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A class of exactly solvable nonlinear stochastic models with multiplicative Gaussian

white noise is here solved by a method of linear imbedding. The models describe a con-
tinuous instability with fluctuations of the bifurcation parameter. The method of solution
is a generalization of an idea, originally introduced by Carleman for the solution of deter-

ministic rate equations. Our application of this method to the stochastic models studied
here provides further insight into the applicability of the method. The solutions we find
are compared with results, which have been obtained earlier by Fokker-Planck methods.
Complete agreement with the Fokker-Planck results is found, contrary to recent claims by
Brenig and Banai and also in disagreement with recent results of Suzuki et al. The
method presented here also allows us, for the first time, to obtain solutions in a domain
of parameter space where the Fokker-Planck equation has not been solved as yet.

I. INTRODUCTION with the rates

with b) 0 and d changing sign at the instability.
The stable time-independent solution of (1.1) is
given by

' 1/2
d+
b

for d &0

for d )0.
(1.2)

The relaxation of small deviations 5x from these
states is exponential

Instabilities in macroscopic systems driven far
from thermodynamic equilibrium have become an
important field of study. ' It is well known, that
the first instability encountered in many systems, if
driven away from equilibrium, is a continuous
symmetry-breaking instability. The phenomenolo-

gy of such instabilities is like that of second-order
phase transitions. ' We will only consider here
the simplest case, where the order parameter has
one component and can be represented by a real
variable x. Quite frequently the spatial extensions
of the system under study and its correlation
length near the instability are comparable, and spa-
tial variations of the order parameter can therefore
be neglected. The system is then "zero-
dimensional. " If there are no fluctuations, a
mean-field treatment of the instability is entirely
appropriate. The simplest equation of motion for
x is then given by the Landau theory

x =dx —bx

A, = —d for d &0

A, =2d for d )0.
(1.4)

Thus, a sharp continuous transition (bifurcation) at
d=0 results with a critical slowing down and clas-
sical exponents given by the Landau theory. How
this transition is modified is well known if thermal
fluctuations are added to the picture: Because the
system is zero dimensional the sharp transition
disappears and is replaced by a smooth gradual
change. Usually, however, this is a tiny effect if
the zero-dimensional system is already macroscop-
ic, and will be neglected henceforth. Instead, we
are here interested in other fluctuations of presum-
ably much bigger strength. We assume here that
such fluctuations result from a limited control over
the parameter d.

Indeed, quite often the value of d in Eq. (1.1) is
itself the result of a dynamical process, which oc-
curs on a much faster time scale than the time
scale set by d itself. In such cases d is not truly
constant in time, but has to be replaced by a ran-
dom process

d~d+F(t)
with a correlation time much shorter than the time
scale set by d. We will assume that F(t) has zero
average, is 5 correlated in time, and is Gaussian, i.e.,

(F(t)) =0,
(1.6)

(F(t)F(0))=Q5(t) .

5x =5xoe (1.3) These are, of course, idealizations, abstracted from
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A, =d /2Q (1.8)

for d&0. For d&0, they also found A, =di/2Q.
However, the eigenfunctions of the Fokker-Planck
operator in that domain were not normalizable,
and thus no safe conclusions about the relaxation
rates could be drawn. For d &0, no additional
points of critical slowing down were found by the
Fokker-Planck analysis. Therefore, if transition
points are defined either by the appearance of an

functions F(t}varying continuously in time.
Hence, the stochastic differential equation obtained
from Eq. (1.1}by (1.5),

x =dx bx—'+xF(t), (1.7)

has to be interpreted in the sense of Stratonovich
or else must be transformed to the Ito representa-

tion of stochastic calculus.
One may now ask how the sharp bifurcation of

Eq. (1.1) is changed by the fluctuations via Eqs.
(1.5) and (1.6). Various different answers to this
question have been given in the literature.

(1) By looking at the time-dependent steady-state
probability distribution associated with Eq. (1.5),
Horsthemke et al. have argued that Eq. (1.5) de-

scribes a sharp "noise-induced transition" at some
finite positive value of d (d=Q/2), which is not
present in the deterministic problem. The transi-
tion is defined to occur at that value of d, where
the steady-state probability density Wo(x) develops
a maximum (i.e., a most probable value) at some
nonvanishing value of x. This value of x was then
defined to represent the order parameter. The phy-
sical shortcoming of these definitions is that they

put emphasis only on the most probable value of x
in a situation, where the noise is supposed to be
crucial. The most probable value dominates the
probability distribution only if the noise becomes

very small, which is just the case where the
"noise-induced transition" disappears at d=O.
Thus the definition of a noise-induced transition

along these lines, while possible logically, is physi-

cally inconsistent. Instead the order parameter of
the system should be defined by a moment of the
steady-state distribution if the noise is really con-

sidered as important. If this is done, no noise-

induced transition is found. Instead, even in the

presence of the noise, the system has a sharp tran-

sition at d=O.
(2) Schenzle and Brand6 have solved exactly the

Fokker-Planck equation associated with Eq. (1.7}.
They found that the stochastic system still exhibits
a critical slowing down at d=O, which is modified,
however, into the rate

(x (t)x (0)}~, =(x ) . (1.9)

Since each eigenfunction contributes a positive
term to the sum rule, this finding proves that the
spectrum found by Schenzle and Brand is indeed
complete.

However, it would certainly be nice to have a
different exact method of solution, which would
proceed without explicit use of the disputed boun-
dary condition. Various approximate solutions of
Eq. (1.7} have been presented recently. 'o" The
purpose of this paper is to give just such an in-
dependent exact solution. The results obtained can
be compared with the Fokker-Planck results for
d & 0, and complete agreement is obtained. This
result presents a third, and perhaps the strongest,
argument against Suzuki's criticism and the
noise-induced transition for d & 0. As a nice by-
product, for d & 0 the new method leads to new
and somewhat surprising results. A solution of
Eq. (1.7) without use of the Fokker-Planck method
was already attempted by Brenig and Banai.
Indeed, the method of solution we want to present
here is based on the same idea as theirs, the linear

order parameter, defined as a moment of the
steady-state distribution, or as points of critical
slowing down, the noisy system only makes a tran-

sition at d=O, and a noise-induced transition does

not exist in this model.
(3}The results of Schenzle and Brand6 have re-

cently been criticized by Suzuki et al. and by
Brenig and Banai on different grounds. The criti-
cism of Suzuki was based on the boundary condi-
tions employed by Schenzle and Brand when solv-

ing the Fokker-Planck equation. Proposing a
weaker boundary condition Suzuki argued that new

solutions of the Fokker-Planck equation would be
allowed displaying a critical slowing down at cer-
tain values of d & 0, and a noise-induced transition
would reappear.

Up to now Suzuki's criticism could be refuted
on two grounds: (i) The weaker boundary condi-
tions he proposes (L, integrability of all solutions)
are not sufficient to impose a Hilbert space struc-
ture on the eigenvalue problem associated with the
Fokker-Planck equation, and to formulate a com-
pleteness relation for its eigenfunctions. Hence,
they give only an incomplete characterization of its
solutions.

(ii) It has been shown by direct calculation, that
the eigenfunctions found by Schenzle and Brand
completely exhaust the sum rule which follows
from the condition
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imbedding of Eq. (1.7). The difficulties inherent in
the linear imbedding of Eq. (1.7) will be discussed
in detail below and in the bulk of this paper.
These difficulties have not been surmounted in the
paper of Brenig and Banai, and consequently, they
led to incorrect conclusions. In particular, the
discrepancies with the Fokker-Planck results which
they reported, are entirely due to an incorrect
evaluation of the linear imbedding.

In the bulk of this paper we proceed in the fol-
lowing way. In Sec. II we introduce and illustrate
Carleman's method of linear imbedding for solving
the deterministic Eq. (1.1).' ' [This method has
also recently been applied to the Lorenz model of
thermal convection, however, with uncertain con-
clusions. ' For a very recent formulation of this
method for deterministic systems (cf. also Ref.
15).] The typical difficulties associated with this
method here already make their appearance: These
difficulties arise from the fact that the solution of
the problem is formally obtained as an infinite
series, whose radius of convergence covers only a
very small part of the physically important param-
eter space. In general, extensive resummations and
reorderings of the series have to be carried out, be-
fore a meaningful representation of the solution in
the entire parameter space is obtained. For the
deterministic problem the solution is obtained in
Sec. II in the form of a geometrical series, which
can be summed inside its radius of convergence,
and then be analytically continued to obtain the
solution in closed form.

In Sec. III, the stochastic problem of Eq. (1.7) is
reformulated by linear imbedding and formally
solved. The time-dependent moments and correla-
tion functions are represented again by infinite
series, whose radius of convergence decreases in
time and goes to zero for t~ oo. In Sec. IV the
forrnal series for the two-time correlation functions
in the steady state is summed up and represented
by a contour integral. In reordered form the repre-
sentation of the correlation functions obtained here
coincides exactly with their representation in terms
of the eigensolutions of the Fokker-Planck opera-
tor. The asymptotic form of the correlation func-
tions for t~ ~ is also evaluated in Sec. IV. In
Sec. V the analysis of Sec. IV is repeated for the
time-dependent moments. Exact expressions are
obtained for d & 0 and d &0. For d & 0 the results
are compared with the Fokker-Planck results and
complete agreement is obtained. For d &0
Fokker-Planck results for the moments are not yet
available. We show here that the moments for

d &0 in general decay in time by a sum of discrete
exponentials and an integral over a continuum of
exponentials. This result is surprising, since the
Fokker-Planck spectrum in that domain only con-
sists of a pure continuum. We show, however, that
no contradiction arises from this result. Section
VI contains a discussion of our results and the fi-
nal conclusions. How the exponential decay of
moments is reconciled with a continuous spectrum
of the Fokker-Planck operator is shown in Appen-
dix A by looking at the linear problem associated
with Eq. (1.7) for d &0. Appendix B contains a
brief summary of the Fokker-Planck results neces-
sary for a comparison with the results obtained
here.

Before proceeding further we choose in Eq. (1.7)
the special values b= 1 and Q=2 without restric-
tion of generality. Indeed, the equations

x =dx —x +xF(t),
(F(t)F(0) ) =25(t),

(1.10)

t~ iy Qt,

4bX~ X~
rQ

d~ d.4

1/2

(1 ~ 12)

II. LINEAR IMBEDDING OF THE
DETERMINISTIC PROBLEM

In order to introduce the method of Carleman
we first consider Eq. (1.1) for F=O. Its solution

by direct integration is
' 1/2

x(t) =
e —2dt+ 12

Xp

(2.1)

The same solution can be derived' introducing

2 5Vi =xsV2=x r ~ ~ .sVgg =x
~ ~ ~ ~ (2.2)

which we will solve is the scaled form of the whole
class of stochastic equations

x =dx —bx '+~+XF(t),

(F(t)F(0))=Q5(t) .

The results for the class of models (1.11) can be
obtained from our results by rescaling in our re-
sults
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and rewriting Eq. (1.1), with F=O, in the form

dy„

dt
=ndya nyni2, n =1,2,3, . . ., (2'3)

with the initial condition y„(0)=xo. The nonlinear

problem has thereby been replaced by a linear
problem with infinite number of dimensions. We
restrict attention to the domain x)0, and also
choose xp )0.

Equation (2.3) is easily solved by the Laplace
transformation

y„(A,)= I e 'y„(t)dt .

We obtain

(A, —nd)y„+ny +2 xo

or in matrix form,

(2.4)

(2 5)

A, —ld 1

0 A, —(1 +2}d
0 0

0 0 0 ~ ~

I+2 0 ~ ~ ~

A, —(I+4)d {I+4)
yl+2

yl+4

I
Xp

l+2
Xp

XXp
(2.6)

with l =1,2, . . . , .
By direct matrix inversion we obtain

Vl+4

1 —I l(1+2)
)I,—ld (t(,—Id) [A,—(I +2)d] (A, —Id) [t(,—(I +2)d] [A,—(I +4}d]

1 —(I +2)
A, —(1+2)d [A,—(I +2)d][A, —(I +4)d]

0 0
A, —(1 +4}d

l
Xp

X'+'Xp

1+4
Xp

(2.7)

i.e.,

yli2m =—
1+2m

Xp

2dI —+m
1

2

1I — +—+m+n+1
2d 2

1 1—+m+n I — +—+m

(2.8)

Inverting the Laplace transform by

1 t+l 00

yt+2ttt(t) = . dA, e 'yt+2ttt(A ),
27Tl

we obtain a formal solution as the double sum

{2.9)

n
tN CO

yt+2ttt (t) =xo+ g exp(l +2ttt +2k)dt
k=0 n=k

( —1) I —+m+n1

2

1I —+m I (k+1)I (n —k+1)
2

(2.10)

It should be noted that each term of the infinite
sum over k diverges for t~ 00 if d) 0. Therefore,
the formal solution has to be summed up before
letting t become large (if d )0), in order to obtain a
meaningful expression. In particular, for 1=2 and

m=0 we obtain

00 00 n Xp
y (t) x~&2dt y ( 1)ke2kdt y

k=0
(2.11)
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The finite sum over k is easily carried out with the
result

n
M Xp

y2(t) =xoe (1 e2dt)n

n=p

The domain of convergence of this series is

2
Xp

d
(1—e ') &1.

(2.13)

Thus, for d &0, the radius of convergence in the
complex xp plane vanishes as t~ ao.

Inside the domain of convergence, the infinite

sum over n may be carried out with the result

Exchanging the order of the two sums we obtain

n
m n n xp2dtg g( 1)k2kdt

n=pk=p k

(2.12)

values of the triangular matrix in Eq. (2.6), which

determine the time dependence of the individual
terms of the sum, are simply given by the matrix
elements on the diagonal; these are, due to Eq.
(2.3), just positive integer multiples of the eigen-
values of the original problem (1.1), linearized for
small amplitudes. For d & 0, such a linearization
introduces an exponentially diverging time depen-
dence, which in Eq. (1.1), is only stabilized by the
nonlinear term. However, since the eigenvalues are
independent of the nonlinear terms, each single
term in the infinite sum remains unstabilized. Sta-
bilization can occur only by mutual cancellation of
the individual terms in the sum. Thereby the
diverging exponential time dependence [e.g., in Eq.
(2.1 1)] can be changed into a finite converging time
dependence [e.g., in Eq. (2.14)]. These features are

typical for Carleman imbedding and will reappear
also in the treatment of the stochastic problem.

d
y2(t)=

(dx 1)e
—2dt+ 1

(2.14) III. LINEAR IMBEDDING OF THE
STOCHASTIC PROBLEM

From Eq. (2.14) the result (2.1) for arbitrary xp
and d follows by analytical continuation:

x(t) =[y2(t)]'~2. (2.15)

For the deterministic problem the solution by
linear imbedding is, of course, rather awkward and
much more complicated than the direct integration
of the nonlinear equation, and the method is there-
fore not particularly useful. However, the method

may have some advantages for the multidimension-

al case." The method proves also to be useful for
the stochastic problem, which will be considered in

this paper.
The most important point, which can be learned

from the preceding solution of the deterministic
problem is the following: The solution obtained by
linear imbedding in the form of an infinite series

(2.11) is, in general, purely formal. Each term of
this series may diverge for t~ ao in a domain of
parameter space where the solution it represents is

completely analytical. One has to realize, there-

fore, that the time dependence of each single term
in the series (2.11) has nothing whatsoever to do
with the time dependence of the solution represent-
ed by the entire sum. Rather, it is necessary to
formally sum up the series in some way, before
any meaningful conclusions can be drawn.

The reason for the "wrong" time dependence of
each term in the series (2.10) is a direct conse-
quence of the linear imbedding. Indeed, the eigen-

We now turn to the stochastic problem defined

by Eq. (1.10). A direct generalization of the linear

imbedding described in Sec. II is obtained by intro-

ducing the moments

y. (t) = &x "(t)& . (3.1)

Equations (1.10) are then equivalent to the linear
infinite hierarchy

yn(t) =n (d +n)yn nyn+2, n =1,2, . . . , . (3.2)

A comparison of Eq. (3.1) with Eq. (2.3) shows
that the triangular structure of the linear problem
has not been changed by the introduction of the
fluctuating force. This circumstance still allows

for an exact formal solution of the infinite hierar-

chy to be obtained, as was first noted by Brenig
and Banai. It is easy to see that choosing addi-

tive, rather than multiplicative, noise in Eq. (2.1)

destroys the triangular structure of the hierarchy
(3.2); the present methods of solution are therefore
not applicable to that case.

Equation (3.2) is now solved by the same steps
which led from Eq. (2.3) to Eq. (2.10). First, how-
ever, it is necessary to specify a suitable initial con-
dition for all moments yn(t) at t=O. In principle,
the moments of any desired initial probability dis-
tribution w (x) may be used. However, in order to
eliminate the necessity of solving Eqs. (3.2) anew
for every given initial distribution, it is best to
choose a 5 function w (x)=5(x —xp) at t=O, i.e.,
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yn(0) =xp. The results may then later be special-
ized to any desired initial distribution w(x) by
computing

f dxpy„(0)w (xp) .

Clearly, what we are calculating by using the ini-
tial condition y„(0)=xp are just the moments of
the conditional probability density of the stochastic
process under study.

By Laplace transformation and direct matrix
inversion we obtain

Vt+2

yl+4

1

A, —A,lp

—I

()(,—Atp)(A, —Aii)

1

1(l +2)
(A, —Rip)(A, —At))(iL —At2)

—(I +2)
(A.—At))(A, —At2)

1

12

~ ~ ~ Xp

l+2
Xp

„1+4Xp
(3.3)

yt+2 ——xp g ( —2xp)
n=p

X

lI —+m+n
2

lI —+m
2

where

ln =(l +2n)(d +l +2n) .

The components of Eq. (3.3) are

n+m

(3.4)

I

Equation (3.6) may be simplified formally by
carrying out the sum over k and obtaining

A, „t 2

yp(t)=x~p g n! 2

I ++n I n+p+-d
2 2

I + I 2n+p+-d
2 2

Inverting the Laplace transform we obtain

(3.5)
2

d Xp
X1F1 +n;p+ —+2n+1;

2

00 ~ln+m

yt ~ (t)=xp+
n=p np n1 nn —1

I —+m+kl
00 2

k=n lI —+m
2

( —2XO)k
X 7

~n n+1~n n+2 ~nk

where
(3.6)

~pq ~1m +p ~1m +q

= —4(q —p) q +p +l +2m +— . (3 7)
d
2

(3.8)

Throughout we use the standard notation for the
hypergeometric functions nF (cf. Ref. 16).

Equation (3.8) is in agreement with an expres-
sion derived by Brenig and Banai along somewhat
different lines. Let us note, however, that Eq. (3.8)
is still a purely forrnal expression and does not give
a true representation of (x + (t) ) for t & 0 by a
convergent series. Indeed, all A,ln+m for sufficient-
ly large n are positive due to Eq. (3.4), and hence
the corresponding terms in the sum (3.8) diverge
individually for large t. The reason for this
behavior has already been discussed for the deter-
rninistic solution. The same arguments apply to
the stochastic problem a fortiori, since the sign of
A,nm for sufficiently large n is always positive re-
gardless of the sign of d. The "eigennvalues" A,l„
appearing after linear imbedding are entirely deter-
mined by the linear part of the stochastic equation
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(xt'(t)x (0))= f dxowo(xo)x)yz(t) . (3.9)

Here wp(x) is the steady-state distribution of the
process. yz(t) is given by Eq. (3.8) and depends ex-

plicitly on the initial amplitude xp. The steady-
state distribution is given by

wp(x) =5(x) (3.10)

(1.10). They are therefore only mathematical con-

structs without any physical significance. In par-

ticular, these eigenvalues are different from and
not simply related to the eigenvalues appearing in

the Fokker-Planck solution after separation of the
time variable. Only the latter eigenvalues (which
are listed in Appendix B) are directly related to the
physical time dependence. We will show below

how the physical spectrum is obtained from the

purely formal solution (3.8).
Before doing so, it is useful to generate from Eq.

(3.8) a similarly formal representation of the sta-
tionary correlation functions, by

Using Eq. (3.10) we obtain, for d (0, p & 0, and

q&0,

(x~(t)xe(0)) =0. (3.13)

This simple result for the steady-state correlation
functions in the domain d & 0 must, of course, be
expected, if one looks at the stochastic differential

equation (1.10). For d & 0 the point x=0 is attrac-
tive. The only opposing forces are the fluctuations
xF(t) which become weak for small x and vanish

for x=O. Thus, the system is captured at x=O for
long times [i.e., wo(x) =5(x)] and remains there
forever. All correlation functions in the steady
state for d &0 must therefore vanish, and the only
domain of interest, as far as the stationary correla-
tion functions are concerned, is the domain d & 0.
A similar conclusion does not hold for the tran-
sient moments y„(t), which show nontrivial
behavior both for d & 0 and d &0.

For d & 0 the following formal representation of
the stationary correlation functions is obtained
after using Eqs. (3.8), (3.11), and (3.12) in Eq. (3.9):

for d &0, and

1

wo(x) =Nx" 'exp ——,x2,

with

Jy =2' r '(d /2)

for d &0 (cf. Appendix B).

(3.11)

(3.12)

with

2'~+ ' r(1 —q/2)x&(t)x&(0)
I (d/2)I (p/2)

00

X g —( —1)"e ~"

n=p ". (3.14)

Cn

I +n I p+ —+n I +—+n I n+ —+-d p+q d p d
2 2 2 2 2 4

r p +n+1 r p q+n+1p+d
2 2

(3.15)

Again, the purely formal nature of this representation of the correlation function must be stressed. It is
signaled by the divergence of the exponentials in Eq. (3.14) for t~ oo, where the correlation functions
should relax to simple constants given by (x~) (x~). Another signal is the apparent divergence of
I'(1 —q/2) in Eq. (3.14) for the q=2n, n 5 1 integer, where the correlation functions are not expected to
display any anomalous behavior. It is therefore clear, that the infinite series in (3.14) has to be resummed

and reordered, before a true representation of the correlation functions is obtained. This will be done in the
following section.

IV. TWO-TIME CORRELATION FUNCTIONS IN THE STEADY STATE

A. General expressions

After Gaussian linearization of the exponent of exp'~„t with respect to n by

e ~" = f dgexp[ —g +2/(p+2n)V t +(p+2n)d t], (4.1)
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the formal series (3.14) can be summed up under the g integral. We obtain for d & 0 and q+2,

with

( ~(r) s(0})=

I' 1 —+ I p+ —+1 I + +—(2}'t'+s'd + d
2 2 2 2

r

r d r~+d+lr~
2 2 2

F(r) (4.2)

F(t)= J dge &+@' '+t' '

x~, &,p+ d, p+q+, &+ "+I;&—+ ",p+—"+I, p q+I; — p(4gt/r+2dr)

(4.3)

We now represent the hypergeometric function sF3 by a Mellin-Barnes integral, ' whereupon the integral
over g can be done. We obtain

(x~(r)xe(0) ) =
2(P +g)/2+ &r

e (d /4)t —4+t(syd/4 P+/)2l ( s) + +E—i ao 27Tl 4 2

++s 1 p+ —+s I' +—+sd p+q d
2 2 2 2

r L+—+s+1 r +s+1d
2 2 2

(4.4)

where the contour of integration is chosen such,
that all poles of I'( —s) (i.e., s =0, 1,2, . . . , } are
to its right and all other poles of the integrand are
to its left (cf. Fig. 1). Equation (4.4) is equivalent

to Eqs. (3.14) and (3.15). Indeed, all that has been

done is the replacement of the sum over all posi-
tive integers in Eq. (3.14}by a contour integral
over s from i DD to +i GD in Eq. —(4.4}, which cir-
cles the poles of I ( —s}. The direct correspondence
between the integrand and the sum is obvious.

I

However, the integral representation can now also
be used in domains of parameter space, where the
original sum did not converge. In order to simpli-

fy the integrand we introduce the integration vari-
able K by

d g
S =EK—

4 2
(4.5)

All poles of I'( ia+d/4+—p/2) then have to be to
the right of the contour of integration, while all
other poles have to be to its left. Let us now de-
form the integration contour for K in such a way
that the contour is along the real K axis. We dis-
cuss the cases d & 0, p & 0, and q & 0. By the indi-
cated deformation of the contour of integration, a
finite number of poles of

FIG. 1. Contour of the integral in Eq. (4.4) in the
complex s plane for p =2, q = 1, d =6. Open circles,
poles of I ( —s); full circles, poles of I'[(p/2)+s],
I'[p +(d /2)+s], I'[(p +q)/2+(d/2)+s).

I +s =I lK ——d
2 4
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with

s+ —=ia ——=—n, 0&n &nop (4.6)

where no is the largest integer smaller than d/4,
wander from the left-hand side of the contour to
the right-hand side (cf. Fig. 2). After the deforma-
tion of the contour, the residua of the integrand at
these poles, multiplied by 2~i, have to be added

separately to the integral. This finite sum takes

the form g„oc„(p,q)e ",where

FIG. 2. Contour in the complex ~ plane before
deformation into the real ~ axis, for p =2, q =1, d =6.
The poles are related to the poles in Fig. 1 by Eq. (4.5).
In this example no ——1.

c„(p,q)=

—n+ I —n+ I n+ —I n+++d +d
4 2 2 2 2

I —n!I —n +1+-p
2 2 2 2

(4.7)

and

A,„=2n(d —2n) for 0 & n & no . (4.8)

The complete symmetry of c„(p,q) with respect to
p, q should be noted. In order to obtain this sym-
metrical form we have used the transformation

I

now consists of a contour integral along the real ~
axis, whose integrand is given by the integrand of
Eq. (4.4), transformed by Eq. (4.5). Symmetry of
the integrand with respect to p, q can again be
achieved by the identity

I 1 ———n
2

I —+nq
2

r +
2

(4.9) I tK ————+1 I ta+ —+1d
2 4 4

Even more important is the fact, that all exponen-
tials in the finite sum now decay in time. Thus,
each term of the sum remains meaningful even for
t~ ~. Note also the cancellation in Eq. (4.9), of
the divergence at q =2n, mentioned at the end of
Sec. III.

The remaining part of the correlation function

I —lK ——I —lK+ —+-d . q
4 2 4

r-q
2

(4.10)

where f(i~) is given by

f(ia) = i»—
dsine —ia+ +—sin+ iK+—

2 4 4

m. sine +
2

(4.11)

f+(i~)=+f+( i~) . —

Inserting these transformations into Eq. (4.4), it becomes clear upon inspection that only the part f+(ia) of
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f(ia), which is even under ilr~ —i~, contributes to the integral. This part is given by

f+ {ilt)= sinh2na .K

2' (4.12)

Note, that the denominator sinnq/2 present in Eq. (4.11), cancels from the symmetrical part f+(itt) which
contributes to the integral over K. Again, we can see here, explicitly, the disappearance of the divergence at

q =2n, which seemed to plague the formal result (3.14). Using Eq. (4.12) with (4.10) to rewrite the in-

tegrand, we obtain

no

{x&(t)x&(0))= g c„(p,q)e " +I da c(tr,p, q)e
n=0

{4.13)

where no, c„(p,q), and A,„are given by Eqs. (4.6), (4.7), and (4.8),

(4.14)

and

2(p +q)/2 —I sinh21TlCc,p, q =

d . 8 d . 0 dI lK ——I lK+ +—I lK+ +—
4 2 4 2 4

E
2 2 2

(4.15)

Equation (4.13) gives a spectral representation of
the correlation function in terms of exponentials
decaying in time. We have therefore succeeded in
reordering the formal series (3.14) into a new series
and an integral where each term of the new series
and the integrand remain meaningfu1 for t~ ao.

The same spectral representation can also be ob-
tained from the Fokker-Planck description along
very different lines, cf. Appendix B. Therefore, we

have shown that the present description and the
Fokker-Planck description are entirely equivalent,
contrary to what has recently been claimed in the
paper by Brenig and Banai.

1. Contribution from n =0

Since Q=O is the only vanishing eigenvalue for
d & 0 the contribution to the correlation function
from n =0 must give

co(p, q) = lim (x~(t)xe(0) ) (4.16)

lim {xt'(t)x&(0))=(x&)(x&) .t~ oo

Indeed, our result for co{p,q),

(4.17)

which, due to the mixing property of the Markovi-
an process under study, must equal

p+d
2

d+q
2

B. Asymptotic results for t~ao

The long-time behavior of the correlation func-
tion is easily extracted from the general results of
the preceding section. From the general form of
the result of (4.13) it is clear that the long-time
behavior is dominated by the contribution to the
finite sum over n from n =0 and 1, and by the
contribution to the integral over K from the vicini-
ty of the lower bound K =0. We discuss the vari-
ous contributions separately:

c (p, q)=
dr—
2

2q/2

dr—
2

(4.18)

satisfies this relation, if it is compared with the
moments of the steady-state distribution (3.11) (cf.
Appendix B). We note, that the term with n =0
already exhausts the entire sum over n in the
domain no 0, i.e., d ——&4 [for the definition of no,
cf. text after Eq. (4.6)].
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2. Contribution from n =I

with

(x~(t)x (0))—{xs)(xs)=ci(p,q)e ' (4.19)

The finite sum over n in Eq. (4.13) contains a
term with n =1 only if d & 4. In that case the re-
laxation of {xr(t)xs(0)) towards {xr){x ) for
long times is given by the exponential decay

d
A, ) ——4 ——1

2
(4.21)

i.e., the correlation functions at long times relax
exponentially for d & 4. At d =4, c& approaches
zero and the long-time behavior is changed.

d——1
4

c
& (p q) =2'&+ ' ' ' '

pq
dr—
2

r r

+p
2 2

(4.20)

3. Contribution from small a'

In the domain 0 & d &4 the relaxation of the
correlation function is entirely determined by the
contribution from the integral over K . For long
times, only the contributions from K near zero
survive. We have to distinguish two cases:

a. d+4n, i e , in p. a.rticular, 0 ~ d &4. The in-
tegral over a in Eq. (4.13) for long times then
reduces to

dtt c(a,p, q)e . ' "=v irI
0 c(p,q)e K (K )

d ' ' g 'r4 d 2 2'1/2 4p, 1 (p~q) f,z d d tl4—
4

'
o 2 (4t)i~~ 4

e

(4.22)

with

2~~+~~/2I-2 &+
2 4 2 4

c(p,q)=
v~r —"r&r&

2 2 2

(4.23)

1jke (d —4n) 2. This divergence has to be taken as
a signal that the two limits involved, taboo and
d ~4n, cannot be interchanged. Therefore, we
have to evaluate the asymptotic behavior for these
cases separately.

b. d =4n, i.e., in particular, d =4. If we insert
d =4n into the integrand of the integral over K in
Eq. (4.13), its behavior for K ~0 is modified,
since, for K ~0,

Therefore, we have for 0&d &4,

{xs(t)xe(0) ) —(xs) (xs) I

f'( —n +i~)
I

'~—1

n! (4.25)

d c(p q) ~itr4
4 (4t)3/2

(4.24)

Hence, we obtain
'2

dtc c (a,p, q)e ' "= c(p,q, 4n)e

We see that for 0 & d & 4 the relaxation of the
correlation functions for long times is dominated
by the lowest eigenvalue A.(0)=d /4 of the con-
tinuum. However, the continuum above A,(0)
modifies the purely exponential decay by the alge-
braic prefactor t . If d approaches the value
d~4n, the coefficient of t exp —d t/4 diverges

X dK2 '
e -4dt

0 ( 2)1/2

2
c(p, q, 4n) 4„2,

v4t '
ni

(4.26)
with c(p, q, d) given by Eq. (4.23). We note that for



1742 R. GRAHAM AND A. SCHENZLE 25

d =0, c vanishes. For d =4, c has a finite, non-
zero value for p, q &0. Thus, the point d =4 is
special in at least two ways: (i) if d passes the
point d =4 from below, the number of discrete
eigenvalues is changed from zero to one and (ii) the
asymptotic form of the correlation function

( [x~(t)—(x~) ][x't(O) —(x~) ] )
is changed from

t exp ' for d~4,
to

t '/exp ' for d=4,

to

exp —4 ——1 t for d &4.d
2

The long-time behavior of the correlation function
for d =4 is, of course, not directly observable,
since exact equality in d =4 is required. However,

—d2t/4the divergence of the coefficient of t exp
as d =4 is approached from below is, in principle,
observable, and would be very interesting to look
for in experiments on systems described by Eq.
(1.11).

V. TRANSIENT MOMENTS

A. General formulas

The discussion of the moments requires the formal summation of Eq. (3.8). Using the same idea which
was successful in Sec. IV, we replace the sum (3.8) by a contour integral in the complex s plane around the
poles of I ( —s). We obtain immediately,

2+' ds d t d
y (t)=xlo f exp — +4 s+ —++ t P —s)

27Tl 4 4 2

d
2

-, I ++s I p+ —+s
2 2

p dI. —r p+ —+2
2 2

2
d XG

X F ++;p+—+2s+1' (5.1)

where the contour has all poles of I ( —s) to its right and all other poles to its left (cf. Fig. 3). We may now
go through the same steps as in Sec. IV A in order to derive a spectral decomposition of the moments. First
we change the integration variable

d g7
S =lK—

4 2 (5.2)

and then we deform the resulting contour in the complex K plane until it coincides with the real K axis.
Since a finite number of poles changes the sides of the contour due to this deformation, their contribution
has to be added (if they change from left to right) or substracted (in the opposite case) from the integral
along the real K axis. We have to distinguish the following three cases.

(i) —2p &d &0. In this case the contour in the K plane can be deformed into the real axis, without any
pole changing sides (cf. Fig. 4). Therefore, we obtain

with

yp(t) =yp(t),

2(P/2) —i
y'(t) = d K e ' "Ksinh2~KP 00

d . dI lK ——I lK+ —+
4 4 2

r &
2

(5.3)

~ d . d. 2
2FP lK ——,—lK—

4 4 xG
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where some algebraic rearrangement of the integrand has produced the manifestly symmetrical form in a.
y~(t) is given by an integral over the continuous spectrum with eigenvalues A,(lr ) given by Eq. (4.14). The
asymptotic form of this result for long times will be discussed further in Sec. V B.

(ii) d &0. In this case the finite number of poles of

~ dI ++s =I tK ——
2 4

satisfying

dK=i n —— with 0&n &np,
4

(5.5)

where np is the largest integer smaller than d/4, changes from the left to the right of the contour, cf. Fig. 5.
In this case we obtain from Eq. (5.1),

I + I —2n+-d
2 2

d
Pi2 I n+ I —n+ —+"0

( 1 ~n ~ 2 2 2
yz(t) =yz(t)+x$ g exp( —A,„t)

=p

2
d &p'

&F& —n; —2n +—+1;
2

'
2

(5.6)

We see therefore that the discrete spectrum with eigenvalues A,„given by Eq. (4.8) contributes. It should be
noted that all discrete eigenvalues which contribute are lower than the continuum, and that the contribution
from the eigenvalue A,„disappears continuously at n =d/4.

(iii) d & —2p. This case corresponds to sufficiently large negative values of the pump parameter d. In
this domain poles of the two functions

d D . d DI i]c+—+, I —i]c+—+
4 2

' 4 2

satisfying ~=+i(n +d/4+p/2), with 0& n & np, where np is the largest integer smaller than
—p/2+

~

d/4 ~, change sides by the deformation of the contour (cf. Fig. 6). We obtain

2 P —~„(p)t d
y (r)=y'(t)+ ge " n+ —++

P P

. I n+ —+p I n+ I —n-d a p+d
2 2 2

n!I
2

d
sinn. —+p

2

X2Fp n+, —n ' 2
L d L.
2 2 2 Qp

FIG. 3. Contour of the integral in Eq. (5.1) in the
complex s plane for p =2, d =6. Open circles, poles of
I ( —s); full circles, poles of I'[(p/2)+s] and
I [p +(d/2)+s].

FIG. 4. Contour in the complex sc plane for
—2p & d & 0 drawn for p =2, d = —2. Open circles,
poles of I'( —s); full circles, poles of I [(p/2)+s]
and I [p + (d /2)+s] with s given by Eq. (5.2).
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Furthermore, it should be noted that the eigen-
values A,„(p), as given by Eq. (5.8), explicitly
depend on p, i.e., on the particular moment which
is calculated. They cannot, therefore, represent an
intrinsic property of the stochastic process studied
here, quite different from the true eigenvalues (4.8)
and (4.14), which are independent of the evaluated
moments.

FIG. 5. Contour in the complex x plane for d &0 be-
fore deformation into the real ~ axis, drawn for p =2,
d =6. Open circles poles of I ( —s); full circles, poles of
I [(p/2)+s] and I'[p +(d/2)+s] with s given by Eq.
(5.2). In this example no ——1.

with

d' d
A,„(p)= —4 n+ —++

4 4 2
(5.g)

It is not possible to compare this result with the
solution of the eigenvalue problem associated with
the Fokker-Planck equation. The difficulty with
the Fokker-Planck method is that integration over
the eigenfunctions and their summation over the
eigenvalues cannot be interchanged for d & 0. The
appearance of discrete eigenvalues for d & —p/4 in
Eq. (5.7) seems puzzling in view of the fact that
the spectrum of the Fokker-Planck equation is
purely continuous for d & —p/4. However, it
would be very misleading, to infer the Fokker-
Planck spectrum from the moments alone. This is
made obvious by a discussion of the Fokker-Planck
equation and the moments of the linear equation

B. Asymptotic results for long times

lim p~(t) =2
t~ Ot)

p+d
2

dr—
2

d&0 (5.10)

which satisfies the above requirement. For d &0
we obtain from Eqs. (5.7) and (5.4),

For long times, the general formulas obtained in
the last section can be evaluated further. We in-
vestigate separately the contribution from the finite
sum over exp —A,„(p)t or exp —A,„t and the integral
over exp —A,(v )t.

(i) Contribution from n =0 for d & 0. In the
domain d )0 the moments y~(t) = (x&(t) ) for long
times relax towards a finite value. Because of the
ergodicity of the process for x+0, this finite value
must coincide with the corresponding moment
(x~) of the steady-state distribution. Indeed, we
obtain from our result (5.6) with A,„=O for n =0,
and A,„&0,n &0, and A(~ ) &0,

x= —dx+xf(t) (5.9) lim yz(t) =0,
f~ao

(5.1 1)

in Appendix A. i.e., the moments relax to zero for d &0.
(ii) Contribution from n =1 for d &4. In the

domain d & 4 the relaxation of the moments to-
wards their value in the steady state is dominated
by exp —A, ~t. From Eq. (5.6) we obtain

(x (r) ) —(x~)=2's ' p (d —4) ~
—1

Xo

FIG. 6. Contour in the complex x plane for d & —2p
before deformation into the real z axis, drawn for p =2,
d = —5. Open circles, poles of I ( —s); full circles,
poles of I [(p/2)+s] and I [p +(d/2)+s] with s given
by (5.2). In this example n] —0.

p+d
2

X
dr—
2

d
Xexp —4 ——1 t .

2
(5.12)
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(xi'(t) )=2'i' " '(d +2p)

d
2 2

For d =4 the purely exponential decay disappears.
The singular dependence of the amplitude on xo
should be noted. It indicates, that the limits t~ 00

and x0~0 may not be interchanged.

(iii) Contribution from n =0 for d & —2p. For
d & —2p the relaxation of the moment (x&(t) ) to
zero is dominated by the exponential exp —A,o(p)t
in Eq. (5.7). We obtain

~

r(i& n)—
~

1 1

,2 Pf

(5.16)

and we obtain

times for d =0,4, —2p is different from the
—3/2 —d t/4t e ' behavior. As for the correlation func-

—i/2 —d't/4tions we expect a t ' e ' behavior.

(v) The case d =4n. In this case the integrand

near ~ =0 is modified due to a singular contribu-

tion from

dr1———p2

p d +p 2 —A,o(p)t

Xo
(x&(r) )=

r n+&
2

2

2—4n t

M (p, 4n)
{4t)i/2

( ~(r)) —( ~)=—r ——r —+&1 d d
2 4 4 2

M (p, d)

(5.13}

For d = —2p the purely exponential decay again

disappears.
(iv) Contribution from the continuum for

—2p &d &4, d+0. In the domain —2p &d &4
the relaxation of the moment (x~(t) ) towards its

steady-state value (which is zero for d &0 and fin-

ite for d )0) is dominated by the lower part of the

continuum. From Eq. (5.4) for dQ —2p, 0,4 we

obtain
2

+&x') .

In particular, for n =0, i.e., d =0:
(5.17)

(x&(r) )=2'&"'-'
r &

2
(5.18)

This result is remarkable, since it does not depend

on the initial value xo, as long as xo+0. Thus, at
d =0 the moments relax by the power law t
with a universal amplitude. For n =1, i.e., d =4
we obtain

2

X(4t) exp — t
d'
4

(5.14)

(x&(r)) —&x~)= & r & 1 — 2'&i"—'

2 2

with

2P/2 p d d 2
M(p d)= I ' — F

2 4' 4' xo

(5.15)

Thus, the decay of the moments is dominated by

the eigenvalue at the lower boundary of the con-

tinuum. The algebraic prefactor t which

modifies the exponential decay represents the influ-

ence from the continuum. Owing to the prefactors

in Eq. (5.14) the coefficient of t ~ exp —(d~/4}t

diverges at the three points d =do like (d —do)
where do ——0,4 and —2p, respectively. A similar

divergence for d =4 was encountered in Sec. IV B
in the study of the asymptotic behavior of the

correlation functions which are nonzero only for
d )0. It is interesting to note, that the asymptotic

results for the moments have a similar divergence

also for vanishing and negative d. The divergence

signals, that the relaxation of the moments at long

1 —4tX ~e
7Tt

(5.19)

'2

i
I (i' —n)

~

1 1
(5.20)

~e obtain, therefore,

r n+&
2

2

(x'(t) )= n! M(p, —2p —4n)

X exp —4 n+ t.1 y
4t 2

(5.21)

(vi) The case d = —2p —4n. In this case, which

requires strong linear damping, the integrand near
~ =0 is again modified due to a singular factor of
the form
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In particular, for n =0, i.e., d = —2p, we obtain

(5.22)

Cases {v}and (vi) are not observable, in principle,
since values of d cannot be prescribed to arbitrary
precision. However, the crossover from the

e ' behavior to the t '/ e ' behavior
2 ~ 2

manifests itself in an enhancement of the ampli-
—3/2 —1 E/4tude of t e ' which is, in principle, observ-

able, and would be interesting to look for in experi-
ments.

An asymptotic evaluation of the transient mo-
ments was attempted before in the paper of Brenig
and Banai, starting from Eq. (3.8). Their results
differ from ours due to an erroneous evaluation of
the limit taboo in their paper.

VI. CONCLUSIONS

We now briefly summarize our results and
present our final conclusions. Carleman's method
of linear imbedding has been applied in this paper
to the solution of the stochastic problem {1.10} and
its associated deterministic problem. For the ap-
plicability of the method, the triangular form of
the matrix representing the linear problem, Eqs.
(2.6) and (3.3), is crucial. While deterministic rate
equations always lead to such a triangular form, it
is not obtained in stochastic processes, unless they
contain the noise sources in a multiplicative way.
Hence, the applicability of the method for stochas-
tic processes is at present much more restricted
than for deterministic processes.

A particular difficulty of the method lies in the
fact, that an artificial time dependence is intro-
duced via the linear imbedding. This time depen-
dence is directly related to the linear part of the
given nonlinear problem, and has nothing to do
with the real physical time dependence. In partic-
ular, the artificial time dependence depends on and
changes with the coordinates used to represent the
problem. In the processes studied here, the linear
part for d & 0 leads to unlimited amplification,
while the complete nonlinear process saturates and
relaxes towards a steady state. The physical time
dependence has to be extracted from the artificial
time dependence introduced via linear imbedding
by exact summation of an infinite series. This
summation is the crucial step of the method. It

appears that any approximation made before this
step has been carried out introduces errors in a
completely uncontrolled way. Hence, it seems that
the method remains restricted to exactly solvable
problems, unless one can find further criteria, on
how to choose the linear imbedding in order to
control errors introduced by later approximations.

The model studied in this paper is exactly solv-
able. Therefore, the above-mentioned difficulty
could be overcome. The infinite series of the
deterministic problem, Eq. (2.13), was summed up
exactly in Eq. (2.14). The corresponding infinite
series of the stochastic problem, Eqs. (3.8) and
(3.14), were summed up exactly in Eqs. (5.1) and
(4.4), respectively, and represented by contour in-
tegrals. In this way, exact integral representations
of the stationary two-time correlation functions
and the transient moments of the stochastic models
have been obtained for d & 0 and d (0.

A simple deformation of the contour in the in-
tegral representation was enough in order to repro-
duce the spectral representation of the correlation
function and moments which follow from the solu-
tion of the Fokker-Planck equation for d &0. The
results of the Fokker-Planck analysis are thereby
completely confirmed. In particular, correlation
functions and moments for long times relax ex-
ponentially for d &4, with a rate A,

&

——2(d —2).
One remarkable result of the Fokker-Planck

analysis was that this eigenvalue disappears con-
tinuously from the spectrum at d =4, thus
preventing the system from critical slow down and
undergoing a noise-induced transition at d =2.
This result emerged from the Fokker-Planck
analysis by using the boundary condition at x =0.
As mentioned in Sec. I this boundary condition
and the result it implies was challenged by Suzuki
et al. However, in the analysis given here this re-
sult is completely confirmed, without the necessity
to ever invoke explicitly a boundary condition for
the probability density at x =0. Instead, the ap-
pearance or disappearance of the eigenvalue A.

&
is

here due to the crossing of the real axis of a
corresponding pole in the integral representation of
the correlation functions and moments. Therefore,
our results definitely show that the boundary con-
ditions used in the Fokker-Planck analysis were
indeed adequate, and that a noise-induced transi-
tion due to critical slowing down at some finite po-
sitive value of d does not exist in the model studied
here.

The integral representation for the transient mo-
ments obtained here has also been used to obtain
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results for d &0. If d deeply enters the negative

domain (d & —2p, where p is the order of the mo-

ment), new poles cross the real axis from both

sides leading again to purely exponential decay at
long times. The decay rates A,„(p), Eq. (5.8),
depend explicitly on p. The Fokker-Planck spec-

trum in the same domain consists only of a contin-

uum, which is higher than all A,„(p), for 0& n & n i,
ni being the largest integer smaller than

i
d/4

i

—p/2, without any trace of the discrete

values A,„(p). This raises the question of how the

two results are reconciled.
The relaxation of the moments for d & 0 cannot,

so far, be calculated by the Fokker-Planck method,

since the expansion in eigenfunctions is not possi-

ble for d &0 (cf. Appendix B). However, an analo-

gous problem is already posed by the linear equa-

tion studied in Appendix A. The Fokker-Planck
spectrum of that linear problem is purely continu-

ous, while the moments relax exponentially at long

times, with rates which depend on the order of the

moment. Thus, this example demonstrates that

our results for the transient moments for d &0 do
not contradict the Fokker-Planck spectrum.

In the domains 0&d &4 and —2p &d &4 the
correlation functions and transient moments,

respectively, relax nonexponentially at long times

like t exp —(d /4)t. The algebraic prefactor is

due to the continuum of eigenvalues above d /4.
The correction to this behavior is smaller by a fac-
tor t '. Near the points d =do with do ———2p, 0,4
the coefficients in front of t exp —(d /4)t are

enhanced like (d —do) . If d =do, the long-time

behavior of correlation functions (+0 only for

do ——4) and moments is like t 'i exp (d /4)t. —
For d =0, the moments at long times relax with an

amplitude which is universal, i.e., independent of
the initial condition and the strength of the non-

linearity [cf. Eq. (1.12)]. However, since d cannot

be precisely prescribed, only the enhancement of
the prefactor of t 3i exp (d /4)t near d—=do is

observable, and presents a challenge for observation

in experiments with systems described by Eq.
(1.11)."

y„(t)=(x"(t)), y„(0)=xo, (A2)

is

y„(t)=n( —id ~
+n)y„,

with the solution

(A3)

y„(t)=xoexp —A,(n)t,

A, (n)=n( ~d i
n) . —

(A4)

According to Eq. (A4) all moments (x"(t)) with

n & i
d

~

relax to zero, while all other moments

with n ) i
d

~

increase with time, due to the fluc-
tuations in Eq. (A1). For all finite times t & oo, all

moments (x "(t)) of the process exist.
Let us now see, ow these results emerge from the

Fokker-Planck analysis. The Fokker-Planck equa-

tion of this process reads

a~ a
(d (

—1 xP+, x P,
Bt Bx .

(A5)

where P(x
~
xo, t) is the conditional probability den-

sity satisfying

P(x
~
xo t =0)=5(x —xo) (A6)

Equation (A5) with (A6) is easily solved in closed
form yielding

with Gaussian F(t). Equation (A1) is to be inter-

preted in the sense of Stratonovich. This process is

obtained from the nonlinear process Eq. (1.10) by

dropping the nonlinear term, and choosing d &0.
Equation (A1) is interesting to study because it is

solvable in closed form, but displays nevertheless,

some of the peculiarities of the nonlinear process
for d &0, which were found in Sec. V. In particu-

lar, we wish to understand how a purely exponen-

tial decay of the transient moments for long times

can be reconciled with a Fokker-Planck spectrum

which consists only of a continuum above the ex-

ponential decay rate.
First we solve Eq. (Al) by the same method as

described in Sec. III. The linear infinite hierarchy
of equations associated with (Al) via

APPENDIX A: LINEAR PROCESSES

1. The linear process
x = —

i
d

i
x+xF(t)

P(x ixo, t)= —exp
1 1

&4m-t x

ln + [d[t
xp

4t

(A7)

In this appendix we want to study the process

x = —
i
d

~

x+xF(t) (A1)
It is easily checked, that despite the prefactor x
the probability density (A7) is normalized for all
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finite times t & ao, and that its moments (x"(t))
for all finite times are given by Eq. (A4). Thus,
the moment (x(t}),e.g., relaxes to zero for
~d

~
& I via

(x{t))=xpexp —( ~d
~

—1}t (AS)

with a relaxation rate )(,{I }=
~
d

~

—1. Let us now
see, how this rate A{1)compares with the long-
time behavior of P(x

~
xp, t) R.ewriting Eq. {A7}

we obtain

P(x (xp, t}

izable at all finite times t, its asymptotic expan-
sions around infinite t, as seen in Eqs. (A10) and
(Al 1},are no longer normalizable at x =0. This
shows us that the integration of P over x cannot be
exchanged with the limit t~ ao. It also warns us
that the eigenfunctions of the Fokker-Planck
operator, which dominate the long-time behavior
of the conditional probability at t~ 00, will not be
integrable at x =0.

Let us now turn to the eigenvalue problem

a a'
(

~

d
~

—I }xPx(x}+ x2Px= —APxBx Bx
1 x
X Xp

' —Id I/2
d2&/4 —( [1n(x/xo)j /4t )

2

Q~t {A12}

(A9)

P{x
~
xp, t) =—1 x

X Xp

Expanding the second exponential into a Taylor
series, which is allowed for x+0, we obtain

' —Id I /2 d2g/4
jp(x}=(

~

d
~

—1}xPp+ x Pp
a 2

Bx
(A13)

vanished at infinity, jp( 00 }=0,and hence every-
where, jp—=0. We obtain

associated with Eq. (A5). First, we look at its
solution for A, =O and require that its probability
current

aa
( 1)n

(4t) " ln
n! Xp

28

Pp(x)=x-'-~'~ (A14)

For t~00, we obtain asymptotically

(A10} which is not normalizable, and therefore, not the
steady-state distribution. In addition, Eq. (A13)
admits the solution

P(x ~xp, t)~ 1 x
X Xp

—
I d

I
/2 d2g/4

{A1 1)

Three features of this result are worth noting:
{i}The decay of P(x

~
xp, t) at long times is an

exponential, modified by an algebraic prefactor.
This result has also been encountered for the non-
linear process and was associated there with a con-
tinuum of eigenvalues above the rate in the ex-
ponential d /4. Thus, we expect (and this expecta-
tion is confirmed below} that such a continuum is
also present here. No discrete eigenvalues smaller
than d /4 can be present in the spectrum of the
Fokker-Planck operator, because they would other-
wise dominate the long-time behavior of P.

(ii) The lower boundary of the continuum at
d /4 is equal or above the largest decay rate A,(n)
[Eq. (A9) of the moments]. This shows us, that in
the solution (A7) an exponential decay of the mo-
ments is reconciled with a continuous Fokker-
Planck spectrum above the decay rate.

(iii) We will see below, that this reconciliation is
closely related with a third feature of Eq. (A11);
while P(x

~
xo, t), according to Eq. (A7), is normal-

wp(x) = lim
2

n~p

1 id'"2+2

2

E Id I

( 2++)l/2+ fd I
/2 (A15)

which is the proper steady-state distribution in our
case. The explicit representation of the 5 function
in Eq. (A15) is obtained if additive Gaussian white
noise with intensity -e is included in Eq. (A13)
and the limit E~O is taken. Equation (A15) shows
that wp(x) reduces to a 5 function only for test
functions increasing slower than x Id I for x~ 00.
In particular, only the moments x" of w p(x) exist
with n &

~

d
~

. These moments, of course, all van-
ish.

We now turn to the eigenfunctions with k+0.
In the usual way, the eigenfunctions of Eq. (A13)
can be used as an orthogonal basis in a function
space with the scalar product



25 CARLEMAN IMBEDDING OF MULTIPLICATIVE STOCHASTIC. . . 1749

Pi(x}pg (x}
(A, (A,

' = dx
Po x)

5~,~ discrete spectrum

5(A, —V) continuous spectrum .

(A16)

The only condition on the weight function Pp(x) is

that the probability current associated with Po(x)
vanishes identically. The boundary conditions re-

quired for the Pi(x), A,+0 now follow from the

definition of the scalar product (A16). Equation
(A12) is solved by the functions

p(+i(x) x —i —) d
I /2+[(d /4) —i] (A17)

Integrability at x = 00 and x =0 in Eq. (A16) re-

quires

long times of the conditional probability density

and its moments in terms of the eigenfunction ex-

pansion, and see how their different behavior is

reconciled in this description. The expansion of
P(x ~xo, t) reads

g,
Pg"'(x)Pg '(x )

P(x ~xo, t)= g f di, e
/4 Pp(xp )

(A21)

(A22)

Inserting Eq. (A20), the integral may be carried
out and Eq. (A7) is reobtained. For t~ ao a
saddle-point evaluation of Eq. (A21) is appropriate
where only the eigenvalues A, near the lower boun-

dary d /4 contribute, and we indeed obtain (A11)
as the leading term. For the moments of
P(x },xo, t):

(x"(t)) =fdx P(x
i xo, t)x",

Re —A,
4

' 1/2 ' 1/2d'
&0, Re —A, &0,

(A18)

a dilemma seems to appear, since, if we use Eq.
(A21) in (A22) and if we would exchange the order
of the integrals over A, and x, we would obtain

respectively, which forces us to choose
' 1/2

d2
=0,

4
d

Re —A,
4

(A19)

The corresponding eigenfunction P~ are then given

by those two linear combinations of P~+' P~ '

which are normalized onto the 5 function in the
scalar product (A16}. Two appropriate linear com-
'binations are given by

p(1) 1
e ie/4p(+-)(x)

~8K'.—d /4)'/

i~/4p( —) (x))

8~(A, —d /4)'/

+ —iw/4p( —)(x)]

(A20)

Hence, we have found the continuous spectrum
predicted above. Every eigenvalue is doubly degen-

erate. None of the eigenfunctions P~' '(x) is in-

tegrable over x.
It is important to note that Pp(x) itself is not a

member of the function space defined by (A16),
since the scalar product (A16) is ill defined if
Pp(x) is substituted for one or both P~(x) in (A16).
Let us now discuss the asymptotic behavior for

q,
P'"'(xo)

(x"(r))=g f, dA, e ' f dxx "P~"'(x) .
d /4 Pp(xp )

(A23)

If Eq. (A23) were correct, we would have to con-
clude in the usual way that the long-time behavior
of (x"(t)) is also determined by the low lying
eigenvalues A, in the vicinity of d /4. This would
contradict our earlier result, that the moments re-
lax with a slower rate than d /4. Why is Eq.
(A23) wrong? The error was made, when the order
of the integrals over x and over A, were inter-
changed. This exchange is not allowed, since the
integral over x in Eq. (A23) does not converge.
We therefore reach the important conclusion: The
fact that the moments of the eigenfunctions do not
exist allows the moments of the conditional proba-
bility density to decay with rates which do not be-

long to the Fokker-Planck spectrum. For the same
reason, the expansion in eigenfunctions of the
Fokker-Planck operators appears to be useless for
the calculation of the moments in such cases.

For the nonlinear problem (1.10) the moments of
the eigenfunction in the domain d &0 do not exist.
Hence, the moments can relax with rates outside
the Fokker Planck spectrum.

2. The linear process as a limit
of the nonlinear process

In this section we ask how the results of (A4)
for the transient moments of the process (A1) for
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x ~~Ax, xO~V bxo ) (A24)

in Eqs. (5.3), (5.4), (5.7), and (5.8). In the resulting
expressions we take the limit b ~0. We have to
consider the following two cases:

(i) —2p &d &0. In this case Eq. (5.4) in the
limit b~ asymptotically reduces to

d & 0, may be obtained from the results of Sec.
V A. This is instructive for two reasons. First, by
considering the limit of vanishing nonlinearity we

can check whether the results of Sec. V A are con-
sistent with the results of Sec. A 1 of this appen-
dix. Secondly, it will be interesting to see explictly,
how the two different regions —2p &d &0 and
d & —2p, which we had to distinguish for the non-
linear results in Sec. V, merge and are connected in
the linear case.

In order to be able to send the coefficient b of
the nonlinearity to zero we go back to Eq. (1.12)
and reintroduce b by replacing

Thus, the result (A4) in the region —2p & d &0 has
been obtained from Eq. (5.4) in the limit b~.

(ii) d & —2p. In this case we have to consider,
according to Eq. (5.7), the contribution from the
integral (A26) and from the sum in Eq. (5.7). We
first consider the integral. Again we close the con-
tour along the real axis through the lower half K

plane at 00. Because d has dropped below —2p,
the pole at

.pK= —l —l
4 2

'

which contributed in case (i), has crossed into the

upper half plane. Hence, this pole no longer con-
tributes. Instead, new poles have crossed the real

axis into the lower half plane. These are the poles
of

I lK+ —+-d p
4 2

yp(t) =yp(t), (A25) which satisfy

' iz—d/4 —p/2

p
~ dK bxo

y~(t) =x~0 exp[ —A(s )t]
277 2

2
d pI —iK+ —+— I iK ——
4 2 4

with

1K+ + = —n
d p
4 2

0&n &ni

(A31)

(A32)

I —I (2iK)
2

(A26)

where n i is the smallest nonnegative integer small-

er than
i
d/4i —p/2. The residua of the in-

tegrand of (A26) at these poles contain a factor
(bx0/2) " " p. The exponent is positive since

.d . gK= —ln —l ——l-',
4 2' n=0, 1,2, . . . , (A27)

contribute. The residue of the integrand in (A26)

at the nth pole contains a factor (bxo /2) . Thus,

in the limit b~O, only the pole with n =0,

where the limit b~ has already been taken in

terms which converge to a finite constant. The
contour of the K integral along the real axis may be

closed at infinity in the lower half K plane. Then

only the poles of I ( —iK+d/4+p/2) at

n+ —+p &ni+ —+p & —+—&0.d d d p
2 2 4 2

(A33)

Hence, all residua vanish in the limit b~, and

limyp(t) =0 .b~ (A34)

Thus for b~ only the sum in Eq. (5.7) remains.

Reexpressing 2FO in terms of &F& and taking b~O,
it is easy to show that only the term with n =0
survives, and we obtain again

we obtain

2 4

y~(t)=xoexp —p(
~

d
i p)t . —

.d . g7K= —l —l
4 2

'

retains a finite residuum. With

2

(A28)

(A29)

(A30)

y (t) xpoe
—p( I

d
I
—p)t

p

for d & —2p in agreement with Eq. (A4). Thus the
two domains —2p & d &0 and d & —2p of the
nonlinear process merge in the linear limit, as had
to be expected from the results of Sec. A 1 of this
appendix. We conclude that the results for the
nonlinear and the linear process are consistent with
each other.
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APPENDIX B: FOKKER-PLANCK
TREATMENT OF THE PROCESS

OF EQ. (1.10)

—P(x, t) =-a
at

[(d + 1)x x3]P-
OX

a'
2+ x P

BX
(B1)

for the probability density P(x, t). This equation
has been solved exactly by analytical methods. It
is the purpose of this appendix, to summarize

briefly the previously derived Fokker-Planck re-

sults along with some new asymptotic limits in

order to allow a direct and easy comparison with

the results derived from the method of linear

imbedding presented in this paper.

1. Stationary solution

From an arbitrary initial condition, the system
relaxes towards the stationary distribution

lim P(x, t}=top(x}
t~ oo

Npx
—1+de —x /2 d & 0

5(x), d &0, (B2)

where

d
p 2

guarantees the normalization of the probability
density. The stationary moments assume the fol-
lowing form:

lim (x"(t))=2"~ I
t~a) 2

(d/2) .

(B3)

We note, that 5(x) also solves the stationary
Fokker-Planck equation for d & 0 but this solution
is not approached asymptotically from an arbitrary
initial condition as long as d & 0.

The stochastic process defined through the
Langevin equation (2.17) can be characterized as
well by the stochastically equivalent Fokker-Planck
equation

2. Solution of the eigenvalue problem

—A,„fP(x, t) =)I c„P„(x)e (B4}

By imposing L2 integrability we construct a linear

unitary function space which allows us to associate
the expansion coefficients c„with the projections
of the initial distribution onto the basis set P„.

(a) Discrete branch of the spectrum. We impose
the rigorous condition of L2 integrability

fP„'(x)Pp '(x)dx & ap, (B5}

where the function Pp(x) is a solution of (Bl) with

vanishing probability current, i.e.,

[—(d+1)x+x ]Pp(x)+ x Pp 0. ——a 2

BX

For d &0, we can identify Pp with wp given by
(B2). For d &0 we also find

2

Pp ——Npx exp-
Xp

2

In the latter case, Pp is different from the steady-

state distribution. Imposing (B5) we obtain the
discrete branch of the eigenvalue spectrum which

contains only a finite number of eigenvalues. With

np equaling the largest positive integer smaller

than d /4 we find

An=2n(d —2n), 0&n &np (B6)
r

ar1/2 —1+d —2nr [d/2) —2n —x /2

2
e

where

(B7)

22 +1 d n (d —4n)
I (d/2)I (d/2+1 —n )

L„ is the associated Laguerre polynomial.

(b) Continuous branch of the spectrum The fin-.
ite number of eigenfunctions Eq. (B7) obviously
does not exhaust the entire Hilbert space and we

have to somewhat relax the condition of (B5) in

order to include the continuous branch as well.
If we replace Eq. (B5) by

fP, (x)P;(x')Pp '(x)dx =5(s —s') (B8)

we obtain the following continuum of eigenfunc-

The Fokker-Planck equation (Bl}is solved in

terms of an eigenfunction expansion which consists
of a discrete as well as a continuum branch
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tions:

d
A(s)= +s, s &0

4
(B9)

to characterize the stochastic process by its station-

ary correlation functions or its transient moments.

3. The stationary correlation function

21
1/2 (d/2) —2 —x /4 x (B10)

P, (x)=N, x e ~i/2+d/4, ts/2

With the eigenfunction expansion Eq. (B4) we
are in a position to calculate explicitly the station-
ary correlation function via

with'

21—d/2 is
2

N, = s sinhn. s I ——+— I '(d/2),
4 2

lier(x Ir+eIx'IrI)=gg„g„'e
taboo n

where

g~= Jx~P„(x)dx .

(B12)

(B11)

where W2 &(x) is the Whittaker function. Under

the assumption that the basis set (B7) and (B10)
spans the entire Hilbert space, we obtain a com-
plete description of the stochastic process in terms
of the transient probability P(x, t), subject to an ar-
bitrary initial condition. It also becomes possible

Equation (B12) is valid under the assumption that

integration over x can be exchanged with the sum-

mation over n. This assumption is not satisfied for
d g0, as our discussion of the linear process in

Appendix A has indicated. For d &0, we restrict
ourselves here to the special case p =q =1 and ob-

tain the following result:

no
(d —4n )I —n

d+1
2

lim (x(t+T)x(t)) —(x2(t)) =n g . ', ' . . e
taco d dn!I ( ——n)I —+1—n I

2 2 2

—d2&/4 d 1 is+ . , s sinhm. s I
3 d 4 2 2

2m I
2

4 2
d . sI ——+i— e ' 'ds
4 2

(B13)

for d p 0; no was defined in Eq. (B6).
For d (0 all correlation functions vanish identically. This is easily understood when we recall that the

stationary distribution for d &0 is given by Po(x) =5(x) [cf. Eq. (B2)]. The discrete eigenfunctions contri-

bute a finite number of exponentially decaying terms, while the continuous branch leads to a more involved

analytical structure. These two contributions can be separated due to their asymptotic time dependence.

a. For 0(d &4. The correlation functions is entirely determined by the continuous branch of the spec-

trum and, for large ~, assumes asymptotically the following form:

lim (x(t +T)x(t) ) —(x(t) ) =
t~ co

I (n+p) e —4n&
[(TTT) i/2+0(T 3/2)]-

n.n! I (2n )
d =4n

4

8 dr—
2

- r' d/2+1
e ~'~/4[(TTT) '/2+0(T '/2)] 0 &d &4— —

2

(B14)

The appearance of a nonexponential decay is not surprising in the regime where the eigenvalue spectrum is
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purely continuous.
b. For d & 4. The asymptotic time dependence is dominated by the lowest discrete eigenvalue A, 1 and the

correlation function can be written in the form
'2

d —1
I

lim (x(t+~)x (t) ) —(x(t) ) =2

t~ oo 4 dr—
2

exp —4 ——1
2

(B15)

4. The transient moments

(B16)

The explicit form of the transient time evolution of the moments depends on the choice of the initial con-
dition for the probability density. A rather natural choice is the 5 distribution located at an arbitrary value
x =xp. The corresponding time-dependent probability density is the conditional probability

P( (e«p e):fPp (ep)P (ep)P te)e

2

L (d/2) —2n P n

n 2
e

no

(x (t)) —(x )= g( —1)"2"
n=1 n ——n+1 xp

d 2n

2

The transient moments resulting from Eq. (B16) for d &0 can be written in the form

I ——n +—(d —4n)
2 2

00 d 1$
+A s sinhm. s I ——+-

p 4 2

d m is
I —+—+—

4 2 2

2 2
Xp

g (1)2)+d)4 lg/2 2
e ' ds

(817)

with

(d/2) —22 —(d/4) —(1/2)+ (n /2)
Xp

gr —r-n

2 2

—x~ 4
e 'P (x)

I

and for 0&d &4,
3/2

'
2 d/4

(x (t)) —(x )=——1 m xp

4 t 2

2
2FP

4 4 xp2

This result can be shown to coincide with (5.6).
For d &0 integration over x and integration over s
cannot be exchanged and hence the transient mo-

ments cannot be calculated this way.
In the asymptotic time regime for the case

m =2 we obtain the following simplified relations:
(a) In the regime 0 & d &4 we obtain for d =4n,

2n(x'(t) ) —&x')= c —'""
att

d
1 —cos—n.

2

(B19)

(b) For d & 4 the asymptotic time dependence is
governed by the lowest discrete eigenvalue A, 1 and
leaves us with the simple exponential decay

(x (t) ) —(x )=(d —4) 2
Xp

n
( 1)n —4m

(n —m)I

2 nl n

Xp

(B18)

(B20)

These results coincide with those of Sec. V B for
d &0.
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