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Cavity Q for ergodic eigenmodes
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The 0 of an overmoded (wavelength much less than cavity size) irregular cavity is calculated

by making use of the ergodic theorem.

where the F is real, the ray equations

d r BF dk BF
dt Bk dt

(2)

are relevant. It is evident from Eqs. (2) that the ray
equations are a Hamiltonian system for which
F(k, r ) plays the role of the Hamiltonian, and
(k, r ) are momenta and coordinate variables. Thus
Eqs. (2) are subject to the same phenomena of ergo-
dicity onset and ergodic motions of other Hamiltoni-
an systems. Here we consider the case where the
solution to Eqs. (2) is ergodic" with F the only con-

We consider here the problem of calculating the Q
of a very overmoded (wavelength much less than the
cavity size) irregularly shaped resonant cavity due to
absorption of the electromagnetic radiation at the
walls. We assume further that the volume inside the
cavity can be either a vacuum, or else partially filled
with anisotropic inhomogeneous dielectric or plasma.
Both the scale length of the dielectric and the radius
of curvature of the walls are assumed to be much
larger than the radiation wavelength. However, near
the cavity walls, a vacuum is assumed. Our main in-
terest here is in applications concerning magnetically
confined plasmas. For instance, consider a tokamak
containing a hot plasma which radiates at the cyclo-
tron frequency and its harmonics. An important is-

sue is how much of this cyclotron radiation is ab-
sorbed by the walls and how much is reabsorbed by
the plasma. Generally this can be calculated with a
ray-tracing code where many rays are followed and
the absorbtion and emission are calculated along each
ray path. However, if the plasma is optically thin, as
it would be at the higher harmonics, and if the reflec-
tion coefficient at the wall is near unity the rays
would have to be followed for long distances before
one could see how much energy is deposited in the
wall.

In this paper we utilize the ergodic theorem to cal-
culate the wall absorption for the case where the
waves makes many bounces and before it is ab-
sorbed. If the local dispersion relation is

ru=F(k, r )

f (k, r ) =8(co —F(k, r ))

x J dk drg(0) —F(k, r )) . (4)

On the basis of (4), it is expected that for an eigen-
mode with resonant frequency co the wave energy
density in k, r is given by

)F(k, r)= ff W(k, r)dkdr
)

g(~ F(k, r ))-
ff dk d r k( —F( k, r ))

if the solution of the ray equations is ergodic. This is
analogous to the microcanonical ensemble in statisti-
cal mechanics where all phase space points on the en-
ergy surface [analogous to the constant F(k, r ) sur-
face] are equally likely. In writing Eqs. (4) and (5)
we have in mind a cavity filled with a magnetized
plasma or anisotropic dielectric. Also we consider
only electromagnetic waves which propagate freely
from the vacuum into the plasma and visa versa. In
this case the two polarizations of plane electromag-
netic waves propagating in a given direction, with
given frequency are, in general, nondegenerate. That
is they have different values of ski. Thus the disper-
sion relation co = F(k, r ) will possess these two solu-

stant of the motions of the ray equations. (We note
that even in plasma devices, such as tokamaks, where
the plasma has a high degree of toroidal symmetry,
the conducting walls surrounding the plasma com-
monly have corrugations and are partly composed of
baffels and limiters. Thus this ergodicity assumption
is probably well justified for waves which experience
reflections from the walls. ) In the case of ergodic ray
motions it is expected that the time average over the
motion of a wave packet can be obtained by a phase
space average

f T

lim r '
J g(k(t), r (t))dt

= Jl dk Jtdr f (k, r)g(k, r)

where g is any function of k and r and f is the mi-

crocanonical distribution
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tions. Hence in this case, Eq. (5) automatically gives
the distribution of energy in the two polarizations. In
the case of an unmagnetized plasma, isotropic dielec-

tric or vacuum, the two independent polarizations are
degenerate, that is, they have the same value of

~
k ~.

In this case we supplement Eq. (5) with the informa-

tion that both polarizations are equally likely. One
expects that Eq. (5) holds in the limit of k
however, it is not yet known how good Eq. (5) is for
finite k. In this respect, recent numerical experi-
ments are of interest4 (typically kL —10 in these ex-
periments where L is a scale length). We shall be in-

terested in applying Eq. (5) in cases where the wave

experiences absorption at the conducting boundaries

upon reflection. Under these circumstances, we re-

quire the following two conditions for the validity of
Eq. (5). Condition A: The wall absorption in follow-

ing a typical ray must be slow enough so that the
ray wanders over a representative region of the co

= F(k, r ) surface equal to the constant surface be-

fore significant absorption takes place. Condition 8:
The dispersion relation F(k, r ) must not exhibit any

resonances (i.e., solutions with k ~). Condition B
is necessary in order that the integral in the denomi-
nator of Eq. (4) be finite.

We now calculate the damping of an ergodic eigen-

mode due to finite wall conductivity. The Q of the

cavity is defined as

cu Jl J1 W(k, r)dkdr

(Il}q I J I'd2r
(6)

where a and P are unit vectors in the surface of the
conductor, respectively, perpendicular to and in the

where q, is the surface skin resistivity

q, = (iu, p~/2cr) ' ', o is the wall conductivity which

may be a function of position on the wall, J, is the
r s surface current density vector, and the integral,

~~

~~

q, d r, is taken over the boundary of the cavity.

Here we wish to calculate
~ J,~' (and hence Q).

We recall that, by assumption, near the cavity walls

the plasma density is zero. In this region F( k, r )
=

~
k ~c, where c is the speed of light, and from Eq.

(5) W(k, r ) —8(ca —~k ~c). Thus, near the walls,

W(k, r ) is independent of r and the direction of k.
To treat this case we recall that A. ((L and consider
a plane wave in vacuum which is incident on a plane
conductor. We also assume, as mentioned previous-

ly, that in the vacuum region near the wall W(k, r )
is the same for each of the two independent polariza-

tions. Let 8 be the angle of incidence, and $ the an-

gle that the magnetic field vector H makes with the
plane of incidence. Then, from Maxwell's equations
and the condition that E tangential vanish, the
current J, created by this plane wave is

J,=20costa +2H sinqb cosHP

plane of incidence. Averaging over it and the solid

angle of the incident waves we have that

~ J,~'= Jl Jl [4H'(cos'/+sin'icos'8)]
f2" d@ f dQ

2m 2'

where d 0 = 2m sin8 d8, the integral over d 0 is from
8=0 «w/2 (i.e. , only over incident waves), and H'
may be related to the average energy density of the
eigenmode in the vacuum near the wall

~
ppH2= J &I W(k, r ) dk d r

V J)8(ru —~k~c)dk
X

Jl Jtg(ru —F(k, r ))dk d r
(9)

= k' Jl g'dx dy Jl dx dy

where 8/Bq denotes the normal derivative, and ( )
denotes the average over the boundary. This expres-
sion has been checked in numerical experiments by
McDonald and Manheimer' using the model of Ref.
6. Reasonable agreement was obtained, thus giving
an indication of the correctness of our approach. To
obtain (11) consider a plane wave of amplitude i' in-

cident on a plane boundary where /=0. This leads
to a normal derivative of i' at the boundary of ampli-

tude 2Itfk cos8, where 8 is the angle of incidence.
Averaging (2/k cos8)' over 8 for incident waves
(0~8~ m/2) then yields Eq. (11).

If the wave has nonzero damping rate y(k, r ) in

the plasma then the cavity Q is ( Q„'+ g~ ') ' where

Q~ is the Q resulting from absorption in the plasma
and Q„ is given by Eq. (10). Thus the fraction of en-

ergy absorbed by the wall is g~(g~+ Q„) '. The Q

where Vdenotes the volume enclosed by the cavity.
From Eq. (8), ~ J,~'= —,H'. Thus

3p,pc 1' t'

Jl &
8(cu —F(k, r ))dk d r

16m cu
II

Vbd'r V

(10)

For vacuum, F(k, r ) = ~k~c and Eq. (10) yields

g =(3p,ppi) 4(l q, d'r

where the two independent polarizations have been
taken into account.

Similar arguments to those above can be applied to
Helmholtz equation in two dimensions ( x and y),
'7'4i+ k2iii =0 with the eigenfunctions zero on the
boundary with the result that
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resulting from the plasma losses is

g~ - a)/2y,

where2

Jl J/dk dr y(k, r )8(~-F(k, r ))

Jl &
dk dr 5(ru —F(k, r ))

(i2)

This may be useful in calculating the amount of ener-

gy emitted by cyclotron radiation which is absorbed
by the wall in a thermonuclear fusion device.
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