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Quantum-mechanical calculations of the probability of K-shell ionization in the a decay
of Po and in a+Pb collisions are made. The initial and final electronic wave functions
are approximated by Dirac hydrogenic wave functions centered on the Pb nucleus. Also,
we include the contribution from the part of the trajectory where the a particle tunnels

through the Coulomb barrier. The contribution from tunneling is small except at small

a-particle velocities.

I. INTRODUCTION

Recent "time-delay" experiments which measure
K-shell ionization probabilities in collisions where
long-lived compound nuclei are formed are sensi-
tive to the amplitude or probability of forming a
K-shell vacancy in half of a collision, i.e., while the
projectile is on the way in or the way out. '

Aside from these scattering experiments, the only
other way we have of measuring these quantities is

by measuring internal ionization during the proton
or a decay of a nucleus. Several measurements
have been made of E- and L-shell ionization dur-

ing the a decay of various polonium nuclei.
New semiclassical calculations of those ionization
probabilities are in reasonable agreement with ex-

periment. '
One aspect of internal ionization which has not

been investigated thoroughly is the possible contri-
bution to ionization while the a particle is tunnel-

ing through the Coulomb barrier. In the semiclas-
sical approximation the probability of exciting an
electron from an initial state i to a final state f in
half of a collision is given by the square of the am-
plitude

af,. ——f dt e'"'(pf
~

H'
~ p; ),

where H' is the perturbation Hamiltonian, and Ace

is the difference in the electronic binding energies.
The time integral in Eq. (1) is done along a
Coulomb trajectory starting at an internuclear dis-

tance R =D, where the repulsion between the a

particle and daughter nucleus is equal to the final
center-of-mass kinetic energy. In the decay of
' Po, D is approximately 50 fm, thus the a parti-

cle must tunnel a distance of -40 fm through the
Coulomb barrier. (The Po nuclear radius R~ is

approximately 10 fm. )

Although no quantitative calculations have been

made of the tunneling contribution to E-shell ioni-

zation, Law has pointed out that this contribution

might be sensitive to the a-decay mechanism. He
compared the ionization probabilities calculated by
assuming that the a particle tunnels through the
barrier instantly and infinitely slowly. The proba-
bilities differed considerably for high kinetic ener-

gy of the ionized electron. However, calculations
incorporating a-decay dynamics have not yet been

done.
In this paper we make quantum-mechanical

lQM) calculations of ionization during a decay.
To describe the motion of the a particle, we use

the standard particle-in-a-well picture. "' Inside
and outside of the Coulomb Barrier, WKB a-
particle wave functions are used, which are
matched to the wave functions inside of the nu-

cleus at the nuclear radius R~. Using these wave

functions we show that the amplitude for E-shell
ionization is given by the amplitude in Eq. (1) plus
a "tunneling-correction" amplitude. The properties
of this amplitude are discussed in Sec. IID, and
the results are compared with measurements of
Lund et al. ' and Fischbeck and Freedman in
Sec. III.

Atomic units are used throughout this paper.
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II. QUANTUM-MECHANICAL THEORY
OF IONIZATION DURING a DECAY

A. Boundary conditions

Normally one calculates the probability of excit-

ing an electron from state P; to state P~ in a colli-

sion where the incoming particle with momentum

K scatters to the final momentum K'. The proba-

bility is proportional to the square of the matrix

element of the perturbing Hamiltonian H' (Ref. 13)

( e (K',R)yf
~

H'( r, R)
~ y; 4+(K,R) ),

where 4-+ is given by

g(i) e ~ L(KR)YL~(K)YLM(R),
KR LM

where g=Z~Z2/U. Note that + (K', R) is un-

changed, corresponding to the same detector
detecting particles of a definite momentum K'.
Furthermore this wave function, being regular at
the origin, behaves very differently within the
Coulomb barrier than the resonant wave +o+. The
resonant wave is matched to a bound-state wave

function inside the nucleus, hence decays exponen-
tially with increasing R until it arrives at the
Coulomb barrier D, where it becomes a free-

particle wave function. Since the energy E' of the
final-state wave function 0 differs from the ini-

tial energy E by the ionization energy fico needed to
excite the K electron, the final-state wave function
cannot match to the same bound-state wave func-
tion inside the nucleus, hence it decays exponen-

tially with decreasing R. These wave functions are
derived in the following section.

B a particle wave functions

5L is the Coulomb + nuclear phase shift, and
~ L (ER) is the exact solution to the radial

Schrodinger equation for the projectile-target nu-

cleus potential V(R). ~ L goes to zero at R =0
and asymptotically approaches a sine wave.

The boundary conditions on 4+ and 4 arise
from different sources. 4+ corresponds to the
preparation of the initial state as a monoenergetic
beam of large cross section with a definite direc-
tion K. %' corresponds to the detector detecting
at R = oo particles of a definite momentum K'.
Note that the demand for a stationary solution in

practice means that any experiment must run

longer than the lifetimes of the nuclear or electron-
ic states.

and 4+ are regular solutions, which ap-
proach zero at R =0. In the case of a decay the
physical situation is different, since the experiment
is carried out on a time scale much shorter than
the nuclear lifetime. The stationary wave describ-

ing the a particle must therefore be a purely out-
going spherical wave. It will consequently have a
singularity at the origin, corresponding to a source
of a particles there, which ensures probability con-
servation. The relevant matrix element in the case
of L =0 a decay is therefore

In the standard particle-in-a-well picture, the po-
tential on the a particle is given by"'

Vc R &Rz region II
V(R) =—'

V~ R (Rz regionI (6)

II C c ~

GL ——GL cosy' —Fz sinY/L

where FL and GL are Coulomb wave functions.c c
We require that at Rz,

F~(R~ ) =FL, (R~ ), Gr (RN ) =GL (Rg),

fL, (R~)=fL, (R~ ) gi~(R+) =gL, (Rx) i

where

R d
fL (R)= n FL,

FL dR

where Vc is the Coulomb potential Z&Z2/R, and

Vz (-const) is the nuclear potential. The regular
and irregular solutions in region II for a given an-

gular momentum L can be written as

II C c ~

FL ——FL cosgL, +GL singL

and

(4 (K',R)p~
~

H'(r, R)
~
p;+0 (K,R)/R ) .

Asymtotically ko+ is given by '

ko+ ——exp[i (KR —gin 2KR )],

(4)
etc.

The solutions in region I are restricted by the re-
quirement that FL(0)=0. By using Eqs. (7) and
(8) we can then determine gL uniquely. Gz is then
the unique irregular solution for V~ that can be
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fitted to Gz' at RN once gz is determined.
As is usual in studies of a decay, we approxi-

mate the Coulomb wave functions Fz and Gz with
WKB wave functions'

~C ~ —1/4 WL r. C & & —1/4 —WL.

(L+-,' )'
pL (R)=—+ —1,

(ER)

Wl. (R)=K J t))L, dR',

where D is the classical turning point (we neglect
its dependence on L), E is the a-particle momen-
tum, and L is its angular momentum. This gives

B tangz
7 =— =—cos 'gz

2u BE 2u BE &L
——~/2

and

Fz ——NFL Rjz (KR )

(14)
It can be shown after some algebra that the life-
time obtained from this method is identical to that
obtained by Winslow [Eq. (16) of Ref. 12] using

the complex energy eigenvalue method.
Inside the nucleus, the wave function is again a

combination of Fz and Gz. Since only outgoing
initial L =0 waves are needed, only Gp is required.
We have

C 1/2 C

dR
FL K(1 yL )4L FL

G = K(l—+y )P' 'G

(10)

I
NG

Gp = cos(KR +gp)E
Using Eq. (8), the normalization constants are
given by

(15)

where

,n d&L

4K dR

w 1 2We sinqz(1+ —, cotgze )

(()L, RjL(KR)

(16)
Inserting into Eq. (8), we can express gz in terms

of fL(Rx') as

WL 1 —2W~
Ke cosgL (1—

z tan7)L e )
NG ——

PL cos(KR+gp)

(17)
and E is calculated from Eq. (13) with FL =Fp,

K co«R = Kyo"(I+yo—)
I R=R, .

where the functions on the right-hand side are—2W(R~) .
all evaluated at R =R~. e " is a very small

quantity, therefore gz -0 except where

fr. +XR&P(1+yl. ) is equal to zero. Indeed

(18)

It will turn out that the phase factor gp is not re-
quired. It can be calculated from matching gz and

gL, Eq. (8). One finds go++a /2 so that Fo and
Gp are indeed linearly independent.

We now have all of the formulas necessary to
calculate the initial and final wave functions ~ z
and &p+. &p+ is to be evaluated on the resonance
(gp ——~/2) using

(13)fL ———KR $L (1+yr. )

is the usual quantization condition. "' When this
equation is fulfilled gz is equal to ~/2. We can
interpret gz as a resonance phase shift which
passes through m./2 as one varies K. Although we
are not interested in calculating the a-decay rate in
this work, we note that the lifetime can be ob-
tained from the derivative of gz with respect to
K 13

kp+ ——e ' (Gp+iFp), (19)

where o.
p is the Coulomb phase shift. Inside the

nucleus we have, inserting Eqs. (15)—(17),

—2 W fL KR 0&"( I yl )— —
9L I 1/2 , (12)

fr. +KRAAL"(I+yL)

wp(RN ]—i (crp+ Pp] I cos(KR +go) 1 —2 wp sinKR+p ——e ' ', /4 cosgp(1 ——, tangpe ) +i singp(1+ —,cotgpe )
4o (Rx) cos(KR~ +gp) sinER~

0 0 N
[y (R )]

—I/4

sinER~ (2O)
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—2WOwhere we have used the fact that cosgp ——0, singp ——1, and e && 1. For R ~ R~, we have, inserting the
WKB wave functions and using standard connection formulas' for R =D,

kp ——.+

—i00 Wo(R) . j —Wo(R) )g4e (e +i , e —)pp,R~ &R &D,

iexp —icrp+iWp(R) —i—( —pp) 'r~, R )D,
(21)

where
R

Wp(R)= f ( —$p)'r dR'.

For the final-state wave function ~ I, the corresponding particle energy is smaller by at least the I(:-shell

binding energy, which is much greater than the width of the resonance (fi/~). Thus the resonance condition

Eq. (13) is not satisfied and gp-0. In this case ~ L is given by

J,(sc'R)R
e —[yl (R~)] ' R &RN

JL, (& RN )R~

[Pg(R)] ', R~ &R &D,

sin( WL +~/4)[pl (R)]—'r

(22)

where K' =& —2m/p.
We note that W(R) in Eq. (9) is a positive quantity that decreases with increasing R. Hence the first

term of kp corresponds to a wave which decays exponentially with increasing R. The second term, which
decays with decreasing R, will play no role. ~ z, however, is a wave which decays exponentially with de-
creasing R, as expected from the considerations discussed at the end of the last section.

C. E-shell ionization probability

dP (E )

dE Efk,P
f =

l

A
l

'(2A, +1)-',
f

(23)

Using Eq. (4) we can write the probability of ex-

citing a E electron into a continuum state with en-

ergy Ef and angular-momentum quantum numbers
A. and p as

atom centered on the daughter nucleus. In princi-
ple, since the velocity of the outgoing a particle is
much smaller than the K-electron velocity, diatom-
ic molecular wave functions which evolve continu-
ously from united-atom wave functions to wave
functions of the daughter nucleus should be used. '

The use of united-atom wave functions for all R
here is consistent with the prescription used by
Andersen et al. ' to describe E-shell excitation in
slow ion-atom collisions. The perturbation Hamil-
tonian H' is given by' '

where 1—+ + VR V(R).r,
r —Rl r Mz

(25)

E'
Ag g~

—— (%' (K', R)ge gp lH'l P)g kp+/R)

X(2~+1)'" (24)

and v is the alpha-particle velocity.
For the electronic wave functions we will use

Dirac hydrogenic wave functions of the united

where M2 is the target nuclear mass (in atomic
units). The first term here is just the Coulomb po-
tential between the projectile nucleus and electron.
The term Zi /r is present because the wave func-
tions are eigenfunctions of the Hamiltonian with
the potential (Z&+Z2)/r hence this term must be
included to avoid double counting the projectile-
nucleus-electron Coulomb potential. The final
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(2~+ l ) (NE~xp I

H'
~ Pig )

=Gg(R)
4~
+

1/2

YA.R(R ), (26)

where

term is the recoil contribution. ' ' The electronic
matrix elements are readily evaluated. ' ' One ob-
tains

(30)

[Equations (26) —(29) assume for simplicity the use

of nonrelativistic radial electronic wave functions

RE q and R», but are valid in form for Dirac wavef
functions also. ' For excitation to p continuum

states one must separately calculate radial matrix
1 3

elements for p —, and p —, continuum states, and to

obtain the total excitation probability, one must

weight the two contributions by J + —,.]
Taking the quantization axis along K' so that

1/2

Yg (g P)

av
GA(R) =Z1SA(R) —~A1Q I gR2

(27)
AE ~ is given byf

A, i5~
AE g

———(i) e 5qpf Iji

00 r&
S~(R)= r dr RE ~R»(r) &

—5&0—
0 f S

&& f dR ag(K'R)Gg(R)'ho+(KR) .

(31)

and

Q= r dr RE xR» .
0 f

(28)

(29)

I

Since the phase shifts will drop out when we

square AE ~&, they will henceforth be omitted. We
Ef P&

will also omit the 5&0 factor, and abbreviate AE ~„f P

as A~.
Using the wave functions derived in the previous

section, A~ is given by

N sin(KR ) J z(K'R ) R exp[ Wo(R~ ) —Wz(Rz )]
Ag ———i dR Gg(R)

sin(KR~)J &(K'Rz) R~ [po(R~)p&(R~)] /

D exp[ Wo(R) —Wx (R ) ]—i ~ dR Gg(R)
N [0o«)4(R )]'"

dR G, (R)
exp{i [Wo(R) —WI, (R)]]

[Po(R)NDR)]'"
(32)

where we have neglected small terms of the form

fD
dR Gx(R)exp[ —Wo(R) —Wj (R)](gong)

and

(33)

f dR Gg(R)e px[iW (oR) +iW~(R)](gong)

Neglect of the first term is justified because exp( —8'0 —W~) is much less than exp(+ Wp —8'~). Neglect

of the second term is justified because exp[i( Wo+ Wq)] =exp(2iKR) oscillates very rapidly, hence the in-

tegral gives approximately zero.
Equation (32) can be simplified if we approximate

'2
D' A, +1/2 D'—l+,

R
= —i=No .

R K'R R
(34)

This approximation should be valid because the term neglected is less than a factor of [(A, + l/2)/ri] D/Rz
smaller than the D/R term. For ' Po a decay, g =23 and D/Rz -5, hence this term should be negligible.
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Using this approximation (PPv)'~ is approximately given by (+P)'~2, where /=1 D—/R. Thus

Wp(R) —Wx(R) = f dR( E—PO)'i ( —K—' Pp)'i
R

=q f dR( —(()) (35)

where q =E—E'= co/U. Similarly,

Wo(R) —Wq(R)=q f dR(+P) '~ =tot .

We therefore have

00 dR RPx= f dte'"'Gx(R) i f— Gx(R)exp q f dR( —P)p N vV —p D

& dR N sin(ER ) Ja(& R ) Ri f— [ P(R~—)] ' Gg(R)exp q f dR( —P)
sin(gR& ) J&(I(), R& ) R~

(36)

(37)

R
X exp q f dR ( —P) (38)

The first term in this expression is just the semi-
classical amplitude given by Eq. (1). We shall hen-
ceforth denote this term by a~. The last two terms
are the tunneling correction, which we shall call

I
a~.

We note that the contribution to a' coming from
inside the barrier (Rz &R &D) is what one would
obtain from elementary considerations. For the
semiclassical contribution R is greater than D,
hence /=1 D/R is positive—. To extend the in-
tegral to R &D, one realizes that P is negative, so
that v p will yield iv p Hence—on.e would ex-
pect

dR
ax = i f — Gx(R)vv' —y

where C~ ——Qcv /Z2, p is the nuclear reduced
mass, and Q is given by Eq. (29). With these ap-
proximations a ~ is given by

a' = i C—D'r+'I2 (g,xo),
U

Z] Z2p
a& ———i Ci 1— D Ii(g,xp),

U ZiM2

(39)

where

X"+'dX
In(k~ 0xfx (X2 X)1/2

x X'dX
&&exp 0

~ (Xt2 X&)1j2

(40)
Except for the contribution from inside the nu-
cleus, this is the same as Eq. (37).

D. Tunneling corrections

Since the contribution to a~ from inside the nu-
cleus turns out to be numerically small, we can dis-
cuss the magnitude of the tunneling correction by
considering just the contribution from within the
Coulomb barrier. Using Dirac wave functions, it
can be shown that for small R Gp(R) varies as
CpR ~, where Cp is constant. ' Similarly G~(R)
can be written as' '

Z2p
Gi(R) =Zi Ci 1— R,

ZiM2

2(=qD, and XO=R~/D.
We can immediately draw some conclusions

about the magnitude of the tunneling corrections.
First, since the integrand in Eq. (40) peaks at
X=1, the value of I„will be nearly independent of
Xp fol Xp & 0.5. Unlike studies of a-decay rates,
studies of a-decay ionization yield no information
on nuclear radii RN. For the same reason, we
doubt if a~ is sensitive to more refined models of
the nuclear potential. We assume a sharp-cutoff
model where V(R) is a constant for R &R~ and
V(R)=ZiZ2e /R for R ~R~. More refined
theories of the V(R) use different potentials near
R =Rz. However, since a~ is sensitive only to the
region around R =D, this should not change the
results.
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One finds that the tunneling correction is very
small. However, it falls off slowly with g or Ef,
because g is small, and because the integrand peaks
at X=1 where

exp 2( I XdX(X —X) ' = l .
1

lo

Io

Therefore, although the tunneling correction is
much smaller than the semiclassical amplitude at

Ef ——0, it does not fall off rapidly with Ef unlike
the SCA parts, hence the tunneling correction is
important at large Ef.

Finally it is interesting to compare the magni-
tude of the dipole and monopole tunneling correc-
tions. Roughly speaking I~ and I2& are equal,
hence

IO'

l08

IO'

C&
1 —2 Z2p(D)'-'»—

ap Cp Z)M2
(41)

For ' Po a decay at Ef -0,C&
——0.75 Z„and

Cp ———0.94 Z„~, where Z„=Z&+Z2. We obtain

l
a

~ /ao
l

-0.76. In this case, the dipole correc-
tion is smaller than the monopole correction. This
will not always be true, however. If we consider a
proton tunneling through a barrier instead of an
a particle, the factor 1 —Z2p/Z&M2 ( =0.21 for
' Po) can be as large as 0.6. s/Z„and CpZ„

are relatively independent of Z„. However, if we
decrease Z„so that 1 —2y= —1, and increase the
projectile velocity,

l

a', /ao
l

will increase as
(DZ„) ' or approximately as u . Thus for lighter
target atoms at higher projectile velocities, the di-
pole correction is expected to be the dominant one.
Nevertheless, because the SCA amplitude increases
rapidly with the projectile velocity and the tunnel-
ing amplitude decreases with the projectile velocity
(as u or u ~ for dipole and monopole excita-
tion), the tunneling correction is expected to be
more negligible in higher-velocity collisions.

lo I'
0

IO—

I I

I 2

Ef (z m)

FIG. 1. Calculated differential probability for K-shell
ionization in the a decay of ' Po in units of (Z Ry)
plotted against the kinetic energy of the ionized electron.
Solid line: probability calculated neglecting the tunneling
contribution; dashed line: including tunneling. The
chain curve shows the tunneling corrections separately.
Contributions from monopole (I =0) and dipole (I =1)
excitation are shown separately.

III. RESULTS

Figure I shows calculations of the differential
excitation probabilities dP~/dEf for exciting E-
shell electrons into continuum states with kinetic
energy Ef during the decay of ' Po. Only proba-
bilities for monopole and dipole excitation are
shown. Quadrupole excitation probabilities are less
than 10 for Ef ——0 and 10 for Ef ——2(Z Ry).
We show separately the semiclassical probability

l
ax l, the probability calculated including tunnel-

ing
l
a~+a~ l, and the "tunneling correction"

l a& l
. The tunneling correction falls off very

O. I

I I I I

O ZO 4O 6O 8O IOO

E f (keV)

FIG. 2. Total differential ionization probability in
' Po a decay. Measured points from Fischbeck and

Freedman, 7 arbitrarily normalized to the theoretical cal-
culation near Ef——10 keV. (Several measured points for
Ef &20 keV have been omitted. ) Comparison is made
with the calculations including (dashed line) and neglect-

ing (solid line) tunneling.
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-5
IQ

IO5—

I/2

IO6 I I

8
Ea (MeY)

IO

Lund et al. also measured the probability P of K-
shell ionization in backscattering a+Pb collisions
with the same relative velocity. The energy scale
in Fig. 3 refers to the bombarding energy in the
backscattering experiments. Although the calcu-
lated backscattering probability agrees well with
experiment except at 9.2 MeV, the decay ionization
probability is higher than experiment at all a-decay
energies. Introducing the tunneling corrections im-
proves the agreement between the measured and
calculated internal ionization probabilities, but not
by much. The tunneling correction is a larger
fraction of the total E-shell ionization probability
at lower a-decay energies. For E &10 MeV, the
tunneling correction should be negligible. The re-
sults for the semiclassical contribution in Fig. 3 are
the same as those obtained by Kocbach. '

FIG. 3. Total E-shell ionization probability Plq2 in
the a decay of ' Po (5.3 MeV), ' Po (6.7 MeV), and
'"Po (8.8 MeV) and the probability P measured in the a
backscattering from Pb. Solid line calculated neglecting
tunneling; dashed line includes tunneling. Data from
Lund et al. The probability in ' Po decay has been
measured many times. The 0 point is the average of
several measurements taken by Fischbeck and Freed-
man. '

slowly with Ef or the momentum transfer q, as ex-

pected from the considerations of Sec. II D. At

Ef ——0, the tunneling correction is much smaller
than the semiclassical probability, and the dipole
tunneling probability is much smaller than the
monopole one. At larger Ef, the monopole proba-
bility including tunneling is larger than the semi-

classical probability, because Co in Eq. (39) is neg-

ative, thus ao adds to the imaginary part of ao.
The dipole tunneling amplitude subtracts from a

&

because C& is positive.
The total differential E-shell ionization probabil-

ity for ' Po is compared with measurements of
Fischbeck and Freedman in Fig. 2. In this figure,
the data points have been arbitrarily normalized to
our calculations at Ef ——10 keV. Although tunnel-

ing greatly increases the monopole excitation pro-
bability at Ef -100 keV, and reduces the dipole
probability, these two contributions nearly cancel
out so that the total differential probabilities with
and without tunneling are almost identical. Unfor-
tunately, the tunneling contribution can only be
measured at very large electron kinetic energies

Ef g 200 keV.
Figure 3 compares the integrated cz-decay proba-

bilities P»2 with measurements of Lund et al.

IV. CONCLUSION

This paper has been concerned with the contri-
bution to the a-decay E-shell ionization probability
due to the part of the trajectory where the particle
tunnels through the Coulomb barrier. From the
point of view of the electron this tunneling is sud-
den. This is shown by the result that the ioniza-
tion probability during tunneling is nearly indepen-
dent of the momentum transfer q needed to ionize
the E electron. The calculated tunneling probabili-
ty falls off very slowly with q or the kinetic energy
Ef of the ionized electron. The usual semiclassical
contribution to K-shell ionization, due to the part
of the particle trajectory starting at the Coulomb
barrier and going to infinity, is much larger than
the tunneling probability at Ef ——0 and falls off
very rapidly with the momentum transfer or elec-
tron kinetic energy. Consequently, the tunneling
probability can only be directly observed at large
Ef.

For the tunneling contribution to be a large frac-
tion of the total E-shell ionization probability, the
semiclassical probability should be very small, and
tunneling distance D should be as large as possible.
This situation is rare in a or proton decay and is
nearly unobtainable in nuclear reactions. A large
D implies that the particle decay rate or reaction
cross section will be very small. In studies of
internal ionization, the small decay rate poses less
of a problem because one can always study a large
number of unstable nuclei and have many nuclei
decaying per second. In a nuclear reaction, howev-
er, one is usually limited by the number of beam
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particles (or by y-ray background associated with

the beam) so one needs a large projectile energy

and a small D to initiate the reaction. In ' Po de-

cay (E -5.3-MeV) tunneling affected the E-shell
ionization probability by only 30%. For increasing

particle energies, the semiclassical E-shell ioniza-

tion probabilty increases while the tunneling con-

tnbution decreases.
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