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A generalization of the Feshbach-Rubinow method for variationally determining the
ground-state energy of a multiparticle system is described and applied to the H™ ion.
The method finds a variationally optimized function of a contour that characterizes the
system. The contour can be quite complicated, being itself determined by some approxi-
mation scheme for solving the multiparticle Schrédinger equation. The application to the
H~ ion uses an already optimized three-parameter contour due to Bethe, and a significant
improvement in the ground-state energy is noted.

I. INTRODUCTION

The Feshbach-Rubinow (FR) single-variable
variational method! has been applied to the three-
body problem by a number of authors.? The
method involves finding an optimum function of a
variable u constructed from the interparticle dis-
tance. These authors use the contour

u=(mri+nr2+n3r3) ,

where, for example, 7, is the distance between par-
ticles 2 and 3, and 7,, 7,, and 7; are variational
parameters.

We extended this techique by constructing an
optimized symmetrized function of the variable u,’
and the calculation showed that symmetrization
improves the estimation of the ground-state energy
of the H™ ion.

It is not obvious, however why the above choice
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with central interparticle potentials V;(r;) and par-
ticle masses m;. The sum is over the cyclic per-
mutations of the interparticle distances 7;.

In the FR approach, the wave function is ap-
proximated by a variationally determined function
of the simple contour given in the introduction.

25

for u is a sensible starting point. The solution of
the multidimensional Schrédinger equation for the
many-particle system may be approached either
variationally or perturbatively. Either technique
establishes a set of contours u (7,175, T3, - - - ,)
which might be a better choice than the FR con-
tour.

We propose to present a technique which varia-
tionally establishes the optimum function of the
contours u. The new function satisfies an ordinary
differential equation that is readily solved numeri-
cally. This is a generalization of the FR method
because the contours u can have almost any degree
of complexity.

II. THREE-BODY SYSTEMS

The Schrodinger equation for the S state of the
three-body system is
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XY(ry,ra,r3)=EY(ry,ry,r3),

r

Various applications of this method have been
made, as in Refs. 2, with reasonably good results.
Slight changes in the contour, see Srivastava

et al.,* lead to improved results. Greater flexibili-
ty is achieved by Lie, Nogami, and Preston’® by
taking
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Wlry,ry,r3)=¢(ry)exp[ —(ar, +pr )],

and variationally obtaining the function ¢(r;).

Our plan is to retain the spirit of the FR ap-
proach but allow the contour to take a form better
adaped to the system. For heliumlike systems, in
which inverse-square forces bind the components, a
reasonable contour might be
u=exp(—c ry—cyry—c3r3) zcijkr'lrﬂr'f] R (2)

ijk
which could be appropriately symmetrized for
idential particles. This contour could be optimized
by an initial application of the variational principle
to determine the constants c. After this optimiza-
tion of u, a second application of the variational

principle is used to determine the best function
f(u). This is accomplished by requiring that

[rHfdr
E="+—
[rtar

be stationary with respect to variations of f. Here,
H is the Hamiltonian given in Eq. (1). Thus, the
function f(u) must satisfy

(3)

[fHp)dr+ [(fH8 )dr=2E [8ffdr. ()

The next section presents an example to illustrate
the technique.

III. THREE-BODY SYSTEM
WITH TWO IDENTICAL COMPONENTS

In an early study, Bethe® suggested that the
ground state of the two electron heliumlike ions
can be approximated with three-parameter func-
tions of the form

u(ry,ry,ry)=e %21 +cikso+ck*s*%w? , (5)

where
s=ri+ry,, w=ry/(ri+ry),

t=(ri—ry)/r;y,

and r, r,, and r; are the interparticle distances.
Application of the variational principle yields
k=1.535, ¢;=0.20, and ¢, =0.05. the resulting
variational energy for the bound state is
E=—-0.5253 a.u.

We now wish to establish the best function of u,
f(u) by solving Eq. (4). To do so, the space of in-
tegration must be spanned by three variables one of
which is u; i.e., (s,w,t)—(u,s,t), (u,w,t), or (u,s,w).
We illustrate the technique by taking the Bethe
form of Eq. (5). As

O<w<l, 0<t<l, ¢,<0.5
and
c,<0.125,

14c kws +c k2wt <e®/? |

which implies 0 <u# < 1. This observation allows to
transform the integrals of Eq. (4) to integrals in

(u,w,t) space. The results for the various terms of
Eq. (4) are

o ol pl 1 a1 pl 3s
25 2 OS | 5 209 2.2
SO0 L = [ f) [ w5 stw —withdu dwat
1 ol 1 o1 011 df 2
* = - | &L V.oV R 2
fo fo fofodT—fo fO fO du (Vlu V1u+V2u Vzu)+f | 4
X ﬁ [stz(l—wztz)du det] . (7
T
The potential V staisfies the equation and
Viww,t)=—1/ri—1/ry+1/r; s=s(u,w,t)
—r3(ri+ry)+1T;
n r — =£[—-lnu +1In(14c¢ ksw +c k2w %t?)] . 9)
17273 k

_ —4stwl+stw(l—w??) ®)
sSwi(1—w?) ’

The gradient terms are handled by expressing u in
terms of r,, r,, and r3, carrying out the differen-
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tiations with respect to the electron coordinates,
expressing the results in terms of s,z,w, and finally
substituting s =s (u,w,?).

Since s is a transcendential function of the vari-
ables u, w, and ¢ exact integrations of Eq. (4) and
(7) are not possible. They are evaluated numerical-
ly by using a set of 10-G points’ for the variables
w and t; let them be denoted i and ¢. The variable
s (u,i,t) is then evaluated by simple iteration of
Eq. (7). [For u near unity more iterations are
needed; u near zero s goes like —2/k In(u).] The
derivative term | ds/3u | is readily evaluated by

using Eq. (9).

Thus the integrals (6) and (7) can be performed
for the variables ¢ and w, leaving only u. The next
step is an application of the variational principle
[Eq. (3)]. This leads to the ordinary differential
equation

+q(u)f=Er(u)f , (10)

af
p(u)du

da
du

where

(11)

1 ol — _» — _
pw=—5[ [ gf (Viu Vw4 Vou- Vou)s w1 —w)dw dt
Pell3s | 4 2 2.2
gw=[ [ 3 [T +w(l—wdwadr]
Yrllos |5 2 2,2
r(u)=f0 fo WY (1—w*t*)dwdt .

Numerical evaluation of p, g, and 7 reduce the problem to the solution of a relatively straightforward ordi-

nary differential equation.

IV. THE SOLUTION OF EQ. (10)
The variable s given by Eq. (9) has the form

2(1—u)

STk (1—2cw)

for u ~1. Thus for u near unity

p(u)~polu —10, q(u)~golu —1)*,
and
r(u)~rolu —1)°,
so that Eq. (10) tends to the form
Spof'(1)+q0f(1)=0,

for u near unity. Then using the normalization
f(1)=1, £'(1) is known, and the differential equa-
tion can be solved by dividing the interval O<u <1
into ten equally spaced points and solving f(u) at
these points, and working inward from u =1 by
some numerical scheme such as the Runge-Kutta.
As the coefficients p, g, and r of Eq. (11) are
singular near u =0, the process outlined above is
carried out to obtain f(0.1). The interval

0<u <0.1 is again partitioned, and f(0.01) is ob-

tained in the same way. The procedure is contin-
ued until £(0.001) is obtained. The value of E is
fixed during this procedure. For values of E below
the best upper bound, f(u) decreases from u =1
then increases for smaller values of u. For values
of E above the best upper bound: f(u) decreases
from u =1, then goes through to zero, and contin-
ues to decrease. The best estimate of E produces
f(u)=0 for u at its minimum value, and the best
estimate of E obtained by our present work is
—0.5264 a.u.

V. DISCUSSION OF THE NUMERICAL
RESULTS

Table I summarizes the results of our analysis.
The work of Ref. 3 used a one-parameter contour
u to obtain an optimized function f(u) and an en-
ergy of —0.522 a.u. for the ground-state energy of
H~™. The Bethe variational calculation uses the
three-parameter contour given in Eq. (1) with the
result —0.5253 a.u. Our method finds the best
function of the Bethe u, and the value of E is only
slightly improved to —0.5254 a.u. A further
search found by varying the Bethe parameters k,
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TABLE 1. Values of the variationally optimized
values for the binding energy of the H™ ion.

Model E (au)
Best available results, Ref. 8 —0.5277
Results of Ref. 5 —0.5261
Symmetrized two-parameter _
fit of Ref. 3 0.5220
Bethe result using a symmetrized

—0.5253

three-parameter contour, Ref. 4
Present work using the best —0.5264

function of the Bethe contour

¢y, and ¢, yields the value E = —0.5264 a.u. with
k=0.96589, c;=0.16879, and ¢, =0.53512. Also
given in Table I is the recent result of —0.5261
a.u. obtained by Lie and Nogami (Ref. 5).

The best value of the binding energy of the H™
ion is given by Pekeris.® The absolute differences
between the Bethe value and our best value com-
pared to the Pekeris result are, respectively,
2.4%x1073 and 1.3X 1073 a.u. Both methods use
the same basic contour containing three variational
parameters, but the value of these parameters are
quite different. In fact, if our parameters are used
in the Bethe contour, the resulting binding energy
deteriorates to —0.4458 a.u. The function f(u)
corresponding to our best fit is compared to u in
Fig. 1.

An observable of some importance is the elec-
tron overlap factor (8(T3)). It is easily evaluated
in terms of f(u) as

1
(8(T3)) (f? =i:23—fodu(lnu)2f2(u)/u . (12)

1.0
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FIG. 1. Plot of the variationally optimized function
of the Bethe contour f(u) versus u.

The best value of (8(T3)) is 2.74X 1073 a.u. as
calculated in Ref. 8. The value obtained in our
best energy fit is 3.52 X 10~ a.u., while the result
from the Bethe contour with out parameters is
9.13% 10~ % a.u. Lie and Nogami, in Ref. 5, ob-
tained 2.95X 10~2 and 2.65X 1073 a.u., the latter
value from their best energy fit.

The size of the electron overlap factor is so
small that is remarkable that all these various vari-
ational calculations are in reasonable agreement. It
is evident that (8(T;)) is much more sensitive to
the variational function than the nicely bounded
energy. If one had prior knowledge of (8(T3)), an
especially finely tuned variational function could
be obtained.

VI. CONCLUSIONS

This work extends the technique of Feshbach
and Rubinow (Ref. 1) and Bhadhuri and Nogami
(Ref. 2), by allowing more complex forms for the
contours. We applied our technique to the bound
state of the H™ ion and obtained a ground-state
energy that is in good agreement with the best
available result (Ref. 8).

The value of the present work lies in our ability
to use contours with complicated forms. The
Feshbach-Rubinow approach requires a simple
contour that leads to a relatively simple differential
equation for the best function of the contour.

Such a simple contour may not be evident or ade-
quate. In fact, we could use the much more realis-
tic contour of Lie and Nogami as a starting point
for our approach with the guarantee that the
second application of the variational principle will
lead to an improved wave function.

The technique could be applied to other systems.
For example, the helium trimer system can be
described by a variety of potential functions that
contain a repulsive core. An approximate solution
can be constructed by a number of strategies in-
cluding variational calculations and solution of the
Faddeev equations.” We could, in principle, use
one of these solutions as the system-adapted con-
tour and then find the best function of this contour
by the procedures outlined in this paper.

Another application of the technique is in the
study of mesonic atoms. For example, muonic
helium (a “He nucleus bound to an electron and a
muon) has recently been studied by a number of
authors.!® The hyperfine splitting

Av=k [dXdT8(F -1,
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with X the muon coordinate and T the electron
coordinate, requires the knowledge of the ground-
state wave function. Huang and Hughes'! have
calculated a highly accurate but complicated solu-
tion and Drachman (see Ref. 10) has obtained an

analytic first-order wave function. This analytic
form defines a set of contours upon which we may
establish an optimized function in the manner
described above.
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