(10)
5.8(18)

'See Ref. 22.
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ns

Cl

Cl

ELECTRIC FIELD

states equals the energy of the s state. If h0 is the
amount by which the average of the two p state en-

ergies lies below the s state energy, then at reso-
nance 8& ——h0. From the spectroscopy of the Na s
and p states h0 ——Mn' ' where M =0.236.
Thus at resonance the average field E~ must satis-

fy
2

5P 4E2+n
n

1f2

In fact the two sides of Eq. (A4) are equal to 10%
justifying the approximation of Eq. (A1).

Equation (A3) can be rewritten for E =Ez

dS& n* Ez
dE E~ 5p /n +~/n

FIG. 14. Energy levels of the Rydberg states in an

electric field, showing the Stark shifts of the s,p, and

hydrogenic I & 2 states.

The position of the s state is essentially indepen-
dent of field in the region shown so we shall as-
sume it has zero Stark shift. Note that the p states
are displaced from the hydrogenic position by an
amount hp =5p/n in zero field and exhibit a
linear Stark shift -n E at high field. This sug-

gests that the Stark shift Rz of a P state be writ-
ten as

Since Eg for the (0,0) resonance is given by

Ea ——Q„' ', with Q =0.236, we can write Eq.
(A5) as

dP g e —135

5p/n* +M/n'

%e may rewrite Eq. (A6) as

g e1.65

g 5p +~n 4 —0.73
(A7)

Wp ——(d p2+n4E2) 1 f2-2 p (A1)

where for n' we use the effective quantum number
of the s state which lies halfway between the two p
states. The slope of this curve yields the desired
conversion of widths from fields to frequencies.
Explicitly

d8'~ n*4E

(5p/n' +n* E )'

%'e are, of course, interested in this value at the
resonances for which the average value of the ener-

gies of the two p states above and below the s

The auerage stark shift of the two p states may be
written as

(g 2+ e4E2)1/2 P5
43

If we replace Mn* '
by its average value, 0.027,

over the range of n studied we can rewrite Eq.
(A7) with 3% accuracy as

dS' e1.65

dE Eg

%e may express Eq. (A8) in more practical units

aW, (6Hz) =1.72' 10-'n*'"AE (V/cm} . (A9)

Since the frequency of the ns-np transition is shift-
ed up at the rate given by Eq. (A9) while the fre-

quency of the ns-(n —1)p transition is shifted down

by the same rate, the width 5 of the collisional
resonances is twice as large as shown by Eq. (A9).

5(QHz) =3.44& 10 n" hE (V/cm) . (A10)
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