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A study is made of a series-expansion procedure which gives the leading terms of the
n-particle distribution function p (1,2, . . . , n) as explicit functionals in the radial distri-
bution function g (r). The development of the series is based on the cluster-expansion for-
malism applied to the Abe form for p'"' expressed as a product of the generalized Kirk-
wood superposition approximation px"' and a correction factor exp[A'"'(1, 2, . . . , n)]. An
ordering parameter p is introduced to determine A '"' and p'"' in the form of infinite
power series in p, and the postulate of minimal complexity is employed to eliminate an
infinite number of possible classes of solutions in a sequential relation connecting A '"
and A'"'. Derivation of the series for p'"' and many other algebraic manipulations involv-
ing a large number of cluster integrals are greatly simplified by the use of a scheme
which groups together all cluster terms having, in a certain way, the same source term.
In particular, the scheme is useful in demonstrating that the nature of the series structure
of p"' is such that its three-point Fourier transform S"'(k l, k~, k3) has as a factor the
product of the three liquid-structure functions S(kl )S(kq)S(k3). The results obtained to
order p for A' ', p' ', and S' ' agree with those derived earlier in a more straightforward
but tedious approach. The result for p' ' shows that the convolution approximation p,' ',

which contains p terms, must be supplemented by a correction of O(p ) in order to be
accurate through third order. The p-expansion approach is also examined for the cluster
expansion of the correlation function in the Bijl-Dingle-Jastrow description of a many-
boson system, and then compared with the number-density expansion formula by using
the Gaussian model for g (r)—1 to evaluate cluster integrals. A testing procedure based
on the requirement p'"(1,2,2) =0 is developed to study accuracy of the p-ordered approxi-
mations for p"'. Numerical results obtained to orders p', p', and p with the Gaussian
model indicate substantial improvements with each increase in the order of truncation in
the power series of p' '. A brief discussion is presented concerning the asymptotic
behavior of g (r) in the context of equilibrium statistical mechanics.

I. INTRODUCTION

We are concerned primarily with a microscopic
description of liquid He under realistic conditions
of density and strength of interaction. ' The
theoretical model consists of N interacting bosons
confined to a cubical box of volume Q. A normal-
ized ground-state wave function

p'"'(1, 2, . . . , n) = N(N —1) . (N —n +1)
2X +ctirn l, n+~2, . . . , N ~

Successive distribution functions are connected by
the limiting relation

0{r&,rz, . . . rx)—=+0(1,2, . . . , N)='Po

is generated by the Schrodinger equation and the
conventional periodic boundary condition.

The n-particle distribution functions for the
ground state are defined by

X [1+O(1/N)]

for r„j &)p ', j =1,2, . . . , n —1, and by the
sequential statement

p'"'{1,2, . . . , n)d r„.
N —n+1

(2)

(3)
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N ik r.
e (4d)

S(k}
k-+0 k

hence S(0}=o,
2mc

' (4e)

lim r [g(r) —1]=—4 fi
l'~ co 21r mpc

S ( oo )=g ( 00 )= I

(4f)

(4g)

Here c is the velocity of sound at T =0 in the limit
of long wavelengths (k «2np'~ ). The notation

h (r)=g(r) —1, (4h)

I

In Eq. (2), p=N/Q is the number density. In this
context the basic quantities are the radial distribu-
tion function g (r) and the liquid-structure function
S(k)'.

p' '(1,2)=p g(r(2)=N(N —1) f q'Odr34 ~ N

(4a)

S (k) =N ' f +0
~
p-„~ 'd r 12 ~ ~ N

=1+p f e'~ '[g(r}—1]dr, (4b)

g(„) 1+ f e-'""'[S(k}—1]dk, (4c)
(2m} p

N

p-„= f g 5(r —rj)e'"'dr

F(k) =S(k)—1,
(n) (n)(1 2 n)

(4i)

(4j)

will be used throughout this paper to simplify the
typography.

The distribution functions occur in the perturba-
tion formalisms developed to compute the energy
of excitations in the fluid and the ground-state en-

ergy of the system. Also the boson distribution
functions occur in procedures for producing trial
functions to describe the low states of fermion sys-
tems. Approximations available for numerical esti-
mates include the generalized Kirkwood superposi-
tion form

pl("'(1,2, . . . , n)=p" g g(r,j)
(1&i &j&n)

and the convolution form' p'"'(1 2 n)
These forms are complete functionals in the radial
distribution function g (r) [or the liquid-structure
function S(k)]. The term "complete" signifies that
all quantities entering into the formulas for pz"'
and p, are expressed completely and explicitly as

(n)

functionals in g (r) [or S(k)]. A third approximate
form having the character of a complete functional
was first introduced by Abe and later generalized
by Stell ' in the context of the classical statistical
mechanics of an imperfect gas. Following Abe
and Stell we write

p'"'(1,2, . . . , n)=px"'(1, 2, . . . , n)exp[A'"'(1, 2, . . . , n)]
n —1

=pp'" "(l,2, . . . , n —1) P g(rz„) exp[A™(1,2, . . . , n) A'" "—(1,2, . . . , n)] .
j=1

In the second line the occurrence of p'" "as a
factor points to the use of the sequential relation to
determine A'"' and A'n ". Abe expressed A' ' as
a formal cluster expansion in powers of p with the
coefficients in terms of the radial distribution
function and gave explicit forms for the first- and
second-order terms in p. Generalization of such
expressions for p'"' as functionals in g was later
given by Stell ' to all orders for n )3. The qualif-
ication "formal" refers to the fact that the coeffi-
cient of p is a functional in g and hence a func-
tion of p. It is, however, clear and universally
recognized that number density p is not a suitable
small parameter in the theory of liquid helium
under realistic conditions. The formulation and
development of an alternative ordering and group-
ing of the cluster expansion for p'"' is the essential
objective of this paper.

Clues to more suitable expansion procedures can
be found in discussions by Woo, Lai, Sim, and
Woo, Campbell, Lee and Feenberg, and Lee. '

References 6 and 7 are concerned primarily with
the grouping of diagrams in the perturbation series
for an energy eigenvalue (the ground-state energy
of liquid 'He in Ref. 6 and the elementary excita-
tion energy of liquid He in Ref. 7). In Ref. 7 the
ordering criterion is the number of independent
loops formed by free-phonon lines in a perturba-
tion diagram. References 8 —10 develop simple di-
agrammatic cluster formulas for distribution func-
tions. Chung" is responsible for a first definitive
statement in which the essential point of the latter
program is made completely explicit using the
number of independent loops in a cluster diagram
as the ordering criterion. '

In all these studies the elementary bond in a



1712 EUGENE FEENBERG AND DEOK KYO LEE 25

h (r)~ph(r),

F(k)~F(k),
Q~pQ,

s c~p.

(7a)

(7b)

(7c)

(7d)

The point of associating p with 0 and p
' as well

as with h (r) is to secure the invariance of the in-

tegrals

cluster is h (r,j )=—g (r,j ) —1. The cluster formalism
of classical statistical mechanics is based on the ele-

mentary bond exp[ —PU (rj )]—1; however, the util-

ity of cluster expansions using h (r;~ ) as the bond is
already recognized in the context of classical sta-
tistical mechanics.

We choose to develop the procedure in terms of
a formal ordering parameter p introduced by the
substitutions

fact, the uniform limit defined by

~g(r) 1—
~

=
~

h(r)
(

&&1

is included as a limiting case in the p-ordered
analysis. What is different in the present study is
(i) no restriction on the magnitude of h (0) [the
physical value h (0)= —1 in the helium problem is
not excluded] and (ii) no artificial scaling of the
coordinate and wave-vector variables.

Physical quantities are expressed as power series
in p and the adequacy of a polynomial approxirna-
tion can be tested by comparing coefficients of suc-
cessive powers of p. In the final numerical evalua-
tion p is replaced by unity. The possibility of con-
verting polynomial approximations into Fade ap-
proximants is always available and deserves careful
study when numerical results become available.

The general rule for determining the factor p
associated with a cluster diagram is

p dri ——N,

p J e "h (r,2)dr2 ——F(k) .

We are following a procedure used earlier in

developing the uniform-limit formalism. ' In

(Sa)

(8b)

m =np n +"k

where nI, is the number of h factors, n-„ is the
number of p 1 dr operations, and n-„ is the num-

ber of [I/(2m) p] I dk operations. As an exam-

ple, we consider the cluster integral

J(ri2) =p f J dridr4h (rii)h (r, 4)h (r2i)h (r24)h (r34)

f J J dk, dkzdkie ' "F(k,2)F(kii)F(k2)F(ki)F(k2i) .
(2m) p

The first expression of J(ri2) has five h factors,
two p f dr operations, and no (2rr) ~p ' f dk
operation, and hence, m =5—2+0=3. On the
other hand, the second (wave-vector) representation
involves three (2n) p

' I dk operations with no

h factor and no p f dr operation, giving m =0—0
+3=3. Thus, both of the expressions yield the
same result that J(r&z) is O(p ).

The p ordering groups together all cluster in-

tegrals with the same value of m, in effect apply-
ing the qualitative working hypothesis that the
operation I dr leaves the order of magnitude of
the cluster integrand unchanged. The coefficient
of p in the power-series formula for p'"' is then
found to have simple properties which are useful in
the physical applications. The simplicity becomes
strikingly apparent in the n-point structure func-
tions S'"'(ki, k2, . . . , k„) related to the Fourier
transforms of p'"'(1,2, . . . , n). Unless there could
be any ambiguities, we will often use the notation

S'"]—=S'"'(k), k2, . . . , k„) .

Section II contains the derivation of p-ordered
approximations for A '"' and p'"' with emphasis on
n =3 and Sec. III deals with the corresponding
derivations of S'"'. In Sec. IV the p-ordered form
for p' ' is used to derive the hypernetted chain
(HNC) formula and improvements thereon. Pro-
cedures for testing the accuracy of p-ordered forms
of p' ' are developed in Sec. V. Questions related
to the asymptotic behavior of g (r) in the context
of equilibrium statistical mechanics are taken up in
Sec. VI. Appendices A and B give explicit expres-
sions for various cluster integrals obtained analyti-
cally with the use of the Gaussian model for h (r).

II. DERIVATION OF 8 ORDERED
A'"' AND p'"'

To derive series expansions for 3 '"' and p'"' in

powers of p, it must be remembered that the
parameter p is introduced in the analysis through
the substitution scheme given by Eqs. (7). In par-
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ticular, it is clear that with substitution (7a), Eq.
(5) takes the form

n (n —1)/2

C P~~(1». .
m=0

(10a)

We now assume that under the substitution of Eqs.
(7) the p-ordered form of A '"' can be written as

A'"'~ g )M~A~"'(1, 2, . . . , n) .
m =2

(10b)

The trivial solutions A'"'=0 (m (1) assumed in

Eq. (10b) can easily be obtained under the solution

scheme to be employed in this section. Substitut-

ing Eqs. (10a) and (10b) into the first line of Eq.
I

(6), we see that p'"' has the form

'n

p'"'~ ~ g p, P'"'(1,2, . . . , n) . (10c)
m=o

In Eqs. (10a)—(10c) arrows simply indicate the
fact that expressions on the right-hand side of the
arrows are consequences of the substitutions given

by Eqs. (7).
We now consider the p expansions (10a)—(10c)

in the sequential relation of Eq. (3). Using the
second line of Eq. (6), a factor p'" "(1,2, . . . , n
—1) can be extracted from both members of the
sequential relation, leaving the formula

n —1 00

N —n+l=~ J dr„g [1+ph(r~„)]exp g p [A'"'(1,2, . . . , n) A'"—"(1,2, . . . , n —1)] . (11)
p m =2

Equation (11) can be written in the form ~KO

g p B'"'(1,2, . . . , n —1)=0 .
m=0

(12)

We treat p as a genuinely variable quantity and ob-
tain from Eq. (12) the sequence of conditions

Bm"'(1,2, . . . , n —1)=0, m =0, 1,2, . . . ,

(13)

which can be used to determine possible explicit
forms for A n'(1, 2, . . . , n).

A conventional diagrammatic notation is helpful
in working out the consequences of Eq. (13):

(15)

jO
=h (rj ), =h (rj )h (r&k ),

(14)
~K4

(4)

h(r;, ), ~ = p Jdr„+~ "+) .
Q (1&i &j&n)

(4)
~K5

(4)
~K6

In the usual terminology an open circle is a root
point and an open circle attached to a cluster by a
single line is a terminal root point. An unlabeled
cluster diagram represents the sum of all distinct
clusters obtained by permuting the root indices
1,2, . . . , n. In terms of diagrams

Here each diagram represents a sum of all distinct
clusters with the coordinate indices ranging from 1

to n. For n =3, Eq. (11) yields
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A,'" 1,2, 3 +

A(3) +
30 30

+
1o 2u

I g( )+ '(g( ))2+

dr3 ——0,

Az' dr3 —0,

3

(16a)

(16b)

functions describing an interacting boson system:
(1) solid circles are directly connected among them-
selves and (2) open circles are not directly connect-
ed among themselves (implying that each open
circle is connected to at least one solid circle}.

The requirement of a symmetrical solution ex-
cludes the possibility of simply equating the in-

tegrand in Eq. (16a) to zero. An equivalent form
for Eq. (16a) is

1o 20
p f Aq '(1,2, 3)dr3 ——— (17)

A'," dr, =o,
2

(16c)
with the minimal solution

A~ ~+A~ ~A~ ~

5 2 3
A,"'(1,2, 3)=

3o 3o
)g (3) + (

(g (3) )2)

Here we use the basic integral condition on h,

p
' I Lo' '(1,2) —p ]dr( ——p J h(r(z)dr)

A'," dr, =o. (16d)

In solving these integral equations we seek
minimal solutions using the postulate of minimal
complexity, which asserts that the solutions are
symmetrical functions involving the simplest possi-
ble clusters in h and the smallest number of clus-
ters consistent with necessary physical conditions.
One essential condition is that no direct bonds con-
necting any two or more points in r&, rz, . . . , r„
occur in the cluster expansion of A'"', meaning
that there are no h (r,j ) factors with both i and j in
the set I 1,2, . . . , n j; any path linking two open
circles passes through at least one solid circle.
Thus A'"' involves only a type of indirect coupling
which is entirely lacking in pz"'. Meeron' formu-
lated the condition as part of a general rule charac-
terizing A'"' in his development of the HNC for-
malism for classical statistical mechanics of an im-
perfect gas. We need the condition just to exclude
the (unphysical) solution generated by setting the
integrands in symmetrized versions of Eq. (16)
equal to zero. References 4, 5, and 10 give an ap-
propriately strengthened version of the general rule
formulated in the context of classical statistical
mechanics of an interacting gas or the equivalent
context of Bijl-Dingle-Jastrow (BDJ)-type trial

p I h(r34)dr3+1

=0.
Now Eq. (16b) can be written in an explicit di-
agrammatic form

(20)

p J A3 (1,2, 3) dr3 ——0,
(21)

in which the integrand is symmetrical in r&, rz, r3.
To solve Eq. (21), consider the cluster function

generated from

which is simply a statement of the sequential rela-
tion for n =2 and does not involve the asymptotic
behavior of the radial distribution function or the
value of S (k) at the origin.

A symmetrical integrand is obtained in Eq. (16b)
by adding the integral

3o
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by substituting & j for o j (j =1,2, 3) in all possible distinct combinations from zero to three:

(22)

Equation (22) introduces a generalization of a con-
struction used effectively by Wu and Chien in a
paper on the structure and properties of the general
convolution form p,'"'. We define a primitive clus-
ter

where (i,j,k) is a permutation of (1,2,3).
The equation

0 0 dr3 ——0 (25)

as one with no terminal root points. Some of the
examples are those given by Eq. (29) and the first
cluster on the right-hand side of Eq. (22). The
general primitive cluster symbol

is easily verified as a consequence of Eq. (19) in
the form

0

0 0
is converted into

30

f 0 dr3 ——0. (26)

r

Pn 3o
1+ 1+

0

0 '

(23)

assuming the distributive law and the interpreta-
tion

0 0

by the construction on which Eq. (22) is based, i.e.,
attaching terminal root points in all possible dis-
tinct ways. Symbolically, for n =3,

The comparison of Eqs. (21), (22), and (25) im-
mediately yields the minimal solution

A'3 '(1,2, 3)= + gg, (27)

a result originally found in a study of the Abe
problem using the uniform-limit formalism. "

Equation (16c) is easily solved by essentially the
same procedure. Again a symmetrical integrand is
obtained by adding an unsymmetrical set of di-
agrams which integrate to zero. The resulting
form for Eq. (16c) is

0 0
I0

0 0

j k0 0 0

0 0 )23

ic
j k
0 0

iO

(24)

f A(3)+

dr3 ——0.
(28)

0

20 0

66 0

=j
0 c

&c
3
Q

Three primitive clusters

are used to generate

(29)
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JL

L L
% F

(30a)

J L1r 4L

(30b)

J L
F

J L
1 F

JL

(30c)

By construction these functions are solutions of Eq. (25); consequently, the minimal solution of Eq. (28) is

4 L
F

JL Q 11 IL

L C 4:

C J L
1F

JL

4L
% F

JL
1F

JL lL J L
l F

J L

(31)

Here rule 1 enters for the first time to require the
replacement of

J L

by the sum of three clusters inside the parentheses.
Equation (31) agrees with the result found by Lee'
and by Chung" in the context of the Abe problem.
(Our h function corresponds to —6 in Ref. 10.)

Equations (6), (10), (18), (27), and (31) combine
to yield



25 ORDERING PRINCIPLE FOR CLUSTER EXPANSIONS IN THE. . . 1717

T 3

p' '(1,2,3)=
p

I+@ +p

+0 (p')

(32)
again in agreement with Chung" for p= l. The distinguishing feature of Eq. (32} is that the sequential re-

lation connecting n =2 and 3 is satisfied exactly by the first part containing only zeroth-, first-, and

second-order terms, which is just the convolution form' ' '5 p,' ' given by Eq. (39a). Third- and higher-

order terms in p make no contribution to the sequential relation, since they consist of only circled primitive

clusters [which integrate to zero as shown by Eq. (25)].
For n & 3, Eqs. (11)—(13) require

f A2"'(1,2, . . . , n) —A2" "(1,2, . . . , n —1)+
(1&i&j&n —1)

h (r;„)h (r„j) dr„=O, (33a}

~ ~ ~ ~ ~ ~

n —1

Ag"'(1, 2, . . . , n) —Aq" "(1,2, . . . , n —1}+[Aq"'(1,2, . . . , n} A2" "—(1,2, . . . , n —1)] g h(r;„)

Corresponding diagrammatic forms are

(1&i&j&k &n —1)

h (r;„)h (r~„)h (rk„) d r„=O . (33b)

p f [A2"'(1,2, . . . , n) —A2" "(1,2, . . . , n —1)]dr„=—
(1&i&j&n —1) i

with the minimal solution

(34!

A2"'(1,2, . . . , n)=
(1&i&j&k &n)

(35)

p f [A~"'(1,2, . . . , n) A~" (1—,2, . . . , n —1))dr„

(36)

with the minimal solution
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A3"'(1,2, . . . , n)= (37)

For n =4 these results check the derivation presented in Ref. 10, where A4
' is also given.

Specializing to n =4, Eqs. {6},{15},{35},and {37}yield

4

p' '(1,2, 3,4)= 1+p +p
P 0

+ n ~ ~ (38)

In testing and applying these results, it is convenient to label truncated forms for p'"' with the degree in JM.

Thus, we write {fory, = 1},

Then

(n) y p(n)

I =0

p2 =pc =p 1+ +(3) (3) 3

0
(39a)

(3) (3)+ 3
p3 —pc +p (39b)

p4 —p3 +p (39c)

(4) (4) 4
p3 =pc +p (40a)

where
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Q

p,
' '= 1+

(40b)

is the convolution form for n =4.' ' ' Equa-
tions (39b) and (40a) show that for n =3 and 4 the
convolution form p,

'"' is supplemented by the term

p

III. EXPLICIT FORMS FOR 8 ORDERED
S' '(k), k2, kg)

In applications the distribution functions may
occur as generators of structure functions. These
are essentially n-point Fourier transforms defined
by

S (ki kp. . . k+)

to give p~"'. The circled symbol in Eq. (39b) is
given by Eq. (22) for a set of indices (1,2,3), but
the same symbol in Eq. (40a) signifies a sum over
all four sets of three indices: (1,2,3), (1,2,4), (1,3,4),
and (2,3,4). Consequently, using Eq. (25), we find

with

=N ' %Op-„p-„p-„dr». . . N
1 2 n

k)+ kg+ . +k„=0

(44)

(45)

dr& ——0, (41)

plus the restriction that no proper subset of the k's
adds up to zero. ' For n =3, it is convenient to de-
fine the Fourier transform of a symmetrical func-
tion f(ri, ri, ri):

P dr4 Npi ~——

234 )2
Xf(r „r~,ri)dr, p3 .

(46)
(42)

Observe that while the cubic polynomial form p3
'

of Eq. (39b) satisfies the sequential relation (3) ac-
curately, pi ' given by Eq. (40a) is not quite ade-
quate in the sequential relation to generate pq

' ex-
actly; instead it yields

fpi '(1,2, 3,4)dr4

(47)

S~ '=S~ '(ki, kp, kg) .

Equation (44) for n =3 then becomes

S' '(k, , k~, ki) = —2+S(ki )+S(kp)+S(ki)

+~(kl k2&k3 lp /p ) .

The result of S' ' derived with p' ' for p' ' will be
denoted by

p(&)(1 2 3)+ 3

(43)

For m =2, 3, and 4, S~ ' can be obtained using
Eqs. (39a)—(39c). Evaluation of the convolution
form simply yields" '

where the error term is of order p but vanishes in
the limit 1V~ ao. In Ref. 10, it is pointed out that
in the sequential relation p4

' generates p4
' with

the error term of order p .

Sp '(ki, kp, kp)=—Sc '(ki, kp, kp)

=S(ki)S(kg)S(kg) . (48)

The involved algebra for m =3 and 4 is equally
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straightforward but becomes extremely complicated
if the circled diagrams in Eqs. (39b) and (39c) are
replaced with the explicit expressions given by Eqs.
(22) and (30). This is the procedure used in Ref.

17 for S3 ' and in Ref. 11 for S3 ' and S4 '. For-
tunately, it can be shown that Eqs. (23) and (24)
permit a very direct and quite simple derivation of
the Fourier transform of a general circled diagram

k2&k3 I

3
=—p g f drje ' '+ f drj+3e ' '+'p f drje ' J'J+'h(rjz+3)

j=l 0 0

3
=—p' g f dr, e'"J "&[1+F(kj)]J

0 0

=S(k))S(kg)S(k3)h k), kp, k3I
0

(49)

Using Eqs. (40) and (41), we verify the Chung formula" for S3 ' and S~ '.

S3 '(k), kp, k3)=S(k))S(kp)S(k3)[1+63(k),kp) kg)], (50)

63(k„kp, k3)=h k, , k~, k3

f F(k)F(
i
k+ k,

i
)F(

i
k —k, i

)dk,
(2m. ) p

(51)

S4 '(k„k~, k3)=S(k, )S(kp)S(k3)[1+63(k„k~,k3)+64, (k), k~, k3)

ph4b(k), kp, k3)+ , b,4, (k), kp, k3)], — (52)

6~(k), kq, k3)=h k), kg, k3
I

, , f [F(
I
k+k(

I
)F(

I

k '+kg
I
)+F(

I
k+k~

I
)F(

I
k '+k3

I
)

)6 2

+F(
I
k+ k)

I
)F(

I
k '+ k( I

)]F(k)F(k')F(
I
k+ k '

I
)dk dk ', (53)
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b4b(k, , kq, k3) =6 k i, kq, k3

f [F(
~

k+ki
~

)F(
~

k'+kg
~

)F(
~

k '+kp+k3
i

)
(2m) p

+F(
~

k+k~
~

)F(
~

k '+k3
~

)F(k '+k3+ki
~

)

+F(
(
k+k3

(
)F(

(
k '+ki

(
)F(

(
k '+ki+kz

I
)]

XF(k)F(k')F(
~

k+ k '
~

)d k d k ', (54)

b4, (ki, kq, k3)=h ki, kp, k3 , , f F(
~ k+4 ~ )F( it'+k~ ) F(~ k+4' —k,

~

)
(2m) p

XF(k)F(k')F(
~

k+ k '
~

)d k d k ' . (55)

In the expressions for h3 and h4, the actual symmetry in k1, k2, k3 is not explicit, but symmetry is easily

demonstrated by suitable displacements and reflections in the space of the integration variables. The n-point

structure function S'"' for general n has been evaluated by Wu' under the convolution approximation p,'"'.
The fact that the minimal form for A' ' in the context of the ground-state solution %0 coincides with the

corresponding form generated by the BDJ trial function 40 is at first welcome because it indicates in still

another way a close correspondence between %0 and the optimum 40. However, we must recognize that

minimal does not necessarily mean correct. It seems likely that an exact cluster formula for p' ' generated

by %0 must contain many cluster integrals which do not occur in the minimal solution. At present, very lit-

tle is known about such terms and no procedure is available for generating or estimating them. Fortunately

independent tests are available which are capable of yielding some quantitative information on the absolute

and relative accuracy of approximate trial forms. Such a test is discussed in Sec. V.

IV. AN IMPROVED HYPERNETTED CHAIN RELATION

The results stated in this section are not new, but the earlier derivation ' ' in the context of the
uniform-limit formalism involved the explicit assumption

~ g (r) 1~ =
~

h (r)
~

((—1 and an artificial scaling

of the coordinate and wave vector variables. The same relations can be developed using the p-ordered ex-

pansion for p' '. The analysis starts from the BDJ approximation for %0..

@o(1,2, . . . , &)=
(1&i &j&N)

f rr
(1&m &n &N)

1/2
&['mn] .-+ r1,2, . . . , N (56)

(57)

which determines u(r) as an explicit functional in g(r) or S(k), if the kernel

and an inhomogeneous, linear, integral equation of a familiar type [the first equation of a Bogoliubov-Born-

Green-Kirkwood- Yvon (BBGKY) hierarchy]:

Viu (rip) =Vi ing(rip) —f K(1,2;3)Viu (ri3)dr3,

K(1,2;3)=[p' '(1,2,3)—p g(riz)g(ri3)]/p g(riz) (58)
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is given as an explicit functional in g (r) or S(k).
Under the p-ordering scheme discussed in Secs.
I—III, the kernel in the integral equation (57)
enters as a power series in p and the integral equa-
tion is solved by expressing u (r) as a power series
in p in the form

plied to a form in which the Fourier transforms of
excessively singular functions do not occur. For
details which are easily translated into the p-
ordered notation, the reader is referred to Ref. 10.

The final result is

(2n. )'p
u (r) = in[1+ph (r)]—g p u (r) .

m=1

With p & 1, the assumption that u (r) and u (r)
possess Fourier transforms involves no difficulty
and facilitates the development of an explicit solu-
tion. The final step of taking the limit p~1 is ap-

u2(r)=0,

1

Q3(r12 ) =

(60b)

(60c)

u4(r, z) =
1+—
2 +4

(60d)

For p = 1, Eq. (59) with u (r) =0 for m & 2, i.e.,

u(r)= lng(r) —ul(r)

is the HNC formula.
An earlier derivation of a closely related general

formula appears in the work by van Leeuwen,
Groeneveld, and de Boer':

p f e' 'w(r)dr=[S(k) 1] /S—(k) .

Consequently,

u(r)= lng(r} — Je'"' dk1;1,., [S(jc)—11

(2~)'p S(k)

e(r)—

(63)

w(riz)=p J [g(r,3}—1]

X[g(r3z) —1 —w(r3z)]dr3, (61)

where

and e(r) is the co—rrection to the HNC approxi-
mation. Smith writes an explicit approximation
for e(r) as

w(r}= lng(r) —u (r) —e(r), (62)

and e(r) is given as a sum of so-called bridge clus-
ters. In wave-vector space Eq. (61) reduces to

e(r ) =e4(r) +e5(r}+
e4(r) =u3(r),

(65a)

(65b)

~5( 12 )
I+— 1+—

(65c)

the subscripts of e denoting the number of parti-
cles (sum of the number of open circles and num-
ber of solid circles) involved in the cluster formula.
Both derivations yield the same leading correction.

However, u4 and e5, each a linear combination
of five clusters, have only two clusters in common;
u4 is a linear combination of five- and six-particle
clusters involving seven and eight bonds, respec-
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tively, while e5 contains only five-particle clusters
and the number of bonds range from seven to nine

meaning that e5 includes terms belonging to the
coefficients of p, p, and p . The difference
expresses the fact that the p expansion is based on
a rational ordering principle whereas the grouping
of all clusters generated by a given number of par-
ticles is essentially reverting to the use of number

density as an expansion parameters.
No positive information is available at present as

to which form, u4 or e5, represents the better ap-
proximation under realistic conditions for liquid
helium. On the other hand, the Gaussian model
for the function h (r) [given by Eq. (75)] is useful

in estimating the relative magnitudes of the cluster
integrals appearing in Eqs. (60d) and (65c). The
obtained results are presented in Appendix A,
where the norms and average values of the cluster
integral functions are also given. Although no de-

finite conclusion can be drawn from the compari-
son of the numerical results, they are not unfavor-

able to the view that the six-particle cluster terms
in u4(r) may generally contribute more than the p
and p terms in eq(r).

p fp' '(1,2,2)d r i
——0, (66)

an immediate consequence of the sequential rela-

tion. Thus the convolution and p-ordered forms
satisfy the condition p' '(1,2, 2)=0 in the mean.

The Fourier transform is a useful tool in the
study of the magnitude and general behavior of
p' '(1,2,2). Let

points coincide. This reflects the occurence of
strong repulsive interactions when the K-shell re-

gions of two He atoms begin to overlap. The con-
dition is identically satisfied by the Kirkwood form
pz"' and hence by the Abe form p'"' defined by the
first line of Eq. (6); however, for the convolution
approximation p,

'"' and the p-ordered polynomial
form p'"' it fails except at isolated points. Note
that this failure by p'"' is order by order and is the
consequence of the artificial truncation of Eq. (6)
induced by the p-ordered expansion. A point of
interest is that

V. A PROCEDURE FOR TESTING
THE ACCURACY OF p' '

Q~ (k) =p f e "p~ '(1,2,2)d r i . (67)

A realistic description of liquid He requires that
all distribution functions (n )2) vanish if two

An immediate consequence of Eq. (66) is Q (0)
=0. Substitution of Eqs. (39) into Eq. (67) yields

Qi(k)
S(k)

Q3(k)

S(k)

f F(
~

k —k'~ )F(k')dk',
(2m) p

(68a)

(68b)f [2+F(
~

k —k"
~

)]F(k')F(k")F(
~

k —k'
~

)F(k' —k"
~

)dk'dk" .
(2m) p

Using a procedure similar to that employed in Eq. (49), it can be shown that Eqs. (23) and (24) allow a gen-

eral proof that S(k) occurs as a factor in Q (k):

p ~ 12 dr, =p f drie' "+f dr4e' "'p f drie' '"h(r, 4)

22
Xe 1+

20 .

54) .

20 '

&22

=S(k)p f drie " 1+
20 0

(69)

Observe that

5~ . . 6g. (22



1724 EUGENE FEENBERG AND DEOK KYO LEE 25

f Q (k)dk= —p' '(1, 1,1),
(2n} p p

expressing the integral of Q (k) directly in terms of p' ' for r~3 ——rz3
——r3~

——0. In contrast the quantity

(70)

W=3dk
(2~) p S(k)

gives a measure of p' '(1,2, 2) for intermediate
values of r&z. In terms of the direct correlation
function

C(r)=, f e'"' —1 dk,
(2rr) p S(k)

(71) Eq. (71) transforms into

W~ = p f C(r&z)p~ '(1,2, 2)dr&

+p~ '(2, 2,2)/p

Equations (68) and (71) yield

(73)

(74a)

3
—

6 3 f dk'dk" F(k')F(k")F(
I
k' —k

I ) 2+
3 f dkF(

I
k —k

I
)F(

I
k —k

I
)

(2m) p (2~)3&

(74b)

We now turn to the numerical evaluation of
various quantities, using the Gaussian functions
(the Gaussian model)

—$2h(r)= —e ', s=~np'~3r, (75)

Q3(k) /S (k) = ( —,)' e

Q3(k)/S(k)=2( )e & —
( )r e e'— —

(78a)

(78b)

F(k)= —e e, q=k/(2~mp'/ ), (76)

p3 '(1,2,2)/p = 2( —, ) e " +—e

—s~ —5$~ /8
( )3/2(e 12+2e 12

)

{77b)

which have the virture of yielding explicit formu-
las for cluster integrals. "' Note that Eqs. (75)
and (76) are related to each other by the Fourier
transform expressed by Eq. (4b) or (4c). We use

Eqs. (75) and (76) to get some information on the
general behavior and magnitude of the cluster in-

tegrals occurring in the p-ordered formulas for p' '

and Q . This information may be moderately reli-

able in problems where h (r) is a monotonic func-
tion (as in the problem of the charged boson

gas). ' Explicit results for the cluster integrals

appearing in p~ '(1,2, 3) are given in Appendix B
for m =2, 3, and 4. The results for p~ '(1,2,2)/p
and Q (k)/S(k) are

$2 ) 2 y3(3)(1 2 2)/ 3 12
( )3/2 12

{77a)

Wp ——1,
W3 ——0.3407,

W4 ——0.048 32 .

(79)

Another scalar quantity that can serve as an aver-

age measure of
I

p' '(1,2, 2)
I /p is the square root

of the norm

We have also obtained the expressions for m =4,
but they are not given in Eqs. (77) and (78) since
they are quite lengthy. Comparison of the results
for p' '(1,2,2)/p3 and Q (k)/S(k) for m =2, 3,
and 4 illustrates nicely the reduction in computa-
tional complexity resulting from the shift to wave-

vector space. Figures 1(a) and 1(b) display numeri-

cal results for p' '(1,2,2)/p as function of s ~3 and
Fig. 2 shows results of Q (k)/S(k} plotted against

q, each for m =2, 3, and 4. Clearly, at least for
m =2 and 3, p' +~ and Q +, represent substantial
improvements over p' ' and Q, respectively, in

approaching the requirement that p'3'(1, 2, 3)=0 if
two points coincide.

Substitution of Eqs. (78) into Eq. (71) yields ana-
lytic results for W, whose numerical values are
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' 1/2
U = p f [p' (1,2, 2)/p ] dr, (80)

satisfied by p' +& (1,2,3) than by p' '(1,2, 3) for
m =2 and 3 in the Gaussian model given by Eqs.
(75) and (76).

We close this section by pointing out that a
somewhat related form for p' '(1,2, 3) is studied in
Ref. 21, where the approximation is given by

p (1,2, 3)=pg '(1,2,3)

Ug ——0.2463,

Ug ——0.088 99,

U4 ——0.023 75 .

(81)

Equations (79) and (81) also demonstrate that the
requirement of p' '(1,2,2) =0 is more accurately

which can also be evaluated analytically with Eqs.
(77). The numerical results for m =2, 3, and 4 are

X exp g Ati "(1,2, 3)
1=2

(82)

Note that Eq. (82) for m = ac is identical to Eq. (6)
for n =3. While p appears more general and
possibly better than p' ', the analysis of this ap-
proximation scheme in the wave-vector space is
practically impossible. Moreover, the Gaussian
function of Eq. (75) does not permit explicit
evaluation of integrals involving p' '(1,2, 3) or
p~ (1,2,2).

VI. 8 ORDERING IN EQUILIBRIUM STATISTICAL MECHANICS

Consider a system of N identical particles interacting in pairs. In the classical formulation of statistical
mechanics the N-particle distribution function is

where

'(1,2, . . . , N)=N! exp[ —pV(1, 2, . . . , N)]

f exp[ —PV(1,2, . . . , N)]dr~ l
(83)

V(1,2, . . . , N)=
(] &i &j&N)

v(rj) . (84)

The sequential relation given by Eq. (3) is used to generate p("'(1,2, . . . , n), leading finally to

f exp[ —PV(1,2, . . . , N)]dr& 4p' '(1,2) =p g(ri~) =N(N —1) f exp[ —PV(1,2, . . . , N)]dr~ z

and

(85)
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Notice that

2

N f f [g(r„)—1]dr,dr2 ——p f [g(r) —g(co)]dr+N[g(co) —1]=—1.

(86)

(87)

Now

S(k)=l+p f e'"'[g(r) g(—co)]dr,

S(0)=N [1—g ( co )]

=kg T/mc

(Ornstein-Zernicke relation) .

(88)

(89)

I

eralization of Abe's work in Ref. 3 was carried out
to all orders in Ref. 4. This research was support-
ed in part by the National Science Foundation
under Grant No. DMR76-14929 and in part by the
U. S. Department of Energy under Contract No.
W-7405-eng-26 with the Union Carbide Corpora-
tion.

The function h (r)=g(r) —1 has a constant
long-range tail which is needed to meet the re-
quirements of the sequential relation as stated in
Eqs. (3), (11), and (87). In these relations the range
of integration is the fundamental cube and not in-
finite space; the quantity

4irp f [g(r) —g(co)]r dr = —1+S(0)
(9o)

never occurs in a proper statement of the sequen-
tial relation.

The conventional procedures used to transform
p'"' and A '"' from functionals in exp[ —Pu(r)] —1

into functionals in h (r) appear to treat h (r) as a
short-range function. In effect h (r) is replaced by
a sequence of short-range functions with h (r) as
the (nonuniform) limit

APPENDIX A: COMPARISON OF u4(r)
AND e5(r)

A brief discussion of the p ordering and density
expansion approaches for u (r) presented in Sec. IV
is examined in more detail in this appendix
through numerical evaluation of the cluster in-

tegrals appearing in Eqs. (60c), (60d), and (65c).
The Gaussian model for h (r) defined by Eq. (75)
allows analytic and explicit evaluation of the in-
tegrals. Their expressions resulting from integra-
tion are also Gaussian functions of the form

—CX S
Ik(r, 2)= e " ", s=Vnp'~ r .

Dk
I
Dk

I

'"
(AI)

lim h (r) =h (r), (91)
The relative magnitudes of the cluster integrals
may be estimated from the norm

lim r~h (r)=0,r~ ae
(92) p f Ik(r)dr = (A2)

p f h (r»)dr, = —1. (93)
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Another scalar quantity useful in the comparison
is the expectation value of g, Ik(r J ) per parti-
cle

(Ik)—:
N g 0'olk(r;~)dri p

1 2

(1&i &j&N)

= —,'p f g(r)Ik(r)dr

1 1 1

»k IDk I'" ~k" (~k+1)'"

(A3)
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where %0 is the normalized ground-state wave
function.
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TABLE I. Numerical values of Dk, ak,
l lIkl l, and (Ik ) for the cluster integrals Ik given

by Eq. (Al).

Dk

6.905 x 10-' 1.4285

—21
8

7
3.125 X 10 0.2596

—24
7

8
3.125x 10 0.3539

30
3

2
7.128x 10-' 0.0887

35
8

7
6.749 x 10 0.1207

—50
3

2
1.540X10 ' 0.0412

45
2

3
7.128x 10-' 0.2273

7

8
6.749X10 6 0.1645

45
4

5
5.422 X 10 0.1629
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TABLE II. Numerical values of D, a, P, and y for the cluster integrals I(1,2, 3) given by

Eq. (B1).

I(1,2, 3)

1

3

I

3

1

3

3o
1

3

1

3

4

3

1

2

1

2

1

8

16
1

4

1

4

1

4

—3
4

3

4

3

1

3

4

11

4

11

9

11

3

2

1

2

1

8

—24
1

2

1

6

3

8

Q
2

0 F 0
—21

4

7

4

7

1

21

C
2

JL JL o3
4
15

4
15

1

5

2|~

1

2

1

2

9
8

2t..
—16

1

4

1

4

5

4
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TABLE II. (Continued. )

I(1,2, 3)

2C

C 4:

—21
5

7

4

21

3

7

I
C

2c
40 3

8

1

10

1

2

Ic
45

1

3

1

3

1

5

)c
—75

1

5

1

4

4

15

2

3

2

3

2

3

C BL

—21
6

7

2

7

2

7

C
2 45

2

5

2

5

2

15

—81
2

9

2

9

2

9

The numerical values of Dk, ak,
~
~Ik

~ ~, and (Ik )
are listed in Table I. The question we would like
to be able to answer from the numerical results is
as follows: Which terms, I4, I5, and I6, or I7, I8,
and I9, should be grouped together with I2 and I3
to form the leading correction to u3(r) =f4(r)

1= —,I
&
(r)? Unfortunately, the answer does not

seem clear. The functions I4(r) and I5(r) are
larger than I7(r), I8(r), and I9(r) at small values of
r but smaller at large values of r. In particular,
norms of I4, I5, I7, Is, and I9 are of the same ord-
er of magnitude. However, the following several
observations can be made that slightly favor the p
expansion scheme.

~max

E„(r)= g E„~(r)p
min

(A4)

(l) Magnitudes of (I7), (Is ), and (I9) are all

larger than any of those of (I4), (Iq ), and (I6) ~

(2) While I7, I8, and I9 all contribute nearly

equally in many respects, the contributions from I6
are consistently much smaller than those from I4
and I5. Therefore, validity of grouping I6 as the
same order as I2, I3, I4, and I5 appears question-
able.

(3) If the n-particle correction term in the densi-

ty expansion is written as
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it can be shown that

A, ,„= 2 (n —1)(n —2),

1

—,(n +2), n: even

—,(n +3), n: odd

(A5)

(A6)

Iq, and I9 make smaller contributions than those

from the five-particle clusters I2 and I3. This sug-

gests a possibility that if A, becomes large, the or-

dering may suffer from a difficulty similar to that

pointed out in (2) and (3). However, for large A, ,

n,„—n;„=2k, and therefore the problem would

not be as serious as in the density expansion pro-
cedure.

~max

u3 (r) = g U3„(r),
n =nmin

(A7)

with n representing the number of particles in the
cluster diagrams, it is not difficult to show that

n max (A8)

and n;„ is an integer such that

—,[(8k+ I)'~ +3]&n;„& 2 [(8k+ I)'~ +5] . (A9)

For A, =4, it is seen that the six-particle clusters I7,

For large n, A, ,„—A, ;„varies as 2 n and hence

the difficulty mentioned in (2) will become progres-

sively more serious as n becomes larger.
(4) If the A,th-order correction term in the p ex-

pansion is written as

APPENDIX B: CLUSTER INTEGRALS
OF p' '(1,2, 3) IN THE GAUSSIAN

MODEL

The cluster integrals appearing in the expressions

of A' '(1,2, 3) and p' '(1,2, 3) can be evaluated

analytically if the function h (r) is given by the
Gaussian form of Eq. (75). The results of integra-

tion are always given explicitly in the form of

I(1,2, 3)—= exp( —as33 P$3/ —ys, 3) .2 2 2

DiDi'
(Bl)

Table II lists numerical values of D, n, P, and y
for m =2, 3, and 4.
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