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The force acting on a Clausius-Mossotti fluid in an electromagnetic field is evaluated

microscopically. Owing to the modification of the two-particle density by the electric
WM) .

field, an additional mechanical force 6 f is found. When this is added to the electrical
WE)

force f, the total force in the static case becomes identical to that deduced macroscopi-

cally by Helmholtz. The analysis is extended to various time-dependent cases, and it is
WM)

pointed out that 6 f essentially assumes its static value on time scales longer than T„
the relaxation time of the two-particle density, but is otherwise negligibly small ~ Thus
Peierls's theory of the momentum of light is valid only for pulses much shorter than T„'

(M) .
the necessary correction due to 5 f in other cases is given and discussed.

I. INTRODUCTION

The force density in a dielectric fluid under the
action of an arbitrary electromagnetic field is the
subject of a long controversy. Many different

points of view and different results, derived either
macroscopically or microscopically, have appeared
in the literature and can be found in recent re-
views. '

Among the macroscopically derived results, the
one first obtained by Helmholtz for the electro-
static case has strong support from both theory
and experiment, ' and is now widely accepted.
The result may be stated as the following condition
for equilibrium:

V'ap(p, T)= ——( V'e)E +—V' p E
Bp

f(.Hj

where e and p are, respectively, the dielectric con-
stant and the number density of the fluid, E is the
macroscopic field, f' ' is the so-called Helmholtz
force density, and ~p(p, T) should be taken to be
the same pressure function of p and the tempera-
ture T as in the absence of the electric field —a
point which is sometimes not made explicit, but
which will turn out to be of crucial significance.
Generalization of (1) to time-varying situations ' '

has been attempted, but the results often lack a
sound justification and a clear statement of the re-
gimes of applicability.

Parallel to the macroscopic consideration, the
microscopic approach to the problem, which starts
from the fundamental laws at the molecular or
atomic level, has been adopted by several authors.
For the electrostatic case, attempts to derive (1)
microscopically have met with little success and
doubts have been raised whether this can really be
done microscopically. ' For the time-varying case,
Gordon has succeeded in solving the problem to
first order in (E' —E'p), which amounts to neglecting
dipole-dipole interactions. These interactions were
later treated by Peierls' and others, "who also dis-
cussed the associated problem of the momentum of
light.

The present paper presents a microscopic theory
of force density in a dielectric fluid for both the
static case and the time-varying case. The work is
motivated by the observation that the microscopic
viewpoint of Peierls and others' "is also applica-
ble to the static case but does not by itself lead to
(1). We show that the presence of an electric field
in a dielectric makes two distinct contributions to
the force density, both proportional to E: (i) f' ',

the electrical force density which is essentially that
of Peierls generalized to include density inhomo-
geneity, and (ii) 6 f' ', which is the additional
mechanical intermolecular force density due to the
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modification of the two-particle density by the elec-
tric field. We are able to show that, in the static
case,

f(H) f(E)+Q f(M)

and thus provide, for the first time, a microscopic
justification of (1). This demonstration is given in

Sec. II. With the extra term Af' ' which was pre-
viously neglected, ' '" a number of time-dependent
cases are studied in Sec. III, followed by a discus-
sion on the momentum of light in Sec. IV. Some
discussion and concluding remarks are given in

Sec. V. The whole paper is restricted to a linear,
isotropic, nonpolar, and nonmagnetic fluid which

obeys the Clausius-Mossotti equation, and only
2terms up to E will be considered. Furthermore,

molecular multipole moments of higher order than
the dipole shall be neglected.

II. ELECTROSTATIC CASE

We first consider a dielectric fluid with a single
species of molecules under the action of an electro-
static field. The dynamical response is described

by the exact momentum balance equation

p (mV)+ V' m pF(r)
dt

ence. ) We write the two-particle density as

(2) (&)+g (2)

where po
' is the two-particle density taken to be

the same function of p and T as in the absence of
the electromagnetic field, and Ap' ' is the change
caused by the field. Then (2) can be put into the
following form:

p
—(mV)+ V m

' — X ' 'dr' = f' '+Af'
dt i2 po

where

f' ' —(P.V)E' '+ JX' ' ' 'dr ',
with the polarization P=pp, and

5f =g"X 6 ' 'dp r

(4)

In the derivation, we have neglected terms of the
order higher than E, noting that p, is first order in

E, and X' ' is second order in E. Both f' ' and
6 f' ' are caused by the field, but it is clear that
f' ' is entirely an electric force, while hf' ' is the
additional mechanical force density due to the
modification of the two-particle density by the
field.

To evaluate f' ', we note that the equilibrium
field-free po

' may be written as

+fX,~ p' '( r, r ')d r ', (2) po
' ——p(r )p(r ') exp[ —PU(

~

r —r '
~
)],

where p is the number density, m is the mass of a
molecule, V is the macroscopic fluid velocity, m

is the kinetic pressure stress, F(r ) is the external
force on a particle at r, X&2 is the intermolecular
force acting on a molecule at r due to another
molecule at r ', and p' ' is the two-particle density,
normalized to

Jp' '(r, r ')dr =(N —1)p(r),

with N being the total number of particles in the
system.

The force X consists of an electric part X' ' due
to the dipole-dipole interaction and a mechanical
short-range part X' ' which may be described by a
potential 4' '(

~

r —r '
~

) satisfying 4' '(0)= ao and
N' '( ao ) =0. The external force is (p V )E' ',
where p is the dipole moment of the molecule at
r, and E' ' is the external field. (Nonelectromag-
netic external forces, if any, do not affect the fol-
lowing derivation and will be ignored for conveni-

where P=(kT) ', and U is the potential of the
mean force on a molecule at r with a second
molecule at r . U is not equal to 4' ', in general.
If we split it into

po ——p( r )p( r ')

—p(r)p(r ')[1—exp( —PU)],

and note that the explicit form for X' ' is

where

Eq. (4) becomes

I '=(P V)E;
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where

E=E' '+ JP(r') V', dr'
4irep

is the field produced by external charges and the
average polarization, and is therefore just the usual

macroscopic field. The separation of f' ' into two
terms in (10), corresponding to the separation of

po
' in (7), is nothing but the usual "plug subtrac-

tion" prescription for calculating the effective field

E,~ here established with greater precision and

moreover generalized to the effective-field gradient.
The important point is that by using the macro-

scopic field E rather than the external field E' '

[compare the first term of (4} and (10)], all long-
range effects are already taken into account, and
the remaining plug contribution is from nearby
sources only. This observation mill be of some im-
portance when we come to time-dependent cases.

The remaining integral in (10) is evaluted in Ap-
pendix A. The result is

I
(P; V .P.+P.V;P. +P V'.P; ),

5E'0

which is independent of U provided that the range
of U is macroscopically negligible. Putting this
into (10) and using P=(e—e)E, we obtain after a
little algebra,

f '= —, (V;e)E—+VJ —,(e—ep)E 5J+ ( , E;Eq+ —„—E5J) (e —ep)[—EX(V XE)]; . (13)

The last term is, of course, zero in the static case,
but me nevertheless retain it here for the purpose of
later generalizing to the time-dependent case.

This force density is the same as the electrical
force arising from (p V)E,~ found by Peierls' in

the homogeneous case. However, the E;Ej term in

(13) implies that there can be a tangential surface
force on the surface of a dielectric medium. This
is already a signal that f' ' cannot be the only
force caused by the presence of the field, since such

a tangential force, if not canceled by some other
contribution, would be unphysical since it cannot
be balanced by pressure forces.

To evaluate b f' ', we note that p' ' is an equili-

brium two-particle density. Furthermore, X' ' in

(5) is a short-range force which is only significant
at a distance of the order of a molecular size, and

at such small distances the static two-particle den-

sity is determined mainly by the bare interparticle
potential without modification by the presence of
other particles. %'e may, therefore, write

p'2'(r, r ')=p(r)p(r ') exp[ —P(4' '+4&' ')]

(14)

so that, to order E,
gp(&) Pp( r )p( r )@(E)exp( P@(si}

(15)

where

4' '=pj(r)pk(r ')(g 5jk —3(gk)/pep('

I.
is the potential due to the dipole-dipole interaction.
Putting (15) and (16) into (5), and changing r ' to
r+g, we have

~f; = 4, f~k(r+4}(( 5Jk 3(gk}—
Pi(r) z

X — e ~ dg. (17)6

The integral can be performed in a similar may as
in Appendix A, arid leads to

tMI( ) p'

which again contains a tangential surface force
across dielectric boundaries but is nevertheless ex-

pressible as a divergence of a tensor, the latter

property being a consequence of the internal origin
of the force density.

It is of interest to point out that 6 f' ', in its fi-
nal form, is independent of the details of 4' '.
This may at first appear surprising since short-
range collisional effects mould normally go as 8 T,
R being a typical molecular dimension (see, for ex-
ample, Appendix 8). The point is that the dipole-
dipole interaction modifies p' ' by an extra term
proportional to P4'~'-(Air') ', and this is the
basic physical reason why 5 f' ' assumes such a
simple form.

With the explicit form in (18), me now go back
to (3). In the static situation the momentum distri-
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bution is Maxwellian, so by definition of pp
' the

quantity in large parentheses in (3) has the proper-
ty that it is the same function of p and T as in the
case of zero field. In this trivial case
( f' '=6 f' '=0), the large parentheses must be
the gradient of the total pressure, namely, Vm.p,

and by the property just mentioned, it remains
V~p even when there is an electromagnetic field.

Although this argument is completely general, we
present an independent derivation in Appendix B,
where m.

p is explicitly evaluated and shown to be in
agreement with the standard formula. The right-
hand side of (3) can now be obtained by adding
(13) and (18) and dropping the V XE term; note
that the E;E~ term, and with it the tangential sur-
face force, exactly cancels:

(E) (~)f +5 f = — ( VE)E +V (e—&p)+2 6 6p
(19)

For a fluid satisfying the Clausius-Mossotti rela-
tion, it is now a straightforward matter to show
that (19) is, in fact, identical to f' ' in (1). Thus,
we have achieved a microscopic understanding of
the Helmholtz force density. This is of consider-
able interest in itself, but more importantly, the
success of the derivation validates the microscopic
point of view and allows us to go on to time-
dependent cases with confidence.

III. TIME-DEPENDENT CASES

To generalize to time-dependent cases, it is
necessary to take into account (i) time dependence
of the electric field, (ii) the effect of the magnetic
field, and (iii) the dynamical response of the fluid.
The first two effects modify f' ' (now defined to
be the electromagnetic force density), while the last
will be relevant for 6 f' '. Although the first two
effects are not novel, ' "it is nevertheless profit-
able to spell out in some detail the physical justifi-
cations for the very simple results that are ob-
tained.

A. Time dependence of electric field

When the electric field is time dependent, the ef-

fect of one dipole on another [e.g., (8) and (16)]
must be evaluated taking retardation into account.
However, the contributions from the distant dipoles
are treated exactly —including retardation —by ex-
pressing the result in terms of the macroscopic
field. The remaining effects (i.e., the plug term),
being of a short-range nature, do not suffer any ap-
preciable retardation since we shall be concerned
exclusively with electromagnetic wavelengths A.

much greater than molecular dimensions R. Thus,
the contributions of electrical forces to f' ' remains
the same as in (13).

Of course when the fields are time dependent,
the last term in (13) is no longer zero, but becomes

BB
(e—ep)EX

at
' (20)

B. Magnetic field

The magnetic field exerts a force on each dipole
given by

Bp XB,gat

where B,~ is the effective (i.e., actual rather than

spatially averaged) field at the position of the di-

pole, due to all sources other than the dipole itself.
We shall shortly see that B,z may be replaced by
the macroscopic field B, and this leads to a force
density

aP - aE
XB=(~—~p) XB,

at at
(21)

and when this is combined with (20), we get

(e—ep) —(EXB) .' at
(22)

The differences between Bd~ and B is directly
analogous to that between Ed~ and E and may be
accounted for by performing the plug subtraction,
which is due to the currents, namely, BP/Bt, in the
plug. But it is not difficult to see that a plug of
dimension R whose polarization P is oscillating at
a frequency co produces a near-zone magnetic field
proportional to coR /c-R /1, , which is therefore
negligible. This is the reason why Bd~ can be free-

gl
replaced by B (while E,rr cannot be replaced by

E).
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C. Response Of the fluid

To discuss the fluid response it is necessary to
pay attention to several time scales in the problem.
Time-dependent Adds may, in general, be charac-
terized by the field oscillation period Tp and the
intensity variation time of the pulse Tq, with

Tp « T~. The particle distributions respond over

certain relaxation times. In particular, the two-

particle density relaxes in a time which may be
identified with the time in a collision T, . For ex-

ample, at room temperatures, T, is typically 10
s for a liquid. Depending on the magnitude of T,
compared with Tp and Tz, three eases may be dis-

tinguished which are amenable to simple treatment:

Tp«(TJ (2) Tp(«~e( «~I and (

Tp ( (Tg ((T,. There is, in fact, a fourth
characteristic time, namely, the time required for

an individual dipole to respond to the electric field,

but for induced dipoles this is limited only by the
inertia of electrons and can usually be neglected.
This amounts to assuming e is real, or physically
that the medium is transparent.

(1) T, « Tp « Tq. Such situations may be
described as quasistatic, in the sense that the two-

particle density assumes the equilibrium functional

form under the instantaneous fields. The results of
the previous section [now including the

(e eo—)B(EXB)/Bt term] can be applied at every

instant, i.e., the total force density f caused by the
field or the right-hand side of (3) is

2
—+ ] -+ —+2 ~

& 1 (6 E'o) —+&f = ——,(7'e)E + V —(e—e )+— E
2

(24)

(2) Tz « T, « Tt. When the fields oscillate much faster than the fluid can respond, the molecules are

effectively experiencing time averaged dipole-dipole forces which vary on a time scale of Tz. In every time

interval T„ the averaged forces may be considered constant and the two-particle density takes the equilibri-

um value given by (14), with 4' ' replaced by its time-averaged value. The evaluation of b, f ' is thus

unaffected. The total force density is, therefore,

f = ——(W' e)(E')r+ V —(e—e,)+— (E')r +(e—eo)—(EXB)r,
2

where ( )r denotes averaging over T,
(3) Tp « TJ &(T, . In this case, the evaluation of f' ' is the same as in case (2). But during the time of

the pulse Tq, the two-particle density does not have enough time to respond to the fields but essentially re-

tains its original value in the absence of the fields. In particular, bp' '=0 and hence 6 f' '=0, and

f; =f '= , ((t;e)E +7;———,(e—eo)E 5"+
(e —e )( o)

which agrees with the result of Peierls' in the

homogeneous case.
The above do not exhaust all possibilities; how-

ever, other cases cannot be treated without solving

the time-dependent kinetic equations dynamically.

Perhaps the most important point of this section is

the distinction between cases (2) and (3), which

may be summarized as follows: Of the two forces
f' ' and 5 f' ', the latter depends on a change in

the two-partic1e density and therfore does not as-

sume the value given in (18) until a time of order

Tf 0

IV. MOMENTUM OF LIGHT

An electromagnetic wave traveling in vacuum

carries a momentum density

+

g,
' =eoE'&8',

where E' and 8' are the microscopic fields, whose

gsatial averages are the macroscopic fields E and

B. If g, is the spatial average (denoted by ( )&)
of g,', then

g, =eg, XB+e,(5EX5B)s,

where 5E and 58 are the Auctuations

5E=E' —E, 58=8' —8 .

If spatial averages are defined over a typical dis-

tance L which is microscopically large (R «(L)
and macroscopically small (L « A, ), then it is

clear that 5E and 5B are produced only by sources

within a distance of order L. But since L «& A., a11
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such contributions may be evaluated quasistatical-

ly, i.e., in a manner which makes no reference to
the direction of wave propagation. In the absence
of any preferred direction, clearly (5EX5B)s ——0,
and

momentum and (pressure waves aside) returns the

medium to rest. Thus, the momentum density in

the medium travels with the pulse, and the magni-

tude of the momentum can be obtained by integrat-

ing (30) from the infinite past:

g, =epEXB

Now consider a plane wave traveling in the z
direction,

(27)

so

g ~—[—', (n~ —1)——,(n~ —1)i](I/c )e, ,

(31)

nEXB=—E e, ,c

where n is the refractive index. It is convenient to
average over several cycles and write the result in
terms of the intensity I:

I=mone(E')T,

and thus

g, =(I/c )e, . (28)

Equation (27), or equivalently Eq. (28), was first

proposed by Abraham' and is widely accepted as
the correct expression for the momentum residing
in the electromagnetic field. ' '

However, there is some momentum g,d residing
in the medium which nevertheless travels along
with the wave, and one is often interested in the
total momentum density

g gem+ gmed (29)

= [—,(n —1)—, (n ~ 1)~]——— (30)

This is positive (for n not too large) at the leading
edge of the pulse and imparts a positive momen-
tum to the medium. The negative force at the
trailing edge of the pulse exactly removes this

With the knowledge of the force acting on the
medium, it is now straightforward to compute g,d

and hence g. The pressure force is of no concern
here, because the momentum associated with the
acoustic pulse propagates much slower than the
electromagnetic pulse and can therefore be separat-
ed out.

Cases (I) and (2). Although case (1) is not nor-
rnally encountered in the case of light, it is forrnal-

ly the same as case (2) and will therefore be treated
together. Inside a uniform medium ( V'@=0) and
averaging over several cycles, both (23) and (24) be-
corne

f,=[ i (n —1)+ , (n —1)—]——+(n —1)——1 al , 1 al
nc Bz c~ Bt

g=[ —,(n +1)——,(n —1) ](I/c )e, . (32)

This result applies to most experimental situations,

e.g., nanosecond light pulses incident on a liquid.
Case (3). The force density is now given by (25),

but for the force along the direction of propagation,

E;Ej does not contribute since the wave is
transverse. The only difference from cases (1) and

(2) is that the term —,E 5,
&

becomes &pE $tj and

consequently

g=[—,(n +1)—„(n —1) ]—(I/c )e, . (33)

This was the result obtained by Peierls. ' '" Our
derivations however, makes it clear that (33) is ap-

plicable only for very short pulses, e.g., for liquids

with T, —10 ' s, the pulse length must be shorter

than, for example, 10 ' s, which, though theoreti-

cally possible, is not yet feasible in practice.
All these results are strictly valid only for plane

waves. For waves of finite breadth, (E )T falls off
at the edges of the beam and either (23), (24), or
(25) implies lateral forces in these regions. "'
These forces result in an extra momentum density

in the form of a pressure wave, which is not in-

cluded in (32) or (33). Experiments meant to test
these equations must be designed to be able to
segregate g (which travels at c/n) from pressure
waves (which travels at acoustical velocity), a cru-
cial point which is sometimes overlooked. ' More-
over, in cases where two beams overlap (e.g., a
beam together with its own reflection), it is not, in

general, correct to simply add up the individual
momentum densities' on account of interference
effects. ' In such cases it is perhaps more il-
luminating to work directly from the force density
(24) or (25) rather than to resort to the concept of
the momentum density of light.

The above derivation of the momentum density
relies on the knowledge of terms of the form V (E )

in f. To close this section we present an alterna-
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tive derivation which relies on terms of the type
(Ve} in f," thus providing a nice self-consistency
check on f.

Consider a beam normally incident onto the
dielectric fluid from vacuum. If the incident, re-

flected and transmitted momentum fluxes are P;,
P„and P„, then

where now e refers to the value in the fluid.
2

& E )q is continuous across the boundary and may
be thought of as the value in the transmitted beam.
In an obvious notation

In (34) F, is the force per unit area pushing into
the surface:

F, = —J n fdz,

where z =0 is the surface and n is the outward
normal of the fluid. The only relevant terms in f
are, for case (2),

n —1 &-2)
2

and putting all these into (34} gives

e
tr= gtr

n

=so[ —,(n'+1) ——,(n —1)2]&E')r

leading to

1 (e—&o)F &E2)
6 eo

from which (32) for g in the transmitted beam fol-
lows immediately. The derivation for case (3) is

] ]
identical, with —, replaced by —„.

V. DISCUSSION AND CONCI. USION

The Clausius-Mossotti relation is usually derived for a homogeneous medium ( ]()t'p=0) and a few words

on its more general applicability are in order. These remarks should also clarify how our calculation of f' '

is related to the effective-field gradient' '" and how this is, in turn, related to the concept of the effective

field familiar from the usual derivation of the Clausius-Mossotti relation.

Consider a dipole with its center at r. The basic ingredient of the Clausius-Mossotti relation and of our

derivation of f' ' is the effective field (i.e., the field due to all sources except the dipole at r) at a point r+ f
near r:

where E' ' is the external field and the second term is obviously the field due to all the other dipoles at vari-

ous points r '. Since we are interested in contributions linear in E, p' '(r, r ') may be replaced by po '( r, r ')

as given in (6} or (7). Thus (36) reduces to

E it{r+r))=E(r+ri)+ J(1—e ~ '~')P{r ') 7' dr ',
4ireo

where g= r ' —r, and E is the macroscopic field

given in (11). For deriving the Clausius-Mossotti

equation we only need E,g right at the center of
the dipole, so putting q =0 and evaluating (37) in

the same way as the first integral in (A1), we get
the usual result

E,it{r) =E( r)+P{r)/3' (38

I

whether or not the medium is homogeneous.
On the other hand, for the purpose of evaluating

the electrical force on the dipole, we need (V;Ej ),&
at g =0,which should be calculated by differentiat-

ing (37) and evaluating the result at q =0. This is
basically what we did in Sec. II. [Compare the last
term in (10) with the derivative of the last term in
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(37)]. What should not be done is to differentiate

(38), since this equation holds at only one point,
and to equate the derivatives of the two sides

would be totally incorrect. Had one attempted
this, one would have obtained the following errone-

ous result for the static case:

f' '=(P V)(E+P/360) .

Additional points

(1) The momentum of light for a dispersive but

nonabsorbing medium can be treated most simply
via the surface force as in Eqs. (34) to (35). In
such a derivation, there is no need to "switch on"
the intensity and one can therefore imagine that
the wave is strictly monochromatic, so that disper-

sion has absolutely no effect. The only difference

occurs in (35), where now

C
tr gtr ~

ng

where ng is the so-called group refractive index,

and elng is the group velocity. This shows that g
given in (32) and (33) should, in general, be

corrected by multiplying by ng/n.
To derive the same result by integrating the

force density from the infinite past [as in Eq. (30)

to (32)] is somewhat more tedious, since it is now

no longer permissible to ignore the adiabatic

switching on and the consequent nonzero width in

the frequency distribution, as well as the variation

of e over this distribution. We have, however, veri-

fied that exactly the same correction factor is ob-

tained.
(2). The fact that the medium has a momentum

density g,s [e.g., Eq. (31)] means that it must also

have a corresponding energy flux

2
~med g med~

representing the transport of rest energy. Since the

purely electromagnetic energy flux S, and

momentum density g, satisfy a similar relation,

so do the total energy flux S and total momentum

density g:

S=gc

and the total energy-momentum tensor is therefore
symmetric.

(3) It has been brought to our attention that
one-tenth picosecond light pulses has recently been

reported, ' which may eventually permit an experi-

mental test of case (3).
In conclusion, we have presented a microscopic

theory of the force density in a dielectric fluid

under the action of an arbitrary electromagnetic

field. The force caused by the field consists of two

distinctive parts. The first, denoted by f' ', is an

electromagnetic force while the second, denoted by

5 f ' ' in (5), is an additional mechanical force due

to the modification of the two-particle density by

the field. In the static case, these two forces add

up to give the Helmholtz force in (1). Equation (1)
is sometimes interpreted as the balance between a

mechanical force —Vmo and an electrical force
f' ', the present work shows this to be incorrect.

In fact, the balance is between the mechanial force
—V~0+ 4 f and the electrical force f '. To
the best of our knowledge, this is the first time that

such a microscopic derivation has been given. In

the quasistatic case, where the field oscillation

period is much longer than the relaxation time T,
for the two-particle density, the force density is

given by (23). This expression has, in fact, ap-

peared in the literature, ' but there seems to be no

reliable derivation and no precise specification of
the regime of applicability. In the case of a rapidly

oscillating field with a slowly varying intensity, the

force density is given by (24). Most experiments

with optical pulses should fall into this category.

Finally, for a wave pulse much shorter than T„
the two-particle density remains essentially un-

(E)
changed and the force is simply f' '. Peierls's

theory of the momentum of light is valid only in

this last case.
Thus, the understanding of this age-old problem

has been enhanced and unified, not only in terms

of the different time scales involved, but also in

terms of the two different approaches, i.e., thermo-

dynamic versus microscopic.

APPENDIX A: EVALUATION OF
THE INTEGRAL IN (10)

Taking VJ out of the integral, we have

P) V. (1—e ~ )Pk(r ')Vj, —dr '

—IVJ (1—e ~ )Pk(r ')Vk —
3

dr '

(Al)

Now since U(
~

r —r '
~

) is a short-range potential

we may let
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P(r')=P(r)+(g V)P(r) (A2)

in the integrand, where the neglected terms are of
the order of R /L or higher, R being the molecu-
lar size, and L the characteristic macroscopic
length. We then notice that only the first term in
(A2) contributes to the first integral in (A1),
whereas only the second term contributes to the
second integral. Transforming dr ' to dg and V'

to c)/t) g, the first integral may be simplified by an
integration by parts and the second integral may be
more easily handled by putting Vl = —t)/t)gt.
Equation (A1) then becomes

VtPkf —', e ~ dg
4~en ' '

g3 agk

2
f k&k —3kb a

i k f (5 Igg.

Using spherical coordinates, these two integrals can
be readily performed if the angular part is carried
out before the radial part and noting that

f e ~ dg=l .
d

The final result is simply (12).

in the static case. Since B4"/Br is short ranged,

po
' is mainly determined by the bare interparticle

potential, i.e.,

pIi
' ——p(r)p(r ') exp[ —P4"'(

~

r —r '
~
)] .

The integral in (B1) thus becomes

—p(r) fp(r') [1—exp( —P4"')]dr'.
Br

(B2)

Changing 8/Br to —8/Br ', and after an integra-
tion by parts, (B2) reduces to

—p(r) f [1—exp( —P4'")] p(r ')dr ' .Br'

Since the expansion of P(r ) in (A2) applies simi-
larly to p(r '), we get

kTp(r) p(r) f I 1 —exp[ —P@'"(g)]]dg,
Br

where change of dr ' to dg has been inade. Equa-
tion (B1) can be finally written as

APPENDIX B: EVALUATION OF wp

The left-hand side of (3) is

(s)
p B4 (2)d (B1)

kT
V pkT+ f [1—exp( P4")]dg—

2

The quantity is readily recognized as the pressure
in the absence of electric fields including the con-
tribution of the second virial coefficient.
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