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Effects of local current gradients on magnetic reconnection
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The excitation of reconnecting modes is commonly considered to rely solely on global
properties of the current-density distribution. Here a class of simple resistive magnetohy-
drodynamic models is studied analytically to show that local properties of the current
profile at the reconnecting surface become important in some realistic physical regimes.

For a long time reconnecting modes have at-
tracted great interest in astrophysics' and con-
trolled thermonuclear research. These global col-
lective processes change the topology of the equili-
brium magnetic configuration in a plasma through
the action of a narrow dissipative layer where mag-
netic energy associated with equilibrium currents is
released. The phenomenon presents some analogies
with the formation of cat's eyes in shear flows.

Reconnecting modes are found to be excited in
many different plasma regimes and geometries (cf.
Refs. 2 and 4—10). In all cases one can identify
an "outer region" where Ampere's law and the bal-
ance of pressure gradients with magnetic forces de-
fine the macroscopic structure of the modes. Then
in an "inner layer" more physics is involved.
There dissipation can be provided by a small
amount of resistivity or, for high-temperature re-
gimes, by particle resonance. As a result, in gen-
eral one has to perform a proper matching of solu-
tions across the dissipative layer. The matching
process may involve a large scale asymmetry, due
to the properties of the equilibrium configuration
and the outer boundary conditions (cf. our term A
defined below), and a local asymmetry due to the
presence of current gradients in the dissipative
layer [cf. our term a in Eq. (3)].

From the matching procedure given in the past
it was argued that the abovementioned asym-
metries do not affect the growth of reconnecting
modes. On the other hand, in the absence of local
asymmetry the inner equations have a simpler
treatment and the matching is more easily per-
formed. ' In some cases symmetry arguments
have been invoked directly in dismissing the asym-
metry terms as unimportant. ' In order to clarify
the matching procedure and especially after claims
that local current gradients considerably modify
the standard dispersion relation for reconnecting

modes, " we have decided to reconsider the joining
of solutions across the dissipative layer for recon-
necting modes without using symmetry arguments.
In particular, we here reexamine the so-called
"constant-lb" approach in cases where logarithmic
terms in the matching region are present due to lo-
cal current gradients.

To be specific, in the following we refer to the
magnetohydrodynamical problem in plane
geometry, even if our methods are applicable to
more general cases. The magnetic equilibrium con-
figurations of interest are those characterized by

B=B„(x)e~+B,(x)e,

and the relevant magnetic perturbation is

Bi——B(x)exp( —i mt + i k x )

so that, at x=xo, k.B=O. It is convenient to
choose a frame of reference where xo ——0 and
k =ke~. The equilibrium field is taken to have
the following expansion around x=O:

By(x)=Bo[x+(a/2)x +" ]

and

B,(x)=Bo,(1+bx+."),
where a, b, Bo, and Bo, are constants. In addition,
we use the dimensionless coordinate x =x Ir&,
where rz is a typical length for the equilibrium
field. The quantity a is then related to the gra-
dient of the current density (dJ, /dx) at x=0. No-
tice that the case where Bo,——0 describes the "neu-
tral sheet" configuration, whereas a "sheared mag-
netic configuration" has a sizable Bo,.

Neglecting the effects of inertia and resistivity
we have the following "outer" equations for the
magnetic perturbation $=B„/Bo and the plasma
displacement g= ikg„:—
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1("—[k +(B"/B)]/=0,

P+B(=0 .

Here we have used the notation B=B&/Bo and
k=krz. A prime indicates derivative with respect
to x.

Reconnecting modes are characterized by the
property 1()(x=0)+0. Then we see that the
"frozen-in law" (2) leads to singular perturbations
at x=O even for the locally symmetric (a=O) case
where Eq. (1) is regular. Only by including finite
inertia and resistivity effects in a small layer of
width 5 (to be determined) around the surface
x=O, is the singularity of the reconnecting prob-
lem removed.

In the vicinity of the singular layer we can use
the expanded form for 8 and obtain the following
approximate solution for 1( from Eq. (1):

8 profile, we find the following regular fourth-
order system for the inner problem:

, =P(4+0(»
(4)

d g 2

g2
—qk k=q(k —a)t(,

where g=g(5/rs), p =(y/e)(5/rs),
q=(ye) '(5/rs), and a=(a/p)(5/ri))

We define the generalized constant-1( approach
by the ordering q =O(1) and (p /q) « 1, i.e.,
r & —, (in the following we can consider q = 1 as

the definition of 5). In addition, in order to ex-

plore the effects of a small to moderate local asym-
metry we take a=0(1). As for the corresponding
hydrodynamic problem' we can expand our inner
solution as

y(out) (
(g +g)y( l )+y(2) (3)

4(p) +P 4() ) +P P(2) +

where

1(")-x+(a/2)x +".,

t((2)-I+(k, /2)x +" +a ln ~x
~

f"),
and k& is a modified wave number which reduces
to k for a linear 8 profile. In Eq. (3) the sign +
( —) refers to positive (negative) values of x. In
general the solution should be represented by
()'j'+""—2+1("'+B+g( ' In (3).we have considered
the general case where neither 8+ nor 8 is zero
so that for our linear problem we can take

8+ ——8 =1. The constants A+ and 8+ and
therefore the constants A and b, in our representa-
tion (3) are determined by the outer boundary con-
ditions on Eq. (1). As is best seen for the locally
symmetric case (a =0) where

1("""-I+ —,6
~

x
~
+ —,Ax,

the constant A measures the large scale asymmetry
of the reconnecting mode.

In our resistive MHD description of the inner
layer, dissipation is measured by a small parameter
e=(D /vq rzk) which is essentially an inverse
magnetic Reynolds number. The small resistivity
is associated with the magnetic diffusion coeffi-
cient D; the quantity vz is a typical Alfven speed
of the problem. Furthermore, inertia is measured

by the dimensionless growth rate y=( —im/kv& ).
The relevant ordering of our problem is then
e«1, y=O(e") with 0&r &1, (5/rz)=O(e') with
s & 0, and k =O(1). By rescaling the x coordinate
into g=x/5 and using the power expansion for the

and matching with the outer solution is obtained
only by considering at least the truncation
1(""'=4(p) +P 1('() ).

In the above defined constant-1( scheme the
matching is possible and easily performed. The
lowest-order solution of (4) satisfies d (((p)/dg =0.
In order to match with 1()"""[cf. Eq. (3)] we take

lP(p) = 1 + g(g, with i)j( ——(A /2)(5/rs ). This func-
tion does not include the discontinuity 6 of the
outer solution [cf. Eq. (3)]. Therefore we proceed
to evaluate P(i) in the above expansion of g"").
In order to do this we calculate the lowest-order
solution g(p) by considering the second equation of
system (4). By applying the method of Laplace
transforms (for the symmetric case a=O, cf. Ref.
13) we find the particular solution

g(p)
——g( —( 1 g(a )Ii (g)+aI2—( g)

where

1

I, (g)=( vq 2/)g f dt(1 —t )

X exp[ (~q /2)tg']—

and
1

I2(g)=(vq /2) f dt(1 t )—
Xexp[ —(Mq/2)tg ] .

This solution is just what we need for determining
the lowest-order expression of the dispersion rela-
tion. In fact the correction f(i) obeys the equation
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d 4(()/4' =4(o)+N(o) .

Since the matching to zeroth order in p has been
already performed by the solution g(o)

——1 + P(g,
we can now proceed to first order in p in the

matching process by considering

4+pd0())/dg

rather than the function

0'"'-1+4)r+pp()) .

Using expression (5) we obtain

(6)

where

3(g) = f dg'(P(o)+g g(o)) .

At large values of g we find I3(g)~I3+-(g) for
~+ 00 ~

I3 (g) =(t (a(+(1 P(a—)u +)a(a 2+1 n~g
~
},

where

a, = f dg'[1 g'I, lg')]=1,—

and

aq ——f dg'[g'I, (g') (1+/') ']—.

By considering th= expression

dl('+""/dx -a+a ln
~
x

~
+(2 +6)/2

+(aA /2)x+

from Eq. (3), we see that the logarithmic terms are
automatically matched. Proper matching with Eq.
(6) then requires

p( g/ )()())——a [1+in(5/rs) —a2]
and

5 =2p(r~/5)a((1 P)a } . —

Equation (8) is just a definition of the integration
constant P» in expression (6). The second relation
(Eq. 9) is the desired dispersion relation. Using the
relation q =1 as a definition of 5, we can rewrite
the dispersion relation as

2a)y e =5,+a)any' E' " . (10)

This equation reduces to the standard dispersion

relation 2a&f E' =5 in the symmetric case.
Even if the new term in Eq. (10) is formally a
correction O(e ), it may affect appreciably the
dispersion relation depending on the properties of
the equilibrium configuration and the location of
the resistive layer. Hints at large asymmetries in
relevant modes are given in Fig. 2 of Ref. 7. Nu-
merical calculations of the MHD stability of DITE
with respect to m=2, n=1 reconnecting modes in-
dicate' that the ratio (A/b,

~

for such modes is
typically around 6, so that in some cases

~

a& /4
~

-35. This means that for current pro-
files comparable to DITE, the new term is appreci-
able when e-10, which is a rather large value
for typical tokamak regimes, but may be interest-
ing for different situations.

The present paper provides one clear-cut exam-
ple where effects of local current gradients on

magnetic reconnection can be handled analytically
and estimated to be large or small by inspection of
a simple dispersion relation. The method of
analysis used could be applied or extended to cover
different configurations and regimes.

In conclusion our analysis shows in detail that
asymmetries due to the current profile may change
the lowest-order form of the dispersion relation of
"standard" reconnecting modes. This does not ex-
clude the possibility of modes of a different kind
that might originate in the presence of such asym-
metries. Neither does our argument apply to cases
where p /q=O(1), such as the resistive internal-
kink modes of Ref. 8, where the generalized
constant-t( approach is not permitted. Finally,
other physical phenomena (such as those studied in
Ref. 15) are associated with "asymmetries" in the
relevant equations and might be related to effects
analogous to those of local current gradients. In
this regard, extensions of the present work and
comparison with already existing results deserve a
more complete investigation.
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