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Stimulated emission in the high-gain regime from a cold, relativistic beam of electrons

gyrating in a combined solenoidal and longitudinally polarized periodic wiggler magnetic
field is considered as a source of short-wavelength radiation. The emitted wave frequency
is Doppler upshifted in proportion to the wave number of the wiggler magnetic field.

Amplification is due to a ponderomotive bunching force acting on the electrons in either

the transverse or axial directions. Expressions for the linear growth rate are obtained;

conditions for their validity and estimates for the saturated efficiency are given.

I. INTRODUCTION

In the past several years with the advent of in-

tense, relativistic electron beams there has been an
interest in using these electron beams to generate
intense, coherent electromagnetic radiation in the
centimeter, millimeter, and submillimeter wave-

length portions of the electromagnetic spectrum.
Currently two main types of radiation mechanisms
using intense, relativistic electron beams are of in-
terest. First are the cyclotron instabilities, '

gyrotron and Weibel, characterized by transverse
and axial electron bunching, respectively, in which
the electrons travel in a solenoidal magnetic field
Bp with the emission frequency being associated
with the electron gyrofrequency or one of its har-
monics. The other main type of mechanism is the
free-electron laser (FEL) instability" ' character-
ized by axial electron bunching in which the elec-
trons travel in a transversely polarized, periodic
wiggler magnetic field with an emission frequency
associated with the period of the wiggler magnet.

The lowbitron' —a longitudinal wiggler beam
interaction device —is a hybrid system of the above
mechanisms. A thin pencil beam of relativistic
electrons with large transverse velocity v] acquired
before entering the interaction region travels on
axis in a combined uniform solenoidal magnetic
field and a longitudinally polarized periodic
wiggler magnetic field. The total imposed field on
the axis is of the form

B=z [Bp+5Bsin(kpz)],

where kp =277'/I is the wave number, l the period,

B z [Bp+5BIp(kpr)sin(kpz)]

—r"5BI) (kpr )cos(kpz ), (2)

with Ip and Ii being modified Bessel functions.
Near the axis where kpr & 1 the field given by Eq.
(2) becomes that of Eq. (1). This imposes a con-
straint on the radius r of the electron orbit for it to
be considered as moving in a magnetic field of the
form given by Eq. (1). Taking the gyromotion in
the solenoidal field as dominant then, since
re, =vz, gives the constraint

kpvi & co~ (3)

where co, is the relativistic electron cyclotron fre-
quency in the solenoidal field.

The periodic magnetic field in the lowbitron is
longitudinally polarized rather than transversely

and 5B the amplitude of the wiggler magnetic
field. The amplitudes of the solenoidal and

wiggler magnetic fields can be of the same order of
magnitude with 5B/Bp & 1. The field given by Eq.
(1) can be generated by driving current azimuthally
in alternate directions through a periodic assembly
of copper rings, ' or by making a series of rings
from samarium-cobalt' or other magnetic materi-

al, and magnetizing the rings in the axial direction
as is done in systems employing periodic focus-
ing, or the field can be generated by using the
technique of magnetic diffusion ' in a series of
copper rings. The field generated by these
methods is a multiple-mirror (undulator) field
which at a distance r from the axis is approximate-

ly given by
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polarized as it is in the FEL. This has several ad-

vantages in that longitudinal modulations are more
easily produced and with larger amplitudes, the
periodicity of a ring system is readily changed, and
an adiabatic field shaper at the electron source end

is readily incorporated.
In what follows we consider stimulated emission

of right-hand circularly polarized radiation pro-

pagating in the same direction as the electron's

travel. We only consider emission at the funda-

mental harmonic kp. Amplification is due to a
Lorentz v g B force, the ponderomotive force,
which causes bunching of the electrons in both the
transverse and axial directions. The bunching
force travels at the phase velocity uph ——(~—~,)/
(k+kp) where co snd k are thc radiation frequency
and wave number, respectively. When the phase
velocity of the bunching force is equal to the axial
electron velocity u so that

co —ku =kpu+~, , (4}

the bunching force appears to be stationary with

respect to the electrons, and for electrons traveling

slightly faster than u„h energy is given up to the
electromagnetic wave. The radiation frequency is
found approximately from Eq. (4) by taking ke =m
to give

(kpu+~, ),

When no wiggler magnet is present (kp~0), Eq.
(5) reduces to the frequency characteristic of the
Weibel instability which indicates the lowbitron

output frequency will be much larger than that of
the Weibel cyclotron instability. In the limit
co, ~0 one has the same frequency as the FEL
provided uj in Eq. (5) is now identified as the
transverse velority imparted by the FEL wiggler
magnet. For the same values of uj, Eq. (5) indi-
cates that the lowbitron emission frequency will be
greater than that of an FEL duc to thc prcscncc of
S~.

In Sec. II we derive the dispersion relation
describing the emitted radiation in the high-gain
regime, i.e., I L ~ 1, where I is the amplitude
growth rate and I. the interaction distance. The
dispersion relation is analyzed in Sec. III for a
tenuous beam of electrons all having the same
transverse momentum and a cold axial momentum
distribution. Section IV gives estimates for the sa-
turated efficiency and Sec. V summarizes the re-

sults and gives several numerical examples. For
convenience, we shall henceforth take the speed of
light in vacuum c =1.

II. DERIVATION OF THE DISPERSION
RELATION

In this section we derive the dispersion relation
for a right-hand rircularly polarized electromagnet-
ic wave propagating in the beam of tenuous, rela-
tivistic electrons which are traveling in the com-
bined solenoidal and longitudinal wiggler magnetic
fields. The dispersion relation is found by first
determining the fluctuation in the electron distri-
bution function induced by the propagating elec-
tromagnetic wave which in turn determines the
transverse driving current. The transverse driving
current is substituted in the transformed wave

equation from which it is found that thc aInplitude
of the kth mode is coupled to s sum over all other
modes of the form k —(I+s)kp, where I,s range
from —Oo to ce and kp is the wave number of the
wiggler magnetic field. To uncouple the modes we
treat the wiggler field as a small perturbation keep-

ing terms to second order in it which limits I,s to
the range 0, +1,+2. It is furthermore assumed
that terms with the resonant denominator

(k+kp)u3+co& =co, where co, =earp/E is the elec-
tron cyclotron frequency in the solenoidal field, E
is the electron energy, and u3 is the axial electron
velocity, are the dominant terms. With the above
assumptions the modes can be uncoupled yielding
five equations with five unknown aInplitudes
which, upon taking their determinant, yields the
desired dispersion relation.

The distribution function f( p,z, r) of the tenuous
beam of electrons from which the driving current
is obtained satisfies the relativistic, collisionless
Boltzmann equation

Bt
+v. Vf e[v Xz(BO+5B s—inkoz)]. V f=ee @'(z)——vX[VX@'(z)] Vpf,
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where Bo and M are the amplitudes of the solenoidal and wiggler fields, respectively. The propagating elec-

tromagnetic wave is taken to be traveling along the positive z axis, and to be right-hand circularly polarized,
such that

((f(z, t) =(x+iy )&{z)e

The wave is a small perturbation on the electrons' motion so that the distribution function can be expanded
as the sum of a zero-order term plus a small perturbation

f(p,z, t)=f' '(p3 pi)+f'"(p, z, t),
with the normalization n= J d p f' ', where n is the electron number density and p) is the magnitude of
the transverse electron momentum in cylindrical coordinates. Substituting Eq. (g) into Eq. (6) yields

(p)
=0,

dt
())

+v.Vf"' e[v—Xz(BO+5Bsinkoz)] T f"'=ee ™g'(z) ——v X[V X g {z)] .7 f' '.

The left-hand side of Eq. (10) is the total time derivative of f'". Under the assumption that the propagat-

ing electromagnetic wave is turned on adiabatically, the solution to Eq. (10) may then be expressed as a time

integral over the unperturbed trajectory of the electrons

f()) d i —lol( (~+ '~) pl+ /U3 dS"
CO N dz

l(U&+lU2)dg(p]f (0)
dz'

In Eq. (11), U1, U2 are the x,y components of the electron velocity, respectively, and the primed variables are
the particular solutions to the unperturbed relativistic equations of motion which equal their unprimed coun-

terparts when t', the independent variable, is equal to t.
The unperturbed equations of motion are given by

~t

dt',
= —ev'Xz (Bo+5Bsinkpz'),

dE'
dt

where the electron energy E'=E=my remains constant. Equation (12) is easily solved to give the com-
ponents of momentum

I
5'3 =73 s

0 0
p1 +/p2 {p1+/P2)exp / 67 7 cosko(z+U37 )+ coskoz

kOU3 kOU3

{12)

(13)

where ~=t' —t, and A=e5B/E is the electron cyclotron frequency associated with the wiggler field. From
Eqs. (14) and (15) it is obvious that the axial momentum of the electron is constant as well as the magnitude
of the transverse momentum

~ p i +ip2
~

=
~p i +ip2

~
=pi. However, the x and y components of momentum

separately are of course not constant and are obtained from Eq. {15)by taking the real and imaginary parts,
respectively. The electron coordinates [obtained from Eqs. (14) and (15)] are

Z =Z+U37

Qr' —r= Yexp i
kpU3

(
f(co~ +igkov3)x 1)

coskoz g ( i )»J» e"'—
kpU3 i(co, +qkpU3)

where r =x+iy, V=u, +iud, and J» is an ordinary Bessel function of order q. For Q=O it is seen from Eq.
(17) that the radius of the orbit remains constant corresponding to simple helical motion in the solenoidal

field. In the absence of the solenoidal field, tu, =0, the q =0 term in Eq. {17)grows linearly in r with the
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radius of the orbit bex ming unbounded unless Q/koU3 is close to a zero of Jo in which case the radius of
the orbit remains bounded. Also, in the presence of both 80 and 58 the radius of the orbit grows linearly in

r for ~, =—qkou3. For our purposes we will be interested in parameters such that typically kou3 p ~, and

Q/koU3 Q 1. In this range of parameters the radius of the orbit remains bounded. Since the argument of
the Bessel functions appearing in Eq. (17) is small, the q =0,+1 terms are dominant with the Bessel func-

tions being expanded in terms of their arguments. The radius of the orbit is then essentially a circle with

"wiggles" on it.
We take the unperturbed distribution function f' ' to be a function only of the zeroth-order constants of

the motion pi and pi. f' ' then automatically satisfies Eq. (9) and using the facts that pi ——pi,p3 ——pi it is

easy to show that

f(o) „~) ~» c)f(0) c)f(o)

p j. pi ~p j. ~p3

Substituting Eqs. (14}and (15}along with the Fourier transform of the field amplitude,

5'(z') = f dq e~ 8'(q},2u'
into Eq. (11) and performing the time integration yields

r

00 00 Q Qf(1) ep ecq cut —g g ( 1}IJ
koU3 koU3

expi(I +s) —+k~
2

dq e'&8'(q)G(q)
02m i[— +coc+o(lk +oq) ]u'

G( )
1

1
qui c)f(o) q c)f(o)

pg Ap Bpy coE Bp 3

and the angle q is given by p2 ——p&tang. The induced transverse driving current is defined by

j=—e f d'S &f"'

Substituting for f'" and taking the spatial Fourier transform of the current,

f dz j (z}e

yields upon performing the q integration

j (k)=inc e '"'(x+ij) f dpipi f dpiui g g ( —1)'J)
kpU3 kOU3

e' +' 8'(k —(I +s )ko)G(k —(I+s )ko)
x —~+a, +(k —sko)U3

where the magnitude of the transverse velocity is given by U&E =p&. Combining Maxwell s equations and
spatially Fourier transforming the resulting wave equation gives, upon using Eq. (21) for the current,

T

(co k)$'(k)=Acr Ecoe—f dpjJ)i f dpiui g g ( —1)J) Ig
I=—to s= —co koU3 koU3

e")+"" g (k —(I+s)k())G(k —(i+s)ko}
x —co+co, +(k —sko)u3
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In Eq. (22) we have appended a phenomenological filling factor F which describes the coupling of the elec-
tron beam to the electromagnetic wave. For a uniform plane wave and infinitely wide electron beam I is
unity, and for a finite beam cross section I' is close to unity when the electron beam radius exceeds that of
the electromagnetic beam. For the case when the radius of the electron beam is less than that of the elec-
tromagnetic beam I' is approximately given by the ratio of the electron beam area to the electromagnetic
beam area.

From Eq. (22) we see that the amplitude 8'(k) on the left-hand side is coupled to an infinite sum of am-
plitudes involving the harmonics 8'(k —(I+s)ko). To uncouple the amplitudes, in order to find the disper-
sion relation, we note that for experimentally accessible parameters the argument of the Bessel functions is
typically small, 0/kov3 & 1. The Bessel functions can then be expanded in terms of their arguments with
the dominant terms in the summations occurring for l,s=O, +1,+2. Keeping only the terms up to second
order in the small parameter 0/kou3 we find that the approximate expression for Eq. (22) is given by

(co k)8'(—k)=4n e coF I dptpi I dp3ug

X '(k)G(k) H»+ H»+Ho + &(k+ko)G(k+ko)(H» —Ho)
Q Q 'Q
4 4 2

l 8'(k —ko)G(k —ko)(H» —Ho)
2

F(k+2kp)G(k+2kp)(Hi —
p Hp —i H2)

1 18'(k —2kii)G(k —2kp)(H i
——,H 2

——,Hp)

where the small Parameter Q is defined as Q =Q/kpvi, and HJ =-[—co+ co, +(k+jkp)vi] ', j=0,+1,+2. . . .
For Q =0 the above result reduces to the dispersion relation for the electron cyclotron instability. Since we
are interested in the resonance H», we take terms proportional to H» in Eq. (23) to be dominant. Note that
the coefficients of Hi are proportional to Q (or Q ) and thus there is a lower bound on Q in order that the
terms with resonances H» be largest.

To proceed with the uncoupling of the amplitudes, we keep only the terms in Eq. (23) proportional to H»
which yields an equation involving 8'(k), 8'(k+ko), and 8'(k+2ko). Next, we replace k appearing in Eq.
(23) by k+kp and keep only the terms proportional to the resonance [—co+co, +(k+kp)vi] ' yielding an
equation involving 8'(k), 8'(k+ko), 8'(k+2ko), 8'(k —ko), and 8'(k+3ko). Successively replacing k by
k kQ, k +2ko, and k +3ko in Eq. (23), and keeping only the terms with the resonance

[—co+co, +(k+kp)uq] ' then yields five equations involving the amplitudes 8'(k), 8'(k+kp), 8'{k+2kp),
(k —ko) and 8 (k+3ko) They are

(k' —~')e'(k) =X,a(k) —N» e'(k+k, )+X,a'(k+2k, ),
[(k+ kp ) —co ]8'(k +kp) = —X48'(k+ kp) —iX58'(k) —iX68'(k +2kp )+X78'(k —kp) +Xs8'(k + 3kp ),

[(k —kp)' —co']8'(k —kp) =X,8'(k ~kp),

[(k+2kii)' —co']8'(k+2kii) = —iX,8'(Ic+kp)+X, 8'(k)+X, 8'(k+2kii),

[(k+3kp) —co']8*(k+3kp) =X)8'(k+kp), (24e)

where the effective susceptibilities 7 are

Xii————,I[Q G(k)],

Xi ——, I[QG(k+kp)]—, (25b)

X2 ————,I[Q26{k+2kp)],

X3———,I[Q G(k+kp)],

Xg I[G(k)], ——

(25c)

{25e)
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X5————,I[QG(k)],

X6————,I [QG(k +2k() )],
X7= —,I[Q~G(k —k() )],
X()

———,I[Q'G(k+3k() }].

0
kov3

gy(p) k @r(p)
G(k)= —1— +

py Q) clpg ME Bp3

and the integral operator I is given by

I= 4m e coF

{25i)

Since Xp, XpX4, X)X5 are proportional to Q, Eq.
(27) indicates that a freely propagating electromag-
netic mode Do is coupled to the beam cyclotron
mode 1+ (X4!Di), by the wiggler magnetic field.
For a sufficiently low density of electrons the
terms proportional to XpX4, X)X5 are negligible in

Eq. (27) compared to go since they are of order ~z
(co& ——4mne /m the nonrelativistic plasma frequen-

cy squared and m is the rest mass) and Xo is of
order mz.

Equation (27} determines the relation between
the electromagnetic wave frequency m and wave
number k. Since we are interested in an amplifier,
m is taken to be a real specifiable parameter and
we look for situations where k has a negative ima-
ginary part. The analysis of the dispersion relation
is carried out in the next section.

f to
~

oo Uy
X dp+ g dp30 —co+a), +(k+ ko)U3

Taking the determinant of Eqs. (24a) —(24e)
yields the dispersion relation

X4 Xo X2 XJX6 X2X4

Do D2

X(Xg—XpX4+ =0, {26)

where B„=(k+nko) —u and where we have only

kept terms up to second order in the small parame-
ter Q. The above dispersion relation shows that
the three transversely polarized modes of ampli-
tude g'(k), Ã(k+kp), 8'(k+2kp) are coupled to-

gether by the wiggler magnetic field. In the region
where D) =0 the first two terms in Eq. (26) are
dominant and describe the electron cyclotron insta-
bility at the effective wave number k+ko. For
our purposes we will be interested in the region
where Bo-0 and (k+ko)U3+~, =co simultaneous-

ly. In this region the dominant terms in Eq. (26)
give

X4
Bo 1+

D]

III. ANALYSIS OF THE DISPERSION RELATION

In this section we analyze the dispersion rdation
given by Eq. (27) for various limiting cases. First,
we determine the relevant effective susceptibilities
for a beam of electrons having all the same trans-
verse momentum and a "cold" distribution in axial
momentum. With the resulting expressions the
dispersion relation is examined first for a low beam
density and large wiggler amplitude, then for a
small wiggler amplitude and large beam density,
and finally for a large wiggler amplitude and large
beam density.

We take all the electrons to have the same trans-
verse momentum with the distribution in axial
momentum being cold so that the unperturbed dis-
tribution f' ' is given by

y(p) &(p~ —pro@(p3 —p)
2&pg

where p =mvy is now the axial electron momen-
tum and v the corresponding axial electron vdoci-
ty Using t.he above expression for f( ' in Xp, X),
X4, 75 and integrating by parts once over momen-
tum yields

Q wpF (w —k —kkp)u)p 2(w —ku —kuJp/u)

[(k+kp)u+w, —w] (k+kp}u+w, —w

—w~F 2[w —(k+kp)u] D(u) p

2$ (k+kp)u+w, —w [(k+kp)u+w, w]—
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Q—wpF 2[w —(k+ko)v] —(k+ko)p, o/pE D]vj.o
X]X5— (k~ko)v+w, —w [(k+ko)v+ w, —w]3

2[w (—k+ko)u] k—P3o/PE w2 —k3 —kko
x + 2

(31
(k+ko)v+w, —w [(k+ko)u+w, —w]

In evaluating the momentum integrals we have assumed that the distribution function f' ' is more rapidly
varying than the resonant denominator [(k+ko)v3+w, —w], i.e., the width of the distribution is less than
the width of the resonant denominator which requires that the following inequalities be satisfied:

'2
v~o

(32
Pro

where I = —Imk= amplitude gain per unit length, and hp, hpz are the small axial and transverse spreads
in electron momenta, respectively.

Maximum gain is obtained when the velocity matching wave number k =—(w —w, —kov)/u is precisely
equal to w which occurs when w =w =—(w, +kou)/(1 —u). With this assumption in Eqs. (29)—(31) the
dispersion relation given by Eq. (27) becomes, after some tedious algebra,

kob
x [ [x a/4—+(a /16 b)'/—][x a/4—(a2/—16 b)'/—3] I =— x-

Sw, F'/3 (33)

where x =(k w)/urpF'/— ,a =(F'/ urp lw )

X(w, /uko), b=u3o/2yu, and Q =e58/koP ~ 1.
In Eq. (33) we have retained only the largest coef-
ficients of each power of x keeping in mind the as-
sumptions

k =w »ko&wz&wi&ko » i
k —w

i
&uko& wc&

wcsko g w

The first term on the left-hand side of Eq. (33) is
due to the freely propagating electromagnetic
mode, while the curly bracketed term is due to the
beam cyclotron mode with the coupling of these
modes given by the terms on the right-hand side of
the equation. From the above inequalities we see
that the quantity a is very small and in what fol-
lows we will be assuming that b gg a /16. In ord-
er to evaluate Eq. (33) we will look at various lim-
iting cases and determine the real and imaginary
parts of the mismatch parameter x.

Case I. In this limit we take
~

x
~

&& b '/

~& a/4 so that the beam cyclotron mode is but
weakly excited. Furthermore, we will assume that
the beam density is sufficiently low so that

~

x
~

&& Q b /16. The dispersion relation then
becomes a simple cubic equation given by

kobg2
(34)

SwPI" /

The solution to the above equation giving amplifi-

I

cation is

k —w = , (Fwzkobg —)'/3 i (Fiaz—kobg3)'/3,

which gives for the growth rate

I [ —— (Fwpkobg )'
4

(36)

The above result has the same functional depen-
dence upon Q, wz, ko, and y as does the cold
beam, Compton effect, free electron laser growth
rate. ' Because of the dependence of I ] on

(vip/v) which is typically less than one, the
growth rate given by Eq. (36) will be somewhat
less than that for the free electron laser with the
same values of Q, w~, ko, y, unless u3o/u -1. The
expression given by Eq. (36) is valid only when Eq.
(32) is satisfied along with

v'243 g 4/3

64 b 1/3

ko
E]/2w

P

k)) + 3 o
b 1/3Q2/3

P 1 /2w
P

) b]/2»~/4,

which is obeyed for sufficiently large wiggler mag-
netic field amplitudes and low beam densities. The
amplification in this parameter range is due to axi-
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al electron bunching.
Case 2. 4'e take the opposite limit of Case 1,

b'/ »
~

x
~

&&a/4, with the beam cyclotron
mode again weakly excited. In this limit the
dispersion relation becomes a simple quadratic
given by

koQ' g'b
(38

The solution to the above equation giving amplifi-

cation is

left-hand side and x on the right-hand side of Eq.
(42) and keeping the dominant terms results in

k —m= —I,F' to b'koQ'
(4Ip

The growth rate is then given by

P1/2~ b1/2
p o

This expression for the growth rate is similar to
that of the %eibel cyclotron instability, and is in-

dependent of the wiggler amplitude M. I 3 is valid
as long as Eq. (32) is satisfied and

(39)

Pl/2~ gb 1/2

4
(40

The expression for I z is valid when the conditions
on allowable momentum spread given by Eq. (32)
are satisfied as well as the inequalities

b1/2 kp 2b'"» Q
F1/2 8

(41)

F'/2' Q&b k,g'
8@1/2

Amplification occurs when the first term under the
square root is dominant, which occurs for suffi-
ciently large beam densities and incident transverse
beam velocity vip. In the limit where the first
term under the square root is much larger than the
other term the growth rate is given by

' 3/2
b

3

1/2g2b b 5/2

P'/2~ 16 2 kp

which requires a sufficiently large incident trans-
verse velocity Ujp and low beam densities. The
lower bound on Q appearing in Eq. (45) has been
estimated from the requirement

~
Xo(k+ko)

~»
~
&4(k —ko)

~
namely that the terms in Eq. (23)

proportional to the resonant denominator

[(k+ko)u3+ to, —w] ' be dominant. For the
present case the amplification is due to axial elec-
tron bunching. Also, in this case the wave phase
velocity is seen to be less than the speed of light in
vacuum as it was for axial bunching Case 1. Next,
we will obtain estimates for the efficiency of radia-
tive energy extraction at saturation.

In the present case, the growth rate I 2 depends
linearly upon the quantity ui&Q whereas I i depend-
ed upon (io&Q)'/ . When conditions of Case 2 ap-

ply the amplification I 2 is due to transverse
bunching of the electrons whereas I 1 was due to
axial bunching. Note from Eq. (35) that the wave

phase velocity when axial bunching occurs is less
than the speed of light in vacuum, whereas Eq.
(39) shows that the wave phase velocity is greater
than the speed of light in vacuum when transverse
bunching occurs.

Case 3. For this case we take b' &pa/4 and
assume that the beam cyclotron mode is strongly
excited with x = —ib'/ . %ith these assumptions
Eq. (33) becomes

in inx (x+ib' )( —i2b' )=-
8F'/ m 16

Substituting x = —ib ' for x appearing on the

IV. EFFICIENCY ESTIMATES

In this section we derive estimates for the effi-
ciency of radiative energy extraction at saturation.
It is assumed that the saturation mechansim is

trapping of the electrons in the periodic potential
wells of the bunching wave. The trapped electrons
will all be moving at the phase velocity of the
bunching force (m —m, )/(k+ kp) =u. The differ-
ence in energy between the initial electron energy
and trapped electron energy is then determined by
the above expression to be

p" I
~

(1+U)kp+m,

where 6k=Re(k —m}. Assuming that all of the
energy loss from the electrons is converted to radi-
ation, the efficiency is then the ratio of ~ to ini-

tial electron kinetic energy
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EE
m{y—1)

U yak
(y —1)[(1+u)ko+w, ]

From Eq. (35) we see that the efficiency when

Case 1 conditions apply is

u'y(Fw~k obQ
2)'~'

4(y —1)[(1+u)ko+w, ]

while from Eqs. (39) and (43) when Case 2 and

Case 3 conditions apply the efficiency is given by

u'ykoQ'
'92, 3—

16(y—1)[(1+u )ko+ w, ]
(4

It is noteworthy that although in Case 3 the gain
I'3 is independent of Q (and is therefore indepen-
dent of the wiggler amplitude), the efficiency q3 is
strongly dependent on Q.

When y » 1, ko » w„u —1 it is seen from Eq.
{49) that the efficiency for Case 2 and Case 3 is

r123
——Q /32. Since Q&1, rt23 are limited to

values less than 3.1%%uo. For Case 1 the efficiency is
less than or equal to 0.29 I ~/ko and since
I i/ko ~ 1 the efficiency for this case will be limit-
ed to values less than 29%. Typically for experi-
mentally accessible parameters, the efficiency is ex-
pected to be less than a few percent. To increase
the efficiency it may be possible to use the various
efficiency enhancement techniques suggested to im-

prove the efficiency of the free-electron laser such
as tapering the wiggler magnet amplitude and
period ' or use a depressed collector as in conven-
tional traveling wave tubes.

V. SUMMARY AND NUMERICAL EXAMPLES

%e have given a relativistic, classical derivation
of the gain coefficients in the high gain regime
(I'L, & 1 where L is the interaction distance) for
stimulated emission from a cold, pencil beaxn of
electrons traveling in a combined solenoidal and
longitudinally polarized wiggler magnetic field.
The amphfication is due to the Lorentz v XB or
ponderomotive force inducing transverse and axial
bunching of the electrons with the wiggler magnet
coupling a freely propagating electromagnetic
mode to the beam cyclotron mode.

In Table I we summarize the analytic expres-
sions for the peak amplitude gain with conditions
on the various parameters for the applicability of
the gain expressions and the saturated efficiency
estimates. In Table I, b=(uio/u) /2y,
Q=e5B/kop, a=(w~F'~ /w)(w, /kou),
w, =eBo/ym, c=speed of light= 1, E=filling fac-
tor, hp, hpj are the small axial and transverse
spreads in momentum, and the emission frequency
is at the fundamental haimonic ko, i.e.,
iu=(1+u)y [uko+w, ]/(1+y uio). From Table I it
is seen that for a given ko and b, the peak amph-
tude gain I i occurs for a large wiggler amplitude
and low beam density, I 2 occurs for small wriggler
amplitude and large beam density, and I 3 occurs
for large wriggler amplitude and large beam densi-
ty. Note, however, that the beam density must
remain small enough to allow us to neglect self-
electrostatic fields. Also, from Table I for the case
when I ~ applies the saturated efficiency in the ex-
treme relativistic limit is limited to values much
less than 29Wo and for the other two cases it is lim-
ited to values less than 3%.

In Table II, we give numerical examples for the

TABLE II. Radiation characteristics of the lowbitron, FEL, and %eibel instabilties {for
beam parameters in Sec. V).

Radiation Peak power Maximum momentum Saturated Saturated
frequency gain 2I spread efficiency power

(6Hz) (cm ') hp/p hpq/pro ( jo) (HV)

%'eibel

lowbitron (1)
(2)
(3)

FEL (1)
(2)
(3)
(1)
(2)
(3)

0.031
0.026
0.7
0.1

0.39
0.95
0.018
0.7
0.7

10
10
10
10-4
10-'
10-'
10
10
10

10
10
10

10
10
10

0.1
0.03
0.3
2
3
3
0.001
1.2
1.2

1.0
428

4283
20

42830
42 830

0.01
17 132
17 132
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three cases considered in Table I and compare with
the FEL and Weibel instabilities. In making the
comparisons, we calculated the growth rates for
the FEL instability from formulas given in Ref. 14
and 15 and for the Weibel instability from formu-
las given in Ref. 9. We also note that whereas the
FEL instabilities have been observed experimental-
ly, there are as yet no convincing experiments that
demonstrate radiation from the Weibel instability.
The allowable momentum spreads for the lowbi-
tron and Weibel instabilities were estimated from
Eq. (32};the momentum spread for the FEL insta-
bility was obtained from Refs. 14 and 15. In all
three cases we take F=1, @=3,vip ——0.37
(c=speed of light =1), k0=6 cm ', Bo 10——kG.
We also assume a beam radius of 1.89 mm which
equals one Larmor radius. For the FEL the initial
transverse velocity v/0 —0 and the transverse velo-
city is imparted by the transverse wiggler magnet.
In Case 1 the beam current is I=0.38 A with
5B=8.33 kG, case 2 has a beam current I=567 A
with 5B=2.78 kG, and Case 3 has a beam current
I=567 A with 5B=8.33 kG.

Table II shows that for the given parameters the
lowbitron and FEL operate at a much higher emis-
sion frequency than the Weibel instability. In all
three cases, the lowbitron and FEL have compar-
able peak output power growth rates. In all three
cases the momentum spread requirements for the
lowbitron and Weibel instabilities are somewhat
less stringent than for the FEL. For the low densi-
ty Case 1 the lowbitron and FEL have a much
better efficiency than the Weibel instability, while
for the high density Cases 2 and 3 the FEL and
Weibel instabilities have better efficiency than the
lowbitron.

In conclusion, we have described the basic pro-
perties of a novel source of coherent radiation ca-
pable of generating or amplifying electromagnetic
radiation in the submillimeter wavelength range.
It uses a longitudinal, periodic wiggler magnetic
field which interacts with an electron beam having
initial transverse energy. This results in a frequen-
cy upshift given by Eq. (5) of the right circularly
polarized wave propagating along the guiding rnag-
netic field. The process can be viewed as a three-
wave parametric coupling between a freely pro-
pagating electromagnetic wave, a beam cyclotron

mode supported by the gyrating electrons, and the
periodic wiggler fields. It is noteworthy that this
resonant coupling requires that the wiggler mag-
netic field be longitudinal. In the case of a purely
transverse periodic magnetic field and a uniform
longitudinal guide field, there are no resonances
whose frequency is given by Eq. (5). In this latter
situation one finds solutions corresponding to
gyrotron and Weibel modes on the one hand, and
FEL modes on the other hand, and they are un-
coupled except when kov =w, .

Our calculations are performed for thin, solid
paraxial electron beams whose transverse dimen-
sions satisfy the inequality kof (1. This gives as-
surance that the periodic magnetic field be pri-
marily longitudinal and of the form given by Eq.
(1}. When kop) 1, the longitudinal and transverse

periodic perturbations become comparable in mag-
nitude, and a solution to this problem becomes in-

tractable. Of course, in experiments that use thick
beams or annular beams, lowbitron-type modes

satisfying Eq. (5) may well exist due to the pres-

ence of the longitudinal wiggler field component.
The periodic, multiple-mirror wiggler which gen-

erates the longitudinal field modulation has several
advantages over the circularly polarized bifilar
wigglers used in conventional FEL's. It is easier to
construct, it gives larger amplitudes, its periodicity
is easily changed, and an input adiabatic field
shaper is readily incorporated. ' ' It has also con-
siderable advantage over transverse, linearly polar-
ized wigglers. It is known that in traversing a
linearly polarized wiggler, longitudinal oscillations
are induced in the electron's motion which can
cause particle untrapping from the potential
"buckets" when the excursions become comparable
with the radiation wavelength. In the lowbitron
configuration, the axial electron momentum is con-
stant and this difficulty does not arise.
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