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Distortion of the structure of a simple fluid
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The distortion of the structure of a simple fluid of spherical particles when subjected to a

shear is analyzed. The orientational distribution of particles around a central particle is exam-
ined via the radial distribution function. General symmetry arguments are advanced.
Computer-simulation results using the technique of homogeneous shear nonequilibrium molecu-
lar dynamics are reported for the inverse-12 soft-sphere system. It is shown that the fluid

displays non-Newtonian behavior.

In this Communication we discuss the distortion of
the structure of a fluid under shear by analyzing the
radial distribution function. The radial distribution
function g ( r ) for the fluid becomes anisotropic, and
the angular dependence can be taken into account ex-
plicity' by a Cartesian irreducible tensor expansion
with respect to the components of the unit vector r"

wherez r" = r /r for the particle separation r. For a
fluid of spherical particles, one has

g( r ) =g'+ (g)'": (rr)J+

with k =+, —,0, and Eq. (2) reduces to

gk= Jtd r Yk(i")g( r )

in which Yk is an angle-dependent function

Y+=2xy =—sin2$sin 8

Y =x' —y'—=cos2$sin'e,

and

Yo=-(z --) -=-(cos 8--)3 2 1 3 2 1

0 3 2 3 J

(4)

where the higher terms involve tensors of rank 4, 6,
etc. The ( )'" refer to a symmetric traceless tensor
and in particular (rr )'"=—rr" "—

—,L where g is the unit

tensor. The term g* is the scalar (isotropic) contribu-
tion to g( r ) and (g)'" is a tensor expansion coeffi-
cient. These quantities, which are functions of the
shear rate y, are essentially orientational averages

g'= Jtd'r" g ( r ),
4m

(2)

where 8 and $ are the usual polar angles of r".

II. STRUCTURE DISTORTION

The distortion of the structure of a fluid subjected
to shear can be visualized by examining the distribu-
tion of particles in a shell between radii R i and R2.
The number of particles in this shell per unit solid
angle about r" is related to g( r ) by

"2
X=p J g(r)r dr

where p is the number density, and the total number
in the shell is

I. COUETTE FLOW
N = fX d' =4 p fg' 'd (6)

Here we will make use of the special geometry of
Couette flow for which the tensorial analysis is sim-
plified. If the flow velocity u is in the x direction
with the shear rate y= du„/dy, Eq. (l) becomes

g( r ) =g'+g, (xy) +g (—')(»' —y')

+g, (z ——) +1 (3)

Thus the anisotropy is given in terms of the gk con-
tributions to g ( r ) or in terms of coefficients nk

where

PR2
nk =4~p

l gkr dr2

R(

so that one has with Eq. (3)

4n X =N + n+xy + n ( 2 ) (x —y ) + no(z —
3 )

where x, y, and z are components of the unit vector
parallel to the respective coordinate axes. The tensor
(g) ~ is thus characterized by three coefficients gk

(8)

where it is understood that all coefficients depend on
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the integration limits R 1 and R~ and are associated
with a given y. An alternative expression to Eq. (8)
follows using the polar angles as in Eqs. (4) and (5).

The expression simplifies for particular coordinate
planes and the anisotropy distortion can easily be
displayed graphically. For example, for the shear
plane one has, since 8= m/2:

4rrgt =N —
3 no+ (—n+ + n )' sin2(/+X), (9)
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where X is given by tan2X = n /n+. Thus the highest
probability of nearest neighbors between Ri and R~
is in the direction for which $ = e /4 —X [or
( , ) n——X j with respect to the x axis (assuming n+ is

positive).
In similar way, one has for the x —z(/ =0) or the

y —z(P= w/2) plane:
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4n Qt = N + —n sin'e + no(cos 8 ——)
1 1

2 3 (10)
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III. COMPUTER SIMULATION
-2.0— W.75—

A 108-particle system whose particles interacted
with the soft-sphere potential

e = d/r"

FIG. 1. Calculation of the expansion coefficients g+, g,
and go defined by Eqs. (3)—(5) for a soft-sphere fluid at
state point p(4T) ' =0.8. Results are given for three
shear rates, y 0.5, 1.0, and 2.0.

2 2 3
pk = —

» m p gal@ r dr (12)

where 4' is the derivative of the pair potential. Since
these quantities are related to the components of the

truncated at r =2.5 was studied by the homogeneous
shear nonequilibrium molecular dynamics at the
state point p(4T) '~~ =0.8, which is close to the
melting transition. Histograms for gk based on Eq.
(3) were constructed and Fig. 1 gives the results for
the variation of gk with interparticle separation r for
three values of the shear rate: y =0.5, 1.0, and 2.0.
Table I shows the corresponding values of N and the
anisotropy coefficients nq of Eq. (7). To evaluate the
integral, Eq. (7) was split into three regions I, II, and
III to represent the inner, middle, and outer parts of
the first coordination shell as follows: I, R1=0 and
R t =1.1, which is the maximum in g'(r); II,
Rt=1.l and Rt=1.35, where g*(1.35) =1.0; and
III, R1-1.35 and Rq =1.6 where this upper limit cor-
responds to the first nonzero minimum in g'(r). The
label X in the table corresponds to the integration
between Ri -0 and R~-1.6.
There are several remarks:

1. Note that one can further define pressure coef-
ficients pk analogous to the coefficients nk by

pressure tensor by

p+ =—p~
1

P = —,(Pxr Pyy)-—
po--,'(p ——,'(p +p~)l

(13)

they link gk or nI, with a viscosity coefficient. We
have included numerical values of pk in the table.

2. While one would expect g+ or n+ to be
nonzero, we note that the corresponding coefficients
n and n0 are also nonzero according to the computer
simulation. And they have significance: They show
that even the simple system of inverse-12 spherical
particles is associated with non-Newtonian behavior
and differences in the normal pressure components.
In particular, a nonzero n implies a rotation of the
symmetry axis away from the Newtonian preferential
angle of 45' in the xy plane and, furthermore, with
the nonzero no, it also implies an anisotropic accumu-
lation of particles in the xz and yz planes.

These points, and others, can be displayed graphi-
cally via Eq. (10), and we constructed Fig. 2 which is
a polar diagram of 4m X for the intermediate shear
rate y =1 in the xy plane as an illustration. Curves
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TABLE I. Values of the coefficients N and nk for the soft-sphere fluid at p(4T) =0.8 for
three shear rates; Eqs. (6) and (7). The integration was carried out in three regions I, II, and III of
the first coordination shell. The symbol X represents the total. The pressure coefficient pk of Eq.
(12) has been included for the total integration.

no

I
II
III
X

A

I
II
III
X

~k

I
II
III
X

A

3.01
6.49
4.51

14.01

3.27
5.94
3.85

13.06

3.09
6.21
4.44

13.74

y =0.5
—0.76

0.76
0.52
0.52

—1.52

y =1.0
—1.05

1.09
0.50
0.54

—2.36

y =2.0
—0.66

0.78
0.16
0.28

—1.74

—0.05
0.07
0.05
0.07

—0.07

—0.02
0.02
0.03
0.03

—0.11

0,04
0.00

—0.34
—0.30
—0.20

—0.05
0.17

—0.15
—0.03
—0.12

—0.06
0.24

—0.17
0.01

—0.30

0.08
0.16

—0.57
—0.33
—0.12

for the integration of region I and for total X are su-
perimposed.

3. Although n+ and no are nonzero, the contribu-
tion of the coefficients is at most —, of N according to

Table I. Hence, we can consider them as realistic
measures of a distortion and also argue that higher-

order contributions, disregarded in Eq. (1) would be
equally as small, if not negligible.

4. In model liquids of spherical colloidal particles,
experimental results on the shear-flow-induced dis-
tortion of the structure have recently been obtained
via light scattering techniques. '

IV. SUMMARY
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3.0

We can conclude by remarking that the distribution
functions, manifested by the coefficients g', gk or N
and nk, give information over and above that one
would obtain by examining only the behavior of the
thermophysical properties of a system. One can see
from Eq. (12) that these latter properties only effec-
tively probe the distribution at short r (i.e., region 1).
Here we have looked, for the first time, at the full
anisotropy via the powerful technique of nonequili-
brium molecular dynamics. This present study
should be extended to cover a larger range of state
points and values of the shear rate for a model fluid,
and should be extended to other model fluids, but al-

ready the simple spherical inverse-12 system reveals a
complexity of fluid behavior which one usually asso-
ciated only with molecular liquids.

FIG. 2. Polar diagram of 4m& for region I (dashed
curve), and the full first coordination shell X (solid curve)
for the soft-sphere fluid under a shear of y =1 in the plane

of the shear. (See Table I.)
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