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It is shown that a statistical angular-correlation coefficient v may be obtained from the
small-momentum-transfer behavior of x-ray and high-energy electron-scattering intensi-

ties. Published tables of these quantities are exploited to obtain values of ~ for correlated

wave functions of first-row atoms and ions. ~ is negligibly small in lithium, about —0.09
in beryllium, and its magnitude decreases monotonically as one goes across the first row

from Be to Ne.

INTRODUCTION

The term electron correlation has two common

meanings. In the traditional quantum chemistry
sense electron correlation efFects are those due to
the difference between the exact and the Hartree-
Fock electron pair densities. ' In the statistical
sense electron correlation effects are those due to
the difference between the true electron pair density

and the product of the true one-electron densities.
These two notions of electron correlation are dif-

ferent because the antisymmetry of the Hartree-

Fock wave function accounts for the Fermi correla-
tion between electrons of like spin. The term elec-

tron correlation will be used in the statistical sense

throughout this paper.
Statistical electron correlation can be studied by

a detailed examination of correlation factors and
holes or pair correlation densities. However, all
these quantities are complicated functions of up to
six variables. Hence, it is convenient to have nu-

merical indices which provide overall measures of
the statistical correlation. The correlation coeffi-

cients introduced by Kutzelnigg, Del Re, and

Berthier serve this purpose admirably. A detailed

study of correlation coefficients in the five lowest

states of the heliumlike ions has been carried out
recently. The K- and L-shell components of the
correlation coefficients in the berylliumlike ions
have also been studied.

In this paper it is shown how an angular-
correlation coefficient may be extracted from x-ray
and high-energy electron-scattering intensities.

~=2 r; rJ (N —1) r;

where N is the number of electrons. ~ is bounded
in magnitude by unity:

—1&~&1.

Perfect positive correlation (r=+1) means that
the position vectors of a pair of electrons are ex-

pected to coincide, whereas perfect negative corre-
lation (~= —1) implies that electron pairs are ex-
pected to be at diametrical positions with respect
to the nucleus. The vanishing of the statistical pair
correlation density is a sufficient but not necessary
condition for ~ to be zero.

The expectation value

S,=2 gF:.r)3i,
l,J

can be used to rewrite ~ in the form

3S
~

2 gr) —1 N —1).

This implies that ~ can be calculated from experi-
mental data because (g,.r; ) can be obtained from

The method is then utilized to calculate and study
angular-correlation coefficients for the first-row
atoms and ions.

ANGULAR CORRELATION AND
SCATTERING INTENSITIES

One possible angular-correlation coefficient that
is suitable for atoms may be defined by
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the diamagnetic susceptibility snd S
&

can be ob-

tained from the dipole oscillator strength distribu-

tion by virtue of the sum rule

~—1 ~On@On ~

where fo„ is the spherically averaged dipole oscilla-

tor strength for the transition from the ground

state to the nth state, and Eo„ is the corresponding

transition energy.
X-ray and high-energy electron-scattering inten-

sities can also be used to obtain ~. Within the con-

text of %aller-Hartree theory' the coherent (I,",h)

and incoherent (I,"„,) x-ray scattering intensities are
given by

and

I;"„,(p) /I,"]——S(p),

where I'(p) is the form factor, S(p) is the in-

coherent scattering function, p is the momentum

transfer, and I,"~ is the classical expression for the
total intensity of radiation scattered by s free elec-
tron initially at rest. Moreover, within the context
of the first Born snd binary-encounter approxima-
tions, the elastic (I',~) and inelastic (I';„) intensities
for high-energy electron scattering from free atoms
msy be expressed as

I:ilI )~1.'i =4I '[& Fiv)]'—
and

I,'„(p)/I,'] ——4p S(p),

where I',] is the Rutherford expression. The
small-p expansion for I'(p) is given by

F(p, )=X gr; p /6+—aqpq+asp +

and the small-p expansion for S(p) is given by

p S(p)=S ]/2+b2p +b4p +...
Thus, it is clear that (g,.r; ) and S ~ may be ob-

tained from the zero-p, limit of 6[% F(p)]p-
and 2S(p)p, respectively.

FIRST-ROW ATOMS

Tanaka snd Sasaki have tabulated values of
I'(p) and S(p) calculated from valence-shell
configuration-interaction (CI) wave functions for a
variety of first-rom atoms and ions. Values of S
and (g,.r; ) were extracted from their data by fit-

ting polynomials in p to 2S(p)p 2 and
6[&—F(p)]p, respectively. One value of each
of the quantities was obtained by fitting polynomi-
als of the form a +bp to the data points at
pao ——0.1 and 0.2. Another value of each of the
quantities was obtained by fitting polynomials of
the form a+bp +ep to the data points at
pao ——0.1, 0.2, and 0.3. The requisite expectation
values for the berylliumlike ions have also been ta-
bulated for 55-term CI wave functions, ' and for
10-term multiconfiguration self-consistent field
(MCSCF) wave functions. " SCF values' and a
few others' '" were also used.

Values of S &, (g,.r; ), and r are listed in

Table I for the neutral first-rom atoms, in Table II
for the berylliumlike ions, and in Table III for the
neonlike ions. The close agreement between values
obtained by two- and three-point fits to the form
factors and incoherent scattering factors encourages
the belief that the fitting provides reliable results.
Some of the discrepancies between the 10-term
MCSCF values" and the 55-term CI values for
the four-electron ions may be due to the fact that
the latter were not computed directly but via s
cluster expansion truncated after the pair terms.

~ is zero for Li and Be in the Hartree-Fock ap-
proximation because the latter involves only s orbi-
tals in these atoms. In lithium the true j:-shell
value of r could be expected to be close to the cor-
responding value of —0.039 in Li+. However,
since the two intershell pairs can be expected' ' to
be virtually uncorrelated, the overall value of v. is
rather small in magnitude as the 45-term CI values
of —0.0032 indicates. In beryllium the E-shell
value of v. is —0.0296 which is close to the value
of —0.02976 in Be +, the L-shell value is
—0.299, and the intershell values are negligible.
The overall value of ~ is substantial ( —0.09) pri-
marily because of the strong I.-shell angular corre-
lation which arises because of the well-known' '
2s —2p near degeneracy. In the infinite nuclear
charge limit of the beryllium isoelectronic series
the near degeneracy becomes a true degeneracy, the
exact wave function approaches the limit

/=a
i
lsls2s2s

i

+i 1 —u')'"l
I »»2p+2p (

—
~
1»»p+2p

—
i

ls ls2po2po i
)/v 3,

snd the overall angular-correlation coefficient ap-
proaches the limiting value of —0.051781. In the
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TABLE I. Angular-correlation coeffrcients for the first-rom atoms.

Atom and
state %ave function 5 &/ao (x'

Li S SCF'
45-term CI

12.42
12.17

18.63
18.37

0
—0.0032

SCF'
10-term MCSCF'
37-term CI"
55-term CI'
7-term L-shell CI
7-term L-shell CP

11.S5
8.063
8.849
7.686
8.283
8.279

17.32
16.30
17.02
16.30
17.00
17.0S

0
—0.0860
—0.0734
—0.0975
—0.0897
—0.0905

8 P SCF'
21-term L-shell CI
21-term L-shell CI~

8.703
7.033
7.022

15.85
15.65
15.64

—0.0441
—0.0815
—0.0816

C P SCF'
37-term L-shell CI"
37-term L-shell CI'

6.847
6.050
6.059

13.79
13.85
13.85

—0.0511
—0.0690
—0.0688

34-term L-shell CI'
34-term L-shell Cl~

6.483
6.508

14.45
14.44

—0.0654
—0.0648

21-term L-shell CI
21-term L-shell CI~

6.883
6.903

15.75
15.79

—0.0689
—0.0688

SCF'
21-term L-shell CI~

21-term L-shell CP

5.610
5.250
5.263

12.08
12.00
11.99

—0.0506
—0.0573
—0.0569

60-term L-skell CI'
60-term L-shell CIg

5.450
5.463

12.65
12.66

—0.0590
—0.0588

62-term L-shell CI'
62-term L-shell Cp

S.417
5.412

12.55
12.51

—O.OS88
—0.0585

Q 3P SCF'
67-term L-shell CI~

67-term L-shell CP

5.036
4.600
4.591

11.17
11.50
11.54

—0.0463
—0.0571
—0.0576

53-term L-shell CI'
53-term L-shell CIg

4.833
4.840

11.45
11.47

—O.OS24
—0.0524

28-term L-shell CI'
28-term L-shell CI~

4.800
4.791

11.30
11.23

—0.0518
—0.0514
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TABLE I. (Continued).
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F P SCF'
57-term L-shell CI'
57-term L-shell CI~

4.513
4.200
4.191

10.24
10.20
10.19

—0.0423
—0.0478
—0.0479

Ne 'S SCF'
18-term L-shell CI'
18-term L-shell CP

4.055
3.800
3.793

9.376
9.700
9.747

—0.0390
—0.0458
—0.0463

'See Reference 12.
Wave function from Ref. 10 (see Ref. 13 for expectation values).

'Reference 11.
Wave function from Ref. 14 and expectation values from Ref. 11.

'Wave function from Ref. 10 and expectation values from Ref. 6.
'Expectation values from the two-point fit to the F(p), S(p) data of Ref. 9. See text.
expectation values from the three-point fit to the F(p), S(p) data of Ref. 9. See text.

atoms from B through Ne there is an angular Fer-
mi correlation between the s and p electrons in ad-
dition to the 2s —2p near-degeneracy effects found
in B P, C P, C 'D, C 'S, and N P. As one moves
across the first row from B to Ne the angular Fer-
mi correlation becomes more important and the
near-degeneracy effects become less important and
even vanish as in N S, N D, 0, F, and Ne. The

overall result is a steady decrease in the magnitude
of ~ from Be through Ne.

Table I shows that for states arising from the
same configuration ~ does not vary greatly, and its
ordering does not always correspond to the energy
ordering. These results along with eariler work,
show that ~ is of limited value in discussions of
Hund's rule, ' ' especially when the electrons in

TABLE II. Angular-correlation coefficients for the beryllium isoelectronic series.

z Wave function S )/ap Qp

10-term MCSCF'
55-term CI

32.86
23.63

68.73
58.75

—0.0943
—0.1322

10-term MCSCF'
55-term CI

8.063
7.686

16.30
16.30

—0.0860
—0.0975

10-term MCSCF'
55-term CI

3.892
3.806

7.668
7.677

—0.0795
—0.0854

10-term MCSCF' 2.318 4.489 —0.0752

10-term MCSCF' 1.555 2.973 —0.0718

10-term MCSCF'
55-term CI

1.115
1.129

2.113
2.123

—0.0694
—0.0674

Exact —0.0518

'Reference 11.
Wave function from Ref. 10 and expectation values from Ref. 6.
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TABLE III. Angular-correlation coefficients for the neon isoelectronic series.

z Wave function S i/ap

18-term L-shell CI'
18-term L-shell CI

7.233
7.227

16.30
16.33

—0.0372
—0.0374

10 18-term L-shell CI'
18-term L-shell CI

3.800
3.793

9.700
9.747

—0.0458
—0.0463

18-term L-shell CI'
18-term L-shell CI

2.633
2.647

6.650
6.670

—0.0451
—0.0450

—0.0472

'Expectation values from the two-point fit to the F(p), S(p) data of Ref. 9 (see text).
Expectation values from the three-point fit to the F{p),S(p) data of Ref. 9 (see text).

unfilled subshells all have the same I value.
The Z ' perturbation-theory expansion of r for

a given state in an isoelectronic series is of the
form

g=co+c)Z +c2Z +—1

For the ground (1'S) state of the heliumlike ions,

co ——0, ci ———0.126, and cp ——+0.024. It is easy to
show that co ———0.0518 for the ground ('S) state
of the four-electron ions. Moreover, a least-squares
fit to the ten-term MCSCF values of w listed in

Table II yields c&
———0.145 and c2 ——+0.032 for

the beryllium isoelectronic series. It may be shown
that co ———0.0472 for the ground state of the neon-
like ions. Although there is insuNcient data in
Table III to extract a meaningful value of c~ it
seems plausible that c

~
will turn out to be positive

in this case.
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