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The vortex viscosity of a model diatomic fluid is calculated using both equilibrium and

nonequilibrium molecular dynamics. The two calculations agree within statistical uncer-
tainties. The results show that vortex viscosity does not have a conventional Kubo-Green
relation. An argument as to why this is so is presented.

In this report we discuss the calculation of vor-
tex viscosity which is of particular interest because
this quantity does not have the usual Green-Kubo
expression. This is a consequence of vortex viscos-

ity being associated with the relaxation of internal
angular momentum which is not a conserved quan-

tity.
The generalized Langevin equation for a phase

variable A (p, q) is

dA

dt
(t)= —I drM(r)A(t r)+F(t), —

where F is the random force and M is the memory
function which can be expressed in terms of the
Mori-Zwanzig projection operator. ' The exact ex-

pression for the memory function involves the
modified propagator' e~' ' rather than the usual

time propagator e' '. It is well known that for the
transport of conserved quantities, e9 ' may be re-

placed by e' ' in the zero-wave-vector limit. This
is a consequence of the infinite slowness of
Navier-Stokes processes at infinite wavelength. In
this slow limit, Navier-Stokes transport coefficients
are related to equilibrium fluctuations by the
Kubo-Green time-correlation functions.

In general, a "fast" variable A, may be defined
as any variable which is not considered in the limit

where g is a parameter analogous to wave-vector or
Brownian-particle mass. The problem of relating

fast transport coefficients to equilibrium correla-
tion functions was solved by Zwanzig and by
Berne, Boon, and Rice (ZBBR). If the equilibri-
um current correlation function C(t) is defined as

C(t) = (A (0)A'(t) ), (3)

and the equilibrium flux correlation function P(t) as

P(t) = —(A(0)A*(t)), (4)

then ZBBR ' showed that one could solve the ex-

act Langevin Eq. (1) for M(t) in terms of C(0)
and ttt(t). In the Laplace-transform domain the re-
sult is

M(s) =i))(s)/C(0) .

At nonzero wave vector, however, we showed that
shear viscosity does not have a conventional
Kubo-Green relation to equilibrium fluctuations.

In this paper we apply the ZBBR result to vor-
tex viscosity and use a computer simulation to test
the validity of the more general Eq. (5). The vor-
tex viscosity g, describes the exchange of the orbi-
tal and intrinsic components of angular-momentum
density in a molecular fluid. The defining consti-

C (0)—~)) (s) /s

We have recently applied the ZBBR result to the
calculation of the frequency and wave-vector
dependent shear viscosity. As expected, for this
Navier-Stokes transport coefficient we obtained the
Kubo-Green result at zero wave vector
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tutive relation is

P = —g, ( & X u —2' ), (7)

and V,k, T are the volume, Boltzmann's constant,
and the temperature, res ectively. The zero-wave-

5vector pressure tensor (q =0) is well known,

where n is the number density. The intrinsic
angular-momentum density S(r, t) is not conserved
but satisfies a balance equation

(9)

In this equation Q, the couple tensor, is the
angular-momentum analog of the pressure tensor.
Microscopically the intrinsic angular-momentum
density is given by

nS(r, t) = g I;to;5(r;(t) —r }, (10)

where I; is the molecular moment of inertia. Be-
cause of the tensorial character of the sprain rate
( V X u —2' ), there is no linear sprain-induced
molecular alignment. Consequently, in this linear
theory (I;~p) =15~tt/3.

At zero wave vector, q =0, Eqs. {7)—(10) imply
that

(q =O, t)= — S(q = O, t},
Bt nI

which was first derived microscopically by
Ailawadi, Berne, and Forster who pointed out that
the relaxation of intrinsic angular momentum is a
fast process. The relaxation should not therefore
be related to an equilibrium flux correlation func-
tion by the Kubo-Green Eq. (6) but rather by the
ZBBR Eq. (5}. Accordingly, one can derive from
Eq. (11)

g, (s)= P(s)
4

1 ——F(s)/s
nI

where n(s) is the Laplace transform of the an-
tisymmetric stress equilibrium time-correlation
function

tr(s)= f dte

(12)

X (P, (q=0, t)P, (q=0,0)),

where V X u and co are the vorticity and local
average angular velocity, respectively, and P is the
pseudovector dual of the antisymmetric part of the

]
pressure tensor P =

2 e:P. In terms of molecular

angular velocities co, taken about individual mol-
ecule centers of mass r; one has

neo(r, t}=g t0;5(r; —r),

adb-
pd 1 y ~IJ

Brj
(14)

where P;J is the potential energy of molecule i and

j and r;z J3 is the separation of atom A in molecule
i from atom B in molecule j. The two atoms of
each molecule are located a fixed distance apart
r;q;tt ——0.3292cr. (By appropriate scaling of
e,o. and the molecule mass m, this potential forms
a good representation of the bulk properties of ni-
trogen. ' The state point studied was the same as
that studied by Evans and Streett:
per =0.622, kT/a=2. 10.

The equilibrium simulation was reported in Ref.
5 by Evans and Streett who used Kubo-Green rela-
tions to calculate a wide variety of transport coeffi-
cients for this fluid. However, as we have seen,
vortex viscosity, which was one of the coefficients
they calculated, is not expected to have a conven-

In molecular fluids where the intermolecular
force ( —BP~J /5rj) is not parallel to the center-of-
mass separation vector (r,&), the molecular pressure

dtensor (14), is in general, nonsymmetric. Thus P
is nonzero. The first person to realize that the an-
tisymmetric part of the pressure tensor governs the
collective relaxation of angular velocities was Max
Born in 1920. The theory was later developed
more fully by Grad. ' The formal connection be-
tween atomic" and "molecular" hydrodynamics of
a molecular fluid where the atomic theory uses a
symmetric pressure tensor and the molecular
theory employs a nonsymmetric tensor, has been
discussed in detail by Olmsted and Snider. "

In principle, there are two independent ways of
calculating the zero-frequency vortex viscosity: ei-
ther via a nonequilibrium simulation and the defin-

ing constitutive relation (7), or via an equilibrium
simulation and Eq. (12) to relate the equilibrium
fluctuations to g, (s =0). The purpose of this re-

port is to relate the results of both types of calcula-
tion. The degree of agreement of the two different
calculations then provides a test of the validity of
the ZBBR equation and of the nonequilibrium
simulation technique.

The system simulated was a 108-molecule dia-
tomic Lennard-Jones potential fluid, i.e., with
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tional Kubo-Green relation.
The points on Fig. 1 show the Laplace

transform of the antisymmetric stress correlation
function m.(t), as calculated by Evans and Streett.
Because the ZBBR result, Eq. (12), gives a singular
relation between vortex viscosity and n(t), it is
very difficult to use (12) to determine g„(s) numer-
ically. We decided instead to assume a parametric
functional form for g, (s) and fit the parameters
using the P(s) data. In fact, we found that the
f.(s) data could be represented if the vortex viscosi-

ty was assumed a Lorentzian:

g, (s)= 9p

1+s~ (16)

The curve through the data is Eq. (16) and
corresponding values of g, (s) are shown as the
dashed curve. The relaxation time ~ and the zero-
frequency vortex viscosity g„were obtained by fit-
ting the location and magnitude of the observed
maximum in P(s) to give ~o. '+e/m =Q.Q27 and

0
0 20 $0

and

g, o /v me=0. 044

ro '&e/m =0.027 .

The corresponding plot for g, (s*) is also shown. The
variables have been appropriately reduced by
m, o, and e and represented by asterisks. A direct
calculation by nonequilibrium molecular dynamics
gives

g, o /~me=0. 045+0.01

as shown by the arrow. The straight line gives the
theoretical estimate for dP/ds as s ~0 according to
Eq. (17).

FIG. 1. The points show the reduced quantity f.*(s~)
obtained by numerically transforming the Evans and
Streett' data. The smooth curve through these points
was obtained from the Lorentzian (16) for g„(s) with
constants

d P(s) nI.
lim
s o ds 4

(17)

Thus the limiting slope of P(s) near s =0, should
be independent of transport coefficients. In Fig. 1

the straight line is drawn with the slope given by
Eq. (17) and is consistent with the data.

At this point one may ask whether the Kubo
transform of the antisymmetric stress autocorrela-
tion function vr(s) has any physical meaning. The
ZBBR equation and the simulation results show
that P(s)Qg„(s) but presumably some physical
meaning can be attached to P(s).

Consider a system at equilibrium t (0, suddenly

subject to a step increase in the vorticity V )& u = k
constant for t &0. It is then simple matter to cal-
culate the linear response of P, (t) using the Doll's
tensor Hamiltonian'

H=HO+ gq;p;: Vu, t&0.

A trivial application of linear-response theory"
then shows that the susceptibility for this process
is the Kubo function m.(t). At long time the an-
tisymmetric stress P must be proportional to
P(s =0). However, since the angular velocity is
free to attain its steady-state value co = —, V )& u, we

know that at long time the sprain rate, and there-
fore the antisymmetric stress, are zero.

This proves that the Kubo transform of the an-
tisymmetric stress autocorrelation function is zero
at zero frequency. This agrees with the ZBBR
prediction. It also shows that the Kubo function
P(s) is the susceptibility of the vortex-induced pro-
cesses where the intrinsic angular velocity is "free."

We have shown that computer simulation sup-

g„o /&m a=0.044, respectively.
The calculation procedure for vortex viscosity

using nonequilibrium molecular dynamics has been
described in detail before. ' We just report here
the result for our system; namely, after 4000 time
steps we found

g,o. /V'me=0. 045+0.01 .

We note the agreement within statistical uncertain-
ties of this nonequilibrium result calculated direct-
ly, with the equilibrium ZBBR value.

Other consistency checks can be carried out; Eq.
(12) shows that P(s =0)=0. This is precisely what
is observed in Fig. 1. Further, we can use use the
ZBBR equations to calculate the asymptotic rate at
which this Kubo function P(s) goes to zero. If
g, (s) is continuous near s =0 then
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ports the correctness of the ZBBR equation at least

as it pertains to vortex viscosity. (These results do
show that the Markovian analysis used by Evans
and Streett is incorrect in its prediction that vor-

tex viscosity has a conventional Kubo-Green rela-

tion). Although these calculations are specific to
vortex viscosity their implications have consider-

able generality. This is the first time a test has

been made of the validity of the ZBBR equation
for any fast transport coefficient.
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The derivation of Eq. (1) is now standard. Our nota-
tion is that of B. J. Berne, Statistical Mechanics, Part
B: Time Dependent Processes (Plenum, New York,
1977), Chap. 5.
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