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Resonant-test-field model of fluctuating nonlinear waves

Bruce J. West
Center for Studies of Nonlinear Dynamics,

La Jolla Institute, P. O. Box 1434, La Jolla, California 92038
(Received 3 August 1981)

A Hamiltonian system of nonlinear dispersive waves is used as a basis for generalizing

the test-wave model to a set of resonantly interacting waves. The resonant test field

(RTF) is shown to obey a nonlinear generalized Langevin equation in general. In the

Markov limit a Fokker-Planck equation is obtained and the exact steady-state solution is

determined. An algebraic expression for the power spectral density is obtained in terms

of the number of resonantly interacting waves (n) in the RTF, the interaction strength

(Vk), and the dimensionality of the wave field (d). For gravity waves on the ocean sur-

face a k spectrum is obtained, and for capillary waves a k spectrum, both of which

are in essential agreement with data.

I. INTRODUCTION

Studies of the properties of nonlinear wave fields

have determined that fluctuations in the physical

observables can often be one of the dominant

features of the evolving system. ' In the dynam-

ic description of such systems a great deal of atten-

tion is generally given to constructing the deter-

ministic equations of motion. However, the statis-

tics often enter as an assumption on the inital con-

ditions of the observables or as an ad hoc attach-

ment of a fluctuating force to the equations of mo-

tion. A number of noteworthy exceptions exist

within the statistical mechanic literature where

serious attempts at establishing the evolution of the

statistical properties of a physical system have been

made. The formal intricacy of the problem often

obscures the salient features of these analyses, how-

ever, and makes their application to particular

physical systems quite difficult. In this paper we

restrict our discussion to a model Hamiltonian sys-

tern. The analysis of this model system suggests

how one might proceed in describing the genera-

tion and evolution of the fluctuations in a physical
nonlinear wave field. The model Hamiltonian we

choose is fairly general and it is anticipated that
the analysis given here will be calculationally use-

ful in applications to a variety of nonlinear wave

fields.
In many physical problems the strategy that one

adopts is to assume a weak-interaction theory. By
this is meant that the observables of the system are

expressed in series expansions of the eigenmodes of
the linearized system. The expansion coefficients
in such series are constant in the linearized system,

but are variable in the nonlinear system. If the

linear system is harmonic, as it is for a wave field,

the eigenfunctions are sines and cosines and the

series expansion is just the Fourier series. The ex-

pansion coefficients are then referred to as the
mode amplitudes and are interpreted as the ampli-

tudes of independent waves in a linear wave field.

Correspondingly, the nonlinear system is referred

to as a nonlinear wave field and the nonlinearities

are interpreted as couplings or scatterings of the

linear waves. The Hamiltonian for this system is a
series in which the nonlinear terms appear as pro-

ducts of the mode amplitudes. These interactions

induce a variation in both the amplitudes and

phases of the linear waves in the equations of mo-

tion. For a weakly nonlinear system such as water

waves or plasmas, this induced variation is much

slower than the harmonic variation of the linear-

ized system. '

Hamilton's equations of motion provide a deter-

ministic description of the evolution of the wave

field considered here. If we assume that this field

is well represented by N degrees of freedom, where

for the moment N is large but finite, the system
can be represented by ¹oupled, deterministic,
nonlinear rate equations for the mode amplitudes.
Moser gives a general mathematical discussion of
the separation of the interactions into resonant and

nonresonant groups for arbitrary Hamiltonian sys-
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tems. Part of his interest in the partitioning of the
interactions is that the nonresonant interactions
lead to a stable evolution of the system, whereas
resonant interactions lead to instabilities. Here we
are not interested in the detailed stable phase-space
evolution of the system due to the nonresonant in-
teractions, but rather in the more dramatic process
of resonances. It is usually argued that because of
the separation in the interaction time scales be-
tween resonant and nonresonant interactions that
the former dominate the macroscopic evolution of
the wave field. In a Fourier representation we in-
dex a wave with a wave vector k and frequency
cok, and the nonlinear interactions couple these
modes together thereby providing a mechanism for
energy exchange. The nonresonant interactions
provide a periodic exchange of energy between the
mode of interest, k, for example, and the other
modes in the wave field. The frequency mismatch
in this interaction results in many changes in sign
of this term in the characteristic time interval for
the mode amplitude to sensibly change. It is for
this reason that such interactions are usually
neglected in the equations of motion for the wave
field. The weak-interaction theory, therefore, is
described by a system of nonlinear mode rate equa-
tions in which the sum of the wave vectors k and
frequencies cok in each interaction vanish. In
quantum systems this indicates the conservation of
momentum and energy, respectively, during an in-
teraction and is called on-the-energy-shell scatter-
ing. Correspondingly, the nonresonant interactions
are off-the-energy-shell or virtual scatterings.

A given wave in a physical wave field can, in
general, participate in both resonant interactions
with some waves and nonresonant interactions with
others. To maintain the formal simplicity of
weak-interaction theory and at the same time in-
clude the effects of nonresonant interactions we in-
troduce a two-field model for the physical wave
field. The first field is a generalization of the test
wave model that has been used with some success
in both plasma physics and geophysics. ' This
more general model replaces the test wave by a set
of test waves having nonlinear interactions that are
solely resonant. We refer to this set of waves as
the resonant test field (RTF). The second field of
waves, referred to as the ambient wave field, are
noninteracting except through a member of the
resonant test field. In the terminology of statisti-
cal mechanics this linear ambient wave field pro-
vides a "heat bath" for the RTF.

In Sec. II we construct the equations of motion

for both the heat bath and RTF degrees of free-
dom. By adiabatically eliminating the heat-bath
variables from the RTF equations of motion we

find that the ambient waves provide (1) a source of
fluctuating flux driving the resonant waves, (2) a
dissipative current to balance the fluctuations, and

(3) a modification in the interaction strength

among the RTF waves. The equation of motion
for the RTF waves when linearly coupled to the
heat bath is found to be a nonlinear, generalized
Langevin equation with a corresponding general-
ized fluctuation-dissipation relation. ' '" For a
Markov process the RTF equations of motion
reduce to a Langevin equation with a delta-
correlated fluctuating flux so that a Fokker-Planck
equation for the probability density of the RTF
mode amplitudes can be constructed. In Sec. III
the steady-state solution of the Fokker-Planck
equation is found to be a local equilibrium distri-
bution clearly indicating the non-Gaussian be-

havior of the RTF waves. The physical interpreta-
tion of these results is discussed in detail. In Sec.
IV the interaction potential for water waves on the
deep ocean is used; for capillary waves a k spec-
trum is calculated, and for gravity waves a k
spectrum is calculated. This is the first
dynamic model to yield these observed steady-state
spectra.

II. DYNAMICS OF THE RESONANT
TEST FIELD

The model wave field we are interested in here is
represented by a Hamiltonian consisting of three
pieces. The first piece, Hz, consists of the reso-
nant test waves with mode amplitude ak and fre-

quency cok and can be written

Htt = g cok&k&k+ ~z
k

(2.1)

Htt+Htta ——g co„[b„+iB„(a,a )]

X[b'„—iB'„(a,a ~)], (2.2)

where B„(a,a ) is a function describing the
modulation of the heat bath by the RTF waves.

where Vz is the nonlinear resonant interaction po-
tential. The heat bath in this model consists of a
system of linear waves with mode amplitudes b„(t).
We write the Hamiltonian for the noninteracting
waves of the heat bath and the coupling between
the heat bath and the RTF waves as
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. aH bg . aH
ab'„" ab.

(2.3)

We leave this function unspecified for the time be-

ing and find that we can go quite far in the
analysis without specifying B„.

Hamilton's equations for the heat bath can be
written as

a description of the evolution of the resonant test

field alone by solving (2.5) and using the solution

to eliminate the dependence of (2.6) on the bath

variables. We find that just as in the theories of
Mori' and Zwanzig, " that this elimination leads

to a generalized Langevin equation.
To obtain the solution to (2.5) in a more con-

venient form we rewrite that equation as

where H is the total Hamiltonian

H =Hg+Hg+Hgg, (2.4)

d—(b„+iB„)= —i co„(b„+iB„)+iB„,
dt

(2.7)

b„+iaido„= to+„(a, a ~ ), (2.5)

clearly indicating the linear nature of this wave

field. Similarly the equations of motion for the
RTF waves are given by

aB*
ak+itokak= i,—+ yt0„(b„+iB„)

and similarly for the RTF waves. The waves in
the heat bath satisfy the dynamic equations

and solve it as an inhornogenous equation to obtain

b„(t)+iB„(t)=e [b„(0)+iB„(0)]

+i f e '"",B„(t t')dt'—,
0 dt'

(2.8)

with initial conditions b„(0) and B,(0). Since B,
is only a function of the RTF mode amplitude we

use the chain condition for derivatives to write

aB„—g co„(b'„iB'„)—
aak

(2.6)
dB„(t) dB„BB„

QI + QI
dt t Bat Bat*

(2.9)

which in turn are driven by the heat-bath variables.
Taken together (2.5) and (2.6) constitute a feedback

system between two fields of waves. We construct

so that interchanging derivatives with respect to t
and t' in (2.8) and substituting this solution (2.8)

into (2.6) we obtain

av, aB'„, aB„
ak+icukak = i —+ g F„(t), F'„(t)—

aB„ ,
aB'„ , aB*. aB*. . . aB, , aB„

+i g , f A,„(t t ) ,—at + at — , f A,„(t t') , at—+ at
, I a&k a&I I a&k a&) I

(2.10)

where we have introduced the functions

F„(t) =co„[b„(0)+ iB„(0)]e

A.„(t)=—co~ ™.

(2.11)

(2.12)

Equation (2.10) has the form of a nonlinear, generalized Langevin equation if the initial conditions for the

bath variables are selected appropriately. We assume that for the RTF variables held fixed at time t=0 that

we can select the mode amplitudes b„(0) from an equilibrium ensemble of initial waves specified by the
"canonical distribution, "

P(b(0)
~
a(0))-exp —g(He+Hatt)(v)/A„ (2.13)

The parameter A„ is the level of excitation of the ambient wave field and can be interpreted as the "tern-

perature of the heat bath. " This ensemble of initial conditions yields (b„(0)) = iB„(0),whe—re (—-)
denotes an average with respect to (2.13), so that from (2.11)
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(F„(t))=0.
Also, the variance of b„(0) + iB„(0) is given by

(2.14)

( [b„(0)+iB„(0)][b„(0)+iB„(0)]~ ) =25 A„/to„,

so that the correlation of the fluctuations is given by

(F„(t)F„{t'))=25 A„co~e " =25 AP„(t t') —. (2.15)

Equation (2.15} is the generalized fluctuation-dissipation relation for the wave field relating the memory ker-
nel in (2.10), A,„(t), to the correlations in the fluctuating flux F„(t). It is quite clear froin the form of the
Hamiltonian Htt + Htitt that the distribution of mode amplitudes b„(0)+ iB„(0)is Gaussian so that F„(t) is
a homogenous, Gaussian process with finite time correlations.

If we now iterate {2.10) by replacing at under the integral by the first two terms in the evolution equation
for ak, we obtain

aV„aa'„, aa„
ak+itokak -=i —+ g F„(t), F'„(t—)

aB„(t) aB'„(t )+g f dt' ii„(t—t,')—
„,g ~&k ~&I

a Vs (t')
coiat'(t')+

BaI

aB„(t) aB'„(t ) av„(t )
+A„(t t'). , — to,at{t')+

Oak Bar*

aB'„(t}aB„{t'), a V„(t')
+A.„(t t ), — , totat (t )+

~~I BaI

aB'„(t) aB„(t ) av„(t )—A,„(t t ) — toiat(t )+
Bag BaI'

(2.16)

To proceed beyond this expression we must specify a choice for the function 8„{a, a ). We choose a linear
modulation of the ambient waves by writing

8„(a,a *}—= g r~a~,
P

(2.17}

where r~ is a complex coupling coefficient. With this choice of 8„ the expression (2.16) is greatly simpli-
fied and yields av„, i, 1 av„(t')

ak+ttokak —— i, +Q—F„(t)I *„k—g dt'I „kr„tA'„(t t'}tot at, (t')+— (2.18)

We can now introduce the zero-centered fluctuating force

f,{t}=+F„(t}r'„k. (2.19)

and the memory kernel

Mkl(t t } y r kr I~I~X (2.20)

to rewrite (2.18) as

8Vg t , ave {t')
ak+itokak+ g f Mkt(t —t')at(t')dt'= i —g —f Mkt(t —t')c'ot, dt'+fk(t) .

I Bak I Gal'
(2.21)



25 RESONANT-TEST-FIELD MODEL OF FLUCTUATING. . . 1687

Mki(r r')—~5kiAk5(r —r'),

then (2.21) becomes

(2.22)

~k(r)+(~k+i~k )~k(r)
~k+~k

k

+fk(r) (2.23)

If we can further approximate (2.21) by a Mar-
kovian equation, i.e., one for which the correlation
time of the fluctuations approaches a delta func-

tion and the interaction strength is peaked at k =1,
i.e.,

fluctuations j fk(t) j. In the phase space for the

dynamical system the coordinate axes are labeled

by the values A that the dynamic vector a(t) can
assume. For each realization of the additive fluc-

tuations f (t) there corresponds a unique trajectory
in this phase space which describes the evolution

of the wave field. A large number of realizations
of f (t) defines an ensemble of trajectories in phase

space described by the phase-space distribution
function p~(A, t) Th. is ensemble of test wave fields

can be described by a probability density obtained

by averaging p~(A, t) over an ensemble of realiza-

tions of f (t), i.e.,

P(A, t
~
Ao)=(py(A, t))f (3.1)

Thus the coupling of the RTF to the ambient wave

field has modified the original Hamiltonian equa-
tions in three ways: (1) There is a zero-centered,
Gaussian fluctuating flux driving the wave field;
(2) the Hamiltonian character of the system is lost
due to the dissipative flux of action (energy) to the
ambient waves; and (3) there is a modification of
the nonlinear interactions due to a back reaction of
the ambient waves to the nonlinear interactions
among the test waves.

In the above Markov approximation it is possi-
ble to replace the dynamic equations (2.23) by the
phase-space equation of evolution for the probabili-

ty density. In Sec. III we show that this equation
is the Fokker-Planck equation and discuss the
asymptotic properties of the RTF.

(fg(r) )f—0

(fk(t)fk (t') )g ——2Dk5kk 5(t t'), —

(fp(t)fj, (t'))g ——0,

(3.2a)

(3.2b)

(3.2c)

where each member of the ensemble is initiated
from the point Ao. P(A, t

~
Ao}dA is the probabili-

ty that the dynamic variable a(t) has a value in the
interval (A,A + dA) at time t given an initial value

Ap.
The arguments leading from the dynamic equa-

tions (2.23) to the equation of evolution for the

probability density are standard and will not be re-

viewed here. ' ' We merely record that the statist-
ical properties of f(t) are

III. STEADY-STATE RESONANT TEST FIELD

The dynamic equations (2.23} describe the de-

velopment of the set of dynamic variables a(t)
= [ ak(t) J for a particular realization of the set of

in the Markov approximation of the preceding sec-
tion. Thus for a homogeneous, delta-correlated
Gaussian process describing the fluctuating flux we

obtain the Fokker-Planck equation as the phase-

space equation of evolution for the probability den-

sity, i.e.,

A,k + l cok BHg
, P(A, t

i
Ao) +c.c.+2Dk P(A, t

i Ao)
BAk BAk BAk

(3.3)

where H~ is the RTF Hamiltonian given by (2.1) and c.c. denotes the complex conjugate of the preceding

term in the series.
It is notoriously difficult to solve (3.3) in general so here we will restrict our discussion to the steady-state

properties of the test wave field. The steady-state solution to (3.3), denoted by P„(A), is specified by the

condition

aP„(A) = lim P(A, t
~

Ao)=0-,
Bt t~a) Bt

(3.4)

and is independent of both time and the initial conditions of the RTF. The steady-state equation is there-

fore
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A,k+iCOk BH~ a2
+c.c.+2D», P„(A}=0 .

k k BAk BA BA„*

We assume a solution to (3.5) of the form

(3.5)

P„(A)=Z 'exp —g P»g»(A)
k

(3.6)

&s aQ» aQ» aQ»
2D» »

A aA,' aA„aA '
2A, » a H„a Q», —2»D» =0. 3.7)+
~» aA, aA,' ' '

aA, aA,'

where Z is the partition function, I P» I is a set of unknown parameters, and I Q»(A) I is a set of unknown

functions. Substituting (3.6} into (3.5) we obtain

z„'aa„ag, aa„ag„aa„ag, a

By inspection we observe that with

and

1

P»

kDk

~k
(3.8)

ag, aH„
BAk BAk

(3.9)

Eq. (3.7) is satisfied, i.e., a solution to (3.5) of the form (3.6) can be found.
The condition (3.9) is analogous to a fluctuation-dissipation relation for the resonant test field of waves.

Integrating (3.9} we obtain (up to a function whose divergence is zero)

Q»«}=ro»A»A»'+ ~~(k»

where by Vz (k) we mean

ave
Vg(k)= I dA» .

k

For a potential of the form

Vii = g VpqAIAmApAq blam —p —q
lmpq

(3.10)

(3.1 1)

(3.12)

We obtain from (3.11) (up to an unimportant constant)

(3.13)Vs(k)= +2VpqA»AiApAq5»+( I, q
lW

for which (3.9) is clearly satisfied. The quantity Q»(A} is therefore a type of single "particle" energy which

includes all the interactions of the k wave with the other test waves. The steady-state distribution (3.6) is

now

P„(A)=Z 'exp —g P»co»A»A» — g 2P» V~A»AiAip Aq
k k) l,pq

or removing the restriction on the I summation, i.e., gi » ———, gi», yields

(3.14a)

P„(A)=Z 'exp —+13» ~»A»A»+ g V~A»A&A~Aq
k

(3.14b)
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We now denote the quantity in large parentheses as

H~(k) and write

P„(A)=Z 'exp —gl3»H~(k) (3.15)

It is clear that since g»Hs(k)=H~ that if P»
were independent of k it could be interpreted as
the scalar temperature of the resonant test field
and (3.15) would be a canonical distribution. A
steady-state distribution of the form (3.15) can be
shown to satisfy (3.5) for any symmetric interac-
tion of resonant test waves.

The set of parameters I P» I can be calculated in

two different ways; either by using the properties
of the heat bath, i.e., the coupling coefficients, or
self-consistently by means of the fluctuation-

dissipation relation (3.8). In the Markov approxi-

mation, the spectral strength of the energy flux to
the RTF averaged over one period of the k-test

wave is obtained using (2.19) and (3.2b) to be

(3.16)

and the dissipation strength is obtained from (2.20)
and (2.22) to be

~» ~» g I

I .» I

'»n (3.17)

Thus using (3.8) the parameter P» is given by

1

P»

yil » ~

Agin

X I r„» I

'»n

(3.18}

( ia» i'&„=
~k

(3.19)

then (3.18) yields the relation

(3.20)

so that P» could be evaluated from a knowledge of
the coupling parameters I „I, and the power spec-
tral density of the heat bath A„alone. However,

since we have explicitly eliminated the bath degrees

of freedom from the RTF equations of motion we

use a self-consistency procedure to evaluate P».
If we use the fluctuation-dissipation relation for

a Markov process, in the asymptotic steady state,
and write

Thus, using the probability density (3.15) to evalu-

ate the average in (3.20) we obtain the implicit re-

lation for P»,

1

P»

J ~»~»exp —QPIHs(l) dA
I

J exp —QPIH~(l) dA

(3.21)

Equation (3.21) is the type of self-consistency rela-
tion that is often encountered in classical statistical
mechanics for a two-body Hamiltonian Hz. It is
well known that the averages in such cases can
only be expressed in terms of an infinite sum of
linked-cluster diagrams to determine the energy
spectrum of the resonant test wave field.

The interpretation of P» in terms of the steady-
state spectral density of the RTF is clearly indicat-
ed in (3.20) and (3.21). The thermodynamic in-

terpretation of P» is less obvious but is also quite
interesting. Although the form of the steady-state
distribution (3.15) is more general than the canoni-
cal distribution of classical statistical mechanics,
we can still interpret P» as the thermodynamic po-
tential required to maintain the integral constraint
on the total energy of the RTF. To understand P»
we apply Parseval's theorem to the expression in
the exponent and obtain

gl3»H„(k)= f~ P(x —x')H„(x')dx',
k

(3.22)

where Vo is the "volume" of the integral. Equa-
tion (3.22} indicates that the integral constraint is
nonlocal in configuration space, i.e., the coupling
of the test waves to the heat bath is spatially
dependent. A distribution similar in form to (3.15)
was first obtained for hydrodynamic systems by
Piccirelli' and is called a local equilibrium distri-
bution. The spatial dependence of the thermo-
dynamic potential, in this case, the "temperature"

P», indicates that the level of excitation of the am-
bient wave field is not homogeneous. The inhomo-
geneity arises from the modulation of the heat bath
by the RTF. However, the back reaction of the
RTF to the fluctuations in the heat bath is such as
to maintain the integral constraint on the energy,
but only locally. Thus each test wave experiences
a different temperature, or stated somewhat dif-
ferently, each location on the ocean surface has a
different temperature (level of excitation of the
ambient wave field).

Another property of the parameter P» is that for



1690 BRUCE J. WEST 25

a given spectral level of fluctuations Dk, it is the
relative magnitudes of A,k and cok that determine
the temperature of the heat bath. For weak linear
dissipation, A,k &&cok, the coefficient of the non-
linear term in (2.23), i.e., (A,k + i cok)/cok, is small
and the temperature [cf. (3.8)] is low. As the
linear dissipation increases, the contribution of the
nonlinear term correspondingly increases yielding
higher temperatures of the ambient wave field.

Z =2m. J" dJ
( —p ak~V )l

Il 0

( Pk—« I'k} I (nl/2+1)=2'
(p ~ )nl/2+i

(4.6)

Inserting (4.6} into (4.5} and using (3.20} we then
obtain

IV. DISCUSSION AND CONCLUSIONS
1

Pkrok

a
ln 2ng

Pk ~~k l =0

( —Pk«'I'k }'

It

The resonant test field model is seen to give rise
to a probability density which explicitly depends
on the nonlinear interactions in the wave field [cf.
Eq. (3.15)]. Thus the statistics of the RTF are
non-Gaussian and the spectrum of the mode am-
plitudes can be calculated using the derived proba-
bility density for the statistical steady state, i.e.,

& leak l'&„=Z-' f AkAkexp —QPlHa(l) dA.
I

(4.1)

(4.2)

and integrating over all modes except k, we obtain

&l kl'&-=zk' f, &kdJk

X d8ke ~kk k+ k k

0
(4.3)

where n is the number of waves involved in an in-
teraction and

—Pk(uk Jk+ak Vk Jk )

0
(4.4)

Thus in this approximation (4.3) may be written as

& 1~k l
& =

g
i~k.

a i)~k
(4.5)

We can integrate (4.4) by expanding the interac-
tion terms to obtain

The integral in (4.1) is the same as that in (3.21).
Although we cannot integrate (4.1) in general,

we can get an idea of the spectrum by restricting
the integral to a weighted self-interaction of the
test k wave. At this discrete value the weight of
the interaction is zero, therefore to account in part
for the interactions which are being omitted, we
weight the diagonal interaction strength Vk by an
element of volume ak in d dimensions, where a is
a constant. Then by introducing polar conditions

ilk =V Jae

I (nl/2+ 1)
X

(p )nl/2+ I

(4.7)

which from the terms l=0, 1, 2 yields

1 rot I'(n /2+ I )

g/ ' ak~yk I (n +1) (4.8)

(4.9)

and for a three-wave interaction we obtain

& loki &„- i, n=3.
k~vk2

' (4.10)

We observe that if the wave field under discus-
sion is that for deep water gravity waves, then the
dominant interaction is a four-wave resonance.
The diagonal interaction strength for these waves
is Vk -k and d=2, so that

(4.11)

and the energy spectral density is given by

F„(k)= -k
COk /k

(4.12)

The spectrum (4.12) has also been obtained by
Phillips using a scaling argument. '

If the water waves are high-frequency capillary
waves then the dominant interaction is a three-
wave resonance. The diagonal interaction strength
for these waves is Vk-k (coklk)' and d=2 so
that

(4.13)

Thus for a four-wave interaction (n =4) we obtain
the steady-state action spectrum

2

& lakl'&„-, n=4
k V
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and the energy spectral density is given by

F„(k)-k (4.14)

The spectrum (4.14) is nearly that observed in the
viscous dissipation range of the high-frequency
water waves. '

The agreement between the energy spectral den-

sity predicted by the RTF model applied to water
wave fields and that obtained using other tech-
niques gives us confidence in the veracity of the

model. Note that this agreement comes about be-
cause of the weakly interacting nature of water
waves (except near breaking) which gives rise to a
rapid convergence of the series (4.6). The agree-

ment may not be as satisfactory in other wave
fields.
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