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An analytical expression is obtained for the average energy loss of atomic projectiles
scattered by homonuclear diatomic molecules in the absence of electronic excitations.

Recent experimental works' have confirmed
the theoretical prediction ' that the most probable
energy loss Tp of an atomic projectile scattered by
a diatomic homonuclear molecular target without
transferring energy to the electronic system is
given by

To f——(EB),
EMpg

MT

where E, M~, and (() are the energy, mass, and
scattering angle in the laboratory system of the
projectile, respectively, MT is the mass of each nu-
cleus on the molecule, and f is an unknown func-
tion which depends only on the variable EP This.
function has two well-defined limits; as EP de-
creases, f tends to one half, while for large EP, f
tends to one. This can be easily understood: for
large EP, scattering is so violent that the collision
takes place mainly with one atom of the molecule;
then obviously, TO=EP Mp/MT. On the other
hand, for small EP a "molecular effect" occurs:
The projectile is deflected simultaneously by both
atoms on the molecule as if they were a structure-
less particle having an effective mass close to 2MT.

Let us recall briefly that Eq. (1) is derived by as-
suming that the scattering time is short enough
such that the motion of the molecular nuclei can
be neglected. In addition, it is assumed that there
are no electronic excitations and the scattering an-
gles are sufficiently small that the change on the
projectile direction of motion can be approximated
by a vector perpendicular to the incoming trajecto-
ry. Finally, it is shown that the moments of the
energy loss obey expressions of the type

TDMr/(EM P2) as a function of the parameter EP
we must obtain the f function for the given
projectile-target combination, ' this is experimentally
observed. ' Furthermore, it is found that such a
function depends on the charge state of the projec-
tile.

We present in this note a simple way to evaluate
the function f i(EP) in Eq. (2), and by using the
fact that the energy-loss spectrum has a well-
defined maximum, we will compare the T' values
of our theory with the measured Tp. The calcula-
tion is based on the binary interaction between the
projectile and each nucleus according to a screened
Coulomb potential. We assume that during the
collision the nuclei of the molecule remain fixed,
that there are no electronic excitations, and that
the scattering angles are small. Therefore, we can
consider the scattering process projected into a
plane perpendicular to the beam direction as shown
in Fig. 1. Here 1 and 2 indicate the nuclei of the
molecule and their projected separation b; p~ and

p2 are the impact parameters relative to nuclei 1

and 2, respectively, and (() i and (()i are the
corresponding scattering angles.

We consider that after the collision the projectile
direction of motion is changed by an amount

1 b/2 b/2 2

T"=(EMzP /Mr)"f„(EP), n =1,2, . . .

and Eq. (1) follows immediately from Eq. (2).
According to Eq. (1) if we plot the quantity

(2)
FIG. 1. Schematic diagram showing the scattering

process projected into a plane perpendicular to the beam
direction.
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T =T)+T2, (4)

(3)

normal to the incoming trajectory, and that it has
lost an energy given by

The numerical factor k, is obtained from the fit-
ting of the power law (10) to the interatomic po-
tential. Therefore, it will depend on the screening
function and the interval of interatomic distances
which dominates the scattering.

According to Ref. 6 we have
where T~ and T2 are the energies transferred to the
nuclei 1 and 2, respectively. Sigmund ' has shown
that under these approximations the average energy
lost in an electronically elastic ion-molecule
scattering, at a given deflection angle P, is

P;(p;) =C, /p (i =1,2)

where

g k Q ZpZye
(12)

( f d p 5( P P~)(T—i+ Ti) )T=
( f dpey' y-, ))

where p is the impact parameter of the process re-
lative to a given origin. The brackets mean that
the average is performed over all possible molecu-
lar orientations, i.e., molecules are oriented at ran-
dom.

For small scattering angles
P+ -4' /p (13a)

and y, =B( , ,s/2+——,); B(x,y) being the beta func-

tion.
Thus if we expand P+ and (() in a power series

of the variable b/(2p), where p is the impact
parameter relative to the center of mass of the
molecule, and conserve the first nonzero term, we
obtain

MpEP;T;= (i =1,2) .
Mz.

Therefore

(6) and

0--/+[1+(s —1)cos a]b /(4p ),
(13b)

M,Ey' ( f dp@g' 0'+)—0' )T= 1+
2M' (() ( f dp 5(P —P ~))

where

=Pi 4i ~— (8)

where Zz and Zz- are the atomic numbers of the
projectile and target, respectively, e is the electron
charge, a is the screening length, and y is the
screening function. Following Lindhard et al. we
will use the power-law approximation

k,
q(r/a) =—(a /r)'

S
(10)

When p « 1, the impact parameters can be either

pi-p2» b/2 or pi-p2-b/2. It can be shown
that the contribution to Eq. (7) of those trajectories
having p& -p2-b/2 is small compared to that of
pi -p2 » b/2. Therefore we only consider large
impact parameters.

Let us introduce the interatomic potential

Z&Z~e r
2

V(r)=
T a

D'(s'+ 1) 0+
MpEP2/Mz, 2 24 2C,

By defining r=EP and

2/s

(15)

2 2 s/2
ZpZz. e 24ro= 2k, y, (s'+1)

we finally obtain

T/(MqEP /Mr)
' +(~/ro)zts

(16)

(17)

which gives us an explicit expression for f, (r).
It is worthwhile to notice that r is related to the

t ' Lindhard's parameter by

t' ra/(2Z&Zz-e ) .

where a is the angle between p and b.
For a spherically symmetric distribution of

molecular orientations, the distribution of the pro-
jection of the internuclear vector on the plane per-
pendicular to the beam is given by

N(b)db b db

D [(1 b /D )]'—
where D is the internuclear distance. Hence we
calculate
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FIG. 2. f function from experiment (Ref. 2): Ne on

D2 at+0.5; o 1.0; 1.5; and 6 2.0 keV, and VNe+
on D2 at 3.5-keV bombardment energy. Theory: ( )

analytical approximation [Eq. (17)] and (———) exact

numerical calculation [Eq. (7)] for different s power po-

tentials, respectively.

FIG. 3. f function from experimental (Ref. 8): E+
on N2 at 0 1.0; 6 0.7; CI 0.5; 0 0.3; k, 0.2, and ~
O. 1-keV bombardment energy. Theory: ( ) analyti-
cal approximation [Eq. (17)] and ( ———) exact numeri-

cal calculation [Eq. (7)] for different s power potentials,

respectively.

As was pointed out in Ref. 6, t' is a measure of
the distance of approach between the two collision

partners; therefore, its value determines which s
should be appropriate. For instance, the experi-

mental results of Refs. 1 and 2 lie in the
10 & t' & 2.10 ' range, then 2 &s & 3 is suit-

able. In addition, we choose k, =0.831 and 5.22
for s=2 and 3, respectively, corresponding to a
Thomas-Fermi Coulomb screened potential. We
show in Fig. 2 the comparison of our results given

by Eq. (17) and experimental data. ' As was point-

ed out, we approximate f(r) by ft(r). Our calcu-

lation shows that the weaker the screening, the

stronger the molecular effect due to the larger pro-

bability that the projectile can be deflected by both

atoms on the molecule. On the other hand, if
there were no screening it would be unlikely for
the projectile to interact with one nucleus without

being significantly influenced by the other. The
preceeding discussion gives a clue to understand

the difference between the Ne and Ne+ cases.
The lack of one electron when Ne+ is the projectile
could affect the interatomic potential, that is, the
screening function. Therefore we must expect that
for highly ionized projectiles the f(r) function will

deviate from 0.5 at much larger ~ values.

In Fig. 3 we show the results from Ref. 8 for
K+ on N2. In this case t' ranges from

1.4)&10 to 7X10, therefore a larger s value

should be appropriate, that is 3 &s &4. At those
high s values the Lenz-Jensen screening function

may be more suitable than Thomas-Fermi to
describe the interatomic potential; ' hence, we
choose k, =3.06 and 20.5 for s=3 and 4, respec-
tively. '

We have evaluated Eq. (7) n'umerically in order
to check the analytical expression given by Eq.
(17). The results are depicted in Figs. 2 and 3.
Such a numerical calculation takes full account of
all possible impact parameters, even though at
small ~ there is no deviation from our approximate
solution (17); at large ~, however, discrepancies be-
come important. It is due to our assumption given
below Eq. (8) which fails at large r; that is, as r in-
creases it is not always true that there are two im-
pact parameter regions, viz. , p& -p2-b/2 and

p ~ -p2 && b/2. On the contrary, at not too small
projected separation b (i.e., b -D) large values of x
arise from p& -b, and p2 « b/2, and vice versa.
In those cases the truncated expansions in (13) are
unreliable.

The author is deeply indebted to V. H. Ponce for
helpful discussions and stimulating suggestions in
the course of this work.
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