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Statistical mechanics of a nonuniform fluid with long-range attractions
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A recursive method is described for generating the Helmholtz free energy and pair-
correlation function of a nonuniform fluid, in powers of the Kac inverse-range parameter
y. The results agree with earlier calculations using graphical and functional-integral
methods. The ordering of the free energy is functionally consistent with a similar order-
ing of the density profile. The lowest-order or "van der Waals" theory is equivalent to a
mean-field average of the attractive intermolecular energies and use of local thermo-
dynamics in a reference hard-sphere fluid. The next level of approximation is the
"random-phase approximation, " which is shown to produce logarithmic anomalies in the
free energy and density profile similar to those expected on the basis of capillary-wave
theory. The occurrence of these anomalies results from the existence of a long-
wavelength divergence in the transverse Fourier transform of the lowest-order pair-
correlation function.

I. INTRODUCTION

It is well known' that van der Waals' equation
of state for uniform fluids is obtained as a rigorous
limiting result in the case of molecules whose pair
potential consists of a short-range repulsive part
plus a weak and long-range attractive tail. The
limit corresponds to the neglect of microscopic
fluctuations in the attractive interactions, which in
turn arise from correlations in number-density
fluctuations, and hence can be viewed as a "mean-
field" theory. Extensions of this theory, account-
ing systematically for the effects of microscopic
fluctuations, have been generated by ordering in
powers of the Kac parameter y characterizing the
strength and inverse range of the attractive pair
potential. The lowest-order van der Waals theory
can also be generalized to nonuniform fluids, as
first described by van Kampen and Percus. The
resulting integral-equation theory yields a descrip-
tion of the liquid-vapor interface which reduces in
certain limits' "to that given by the van der
Waals, ' Cahn-Hilliard' ' "square-gradient" ap-
proach. We have elsewhere' ' discussed the ap-
plication of this theory to fluid-solid interfaces, in
particular to the phenomenon of wetting of such
interfaces, where we have further commented on
its relation to square-gradient formulations and on
the limitations of the latter. It is natural to seek
extensions of this theory by utilizing y as a formal
parameter of smallness, paralleling the treatment
of uniform fluids. Such is the topic of the present

article.
In Sec. II we describe a recursive method for

evaluating the Helmholtz free energy and pair-
correlation function in powers of y. The method
derives from the fact that each order of approxi-
mation of these functions generates the next-order
correction by seeking consistency between two
basic functional relations [cf. Eqs. (2.7) and (2.11)].
This provides a simpler route to at least the
lowest-order terms in y ordering than obtained by
generalizing either graphical approaches ' or the
so-called functional-integral method ' to nonuni-
form states.

The ordering of the free energy, whereby each
successive term starts with one higher power of y,
induces a corresponding ordering in the density
profile, which is discussed in Sec. III. The use of
"local thermodynamics" in determining the
lowest-order profile is formally justified by a func-
tional expansion' procedure similar to one dis-
cussed by Yang et al. ' As in our previous
work' ' however, it is emphasized that local
thermodynamics is applicable only to a reference
fluid interacting by short-range repulsive forces.
The attractive forces, which vary on the same
length scale as the density profile, yield nonlocal
contributions and must be evaluated separately.

In Sec. IV we examine the first correction to the
lowest-order van der Waals theory, which
corresponds to the so-called "random-phase ap-
proximation" RPA, specifically focusing attention
on the genesis of capillary-wave-like diver-
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gences at this level. Here we are motivated by the
fact that considerable discussion ' has taken
place in recent years, addressing questions first
raised by Widom, on the relation between the re-
sults of van der Waals type of theories and those
given by capillary-wave arguments. The former
lead' to a well-defined density profile for a planar
liquid-vapor interface in the absence of external
gravitational forces, while capillary-wave theory

predicts that the profile becomes increasingly dif-
fuse as the gravitational strength g approaches
zero. The prevalent view, argued for in detail on a
semimacroscopic basis by Weeks, ' is that theories

of a van der Waals type pertain to a "bare" or "in-

trinsic" interface, while capillary-wave theory de-

scribes long-wavelength fluctuations in the position

of this "bare" interface. There have been some

previous attempts "' ' to justify this view on a
more microscopic basis, although it has been

argued ' that the approaches of Refs. 23(a)
and 24 are invalid. Furthermore, some doubts

have recently been expressed about the correct-
ness of capillary-wave predictions.

Here we show that the RPA produces loga-

rithmic anomalies in the interfacial tension y and

density profile p(z) similar to those resulting from
capillary-wave-like fluctuations in a bare interface
described by the van der Waals theory. Specifical-

ly, y displays an anomaly of the form —g lng, in

agreement with capillary-wave predictions.
The density profile at this level of approximation

diverges for small g as

p(z)-1ng .

These results have been obtained previously by cal-
culations ' in the more restricted context of a
system characterized by a Landau-Ginzburg-
Wilson Hamiltonian, for which analytical methods
first described by Zittartz are available. The
present work extends these findings to a consider-

ably more general fluid Hamiltonian model [see
(2.1) and (2.2)]. Furthermore, the results (1.1) and
for the interfacial tension in RPA are shown to
follow directly from the presence of a long-
wavelength divergence in the transverse Fourier
transform of the lowest-order pair-correlation func-
tion, the existence of which was first demonstrated
on general grounds by Wertheim.

The prediction in (1.1) that p(z) diverges for
small g disagrees with capillary-wave theory,
which instead predicts that p(z) is bounded for all
z while its spatial derivative dp(z)/dz should van-
ish as g~0+ according to

dp(z)
dz

(1.2)

II. INVERSE-RANGE EXPANSIONS:
FREE-ENERGY AND PAIR-CORRELATION

FUNCTION

We consider a fluid whose molecules interact by
means of a spherically symmetric pair potential
$2(r), which can be decomposed into a repulsive
term Pz '(r) and an attractive tail w2(r):

$2(r) =$2 '(r)+w2(r) . (2.1)

We shall refer to P~z '(r) as a "hard-sphere" poten-
tial, although the inclusion of softer short-range
repulsive forces does not alter our conclusions. It

It is likely that the result (1.1) is predicated by use
of strict perturbative ordering in powers of the
Kac parameter y. An equivalent result was found

by Jasnow and Rudnick from calculations on a
"renormalized" RPA. ' ' These authors, however,
were able to justify a resummation yielding the
correct result (1.2) by introducing the bare inter-

face position as a degree of freedom in their model.
We shall comment briefly on the possible use of an

analogous procedure within the framework of the
present theory in our conclusion Sec. V. It can be
argued that the basis for such a resummation
should also be revealed through analysis of higher-
order terms in y-ordered expansions [see, e.g, the
present (2.25)]. While this is a difficult task which

we do not attempt here, we include in Sec. IV an
argument closely related to that which yields the
RPA result (1.1) and based on the existence of a
long-wavelength divergence in the transverse
pair-correlation function, which demonstrates that
(1.2) should emerge on properly accounting for the
"core condition" satisfied by the pair-correlation
function.

In summary, the use of y ordering provides a
systematic means of extending the van der Waals
theory, accounting at higher order in the smallness

parameter y for fluctuations which can be identi-
fied with capillary-wave-like fluctuations leading to
characteristic singularities in the free energy and
density profile. The fact that such anomalies oc-
cur at higher order in y is significant, since an
ad hoc density functional approach, ' which pro-
duces both a mean-field-like profile and capillary-
wave-like effects of order unity, is probably incon-
sistent. We conclude in Sec. V with further com-
ments on the implications of the present results.



25 STATISTICAL MECHANICS OF A NONUNIFORM FLUID WITH. . . 1671

is supposed that wq(r) has a Kac parametriza-
tion, '

wi(r) =QC (7'r ) . (2.2)

The bulk free energy and pair-correlation function
of such a fluid can be systematically ordered in
powers of y, by either graphical means ' or by the
functional-integral method. Generally speaking,
the terms in these expansions involve n-particle
distribution functions of the reference hard-sphere
system, denoted in the following by superscript
zero, and "chain bonds" depending on wz(r). The
results of graph theory can be generalized in a
straightforward fashion to the case of a nonuni-
form fluid, characterized by an arbitrary spatially
varying number density p(r }, simply on replacing
the constant bulk density associated with every
field point i in a Mayer graph by the factor
p(r;). The corresponding generalization of the
functional-integral approach, so that the reference-
system distribution functions depend on the same
density profile p(r) as the fluid with attractions
added, is less straightforward.

A simple recursive or "bootstrapping" method
can be devised to generate the y-ordered expan-
sions. We start by considering the free-energy
functional 8" ', which is related to the
Helmholtz free energy A by

W =A —J d r p( r )((},„(r ), (2.3)

where P,„(r ) is the external field acting on the
fluid. Alternatively, 8'is related to the grand
canonical partition function " by

W=Q+ Jdrp(r)[p —P,„(r)], (2.4)

(2.5)

where the increment hP, it(r;v) satisfies

hP, rt(r;v= I)=0,
fg r;v=0)—:hp, ff( r ) (2.6)

where p is the total chemical potential and
0=——kTln=. We now consider varying the at-
tractive part of the pair potentials by introducing a
"charging parameter" v such that the pair attrac-
tions corresponding to strength v are given by
vwz(r). At the end we set v=1, while v=0
corresponds to the reference fluid with no attrac-
tions. In order to maintain a density profile p(r)
which does not change as v varies between 0 and 1,
and which corresponds to that of the fully charged
fluid, it is also necessary to generalize the external
potential to the form

P,rt(r;v) =P,„(r)+bP,ri(r;v),

The increment bP,rt(r) at v=0 is such that

{(~,ri{r;v=0}—:P,ff{r ) is the total external potential
which acts on the hard-sphere reference fluid to
impose on it a density profile equal to p(r).
Working in the grand canonical ensemble, it is
then easily found that the free energy 8'(v)
corresponding to strength v is given by

V

W(v)=W'"+ —, d v'f Jdrid~&p&(ri, ri.,v')

Xwq(riq), (2.7}

where 8' ' is the free energy of a hard-sphere
fluid with density profile p(r), and pz(r&, rz', v') is
the pair-correlation function of the fluid at
strength v'. A similar charging-parameter integra-
tion to obtain the free energy of nonuniform fluids
has been described by Evans and Schirmacher,
without, however, recognizing the essential role
played by P,ri{r;v). The approach to be described
below systematizes one discussed in Ref. 34.

At large separations rz —r &, the pair-correlation
function becomes

pq(r i, rq, v') =p(r i)p( ri) . (2.8)

If this asymptotic result for p(r, , ri;v') is used for
all separations in the integrand of (2.7), we get

W(v)=W" +—' fdridr, p(ri)p(rq)wi(rii)
2

—= w„(v), (2.9)

which clearly corresponds to a "mean-field" ap-
proximation to the free energy. Let us examine
this approximation by substituting the Kac-
parametrized form of wi(r) from (2.2}. Assuming
for the moment that the density varies only on the
length scale y ', i.e., p(r) =p(R) with R=yr, ' '
and rescaling variables of integration in (2.9), the
latter becomes

W„(v)=W'"+ —"I ' fdR, p(Ri)
2

Xp(Ri) iP(R, i ) .

(2.10)

In a bulk translationally invariant phase with con-
stant density, the integration dr, =dRi/y simply
yields a factor of the volume, and the resulting ap-
proximation to the free energy per unit volume is
0 (y ). Subtracting out this bulk contribution, the
remaining term in (2.10) is proportional to the in-



1672 DONALD E. SULLIVAN 25

terfacial area diuided by y. ' As discussed in Ref.
(16), such a formal y

' divergence nonetheless

preserves a physically correct magnitude for the ra-

tio of total interfacial to bulk free energy on ac-
counting for a required scaling of the external
parameters in the thermodynamic limit (see Sec. IV
below), and in this view can be considered a re-

movable singularity. Hence we shall still refer to
(2.9) or (2.10}as the 0 (y ) approxitnation to W(v).
It should be noted that (2.9) will generally also
produce terms of higher order in y, due to the oc-
currence of density variations on a shorter length
scale than y ', such as found in the vicinity of
walls, ' ' and also due to the fact that the density
profile itself, regardless of the length scale on
which its components vary, has an expansion in

powers of y (see Sec. III). Notice, however, that
all corrections to the uncorrelated approximation
for pq(r1, r2', v) in (2.8), on which (2.9) is based, ap-
proach zero at large

~

r2 —r,
~

and thus yield con-
tributions to W(v) which are higher than O(y ); in

particular, it will be seen below that corrections to
the functional form (2.9) for W(v) are of dominant

order y . Thus (2.9}accounts for all contributions
to the free energy through terms of 0 (y }.

We can generate corrections to the approxima-
tions (2.8) and (2.9) by using the fact that the
second functional derivative of 8'(v) with respect
to density gives the direct correlation function

c2(r „r2,v) (Refs. 18 and 19):

dr3F2(r1 r3 v)~2(r3 r2 v) ~(r1 r2) (2.14)

where F2(r&, r2, v) is the modified two-particle Ur-
sell function

F2(r1, r q', v) =p2( r1, r2', v) —p( r1)p( r2)

+p(r1)5(r1 —r2) . (2.15)

We can write (2.14) in symbolic notation as

F2(v) ec2(v) =1 (2.16a)

or

F2(v) = [c2(v)] (2.16b)

where F2(v), c2(v), and 1 are regarded as matrices
in an infinite continuous vector space labeled by
the particle positions r; the symbol+denotes con-

volution, i.e., matrix product, in this representa-
tion. It follows from the approximation (2.12}

that, symbolically

F2(v) —[I+vPF2 +w2] +F2

=F2 +F'2 eg(v)eF'2

(2.17a}

(2.17b)

=—F2 „(v),

The pair-correlation function is related to the latter

by

=w- —-)r (-)
5p(-)5P(-")

—C2(r i, r2,'v)

where F2 ' —=[c2 ]
' is the hard-sphere modified

Ursell function, and g(v) =g(r1, r2', v) is the "chain
bond" ' defined as

—=C2(r], r2, v), (2.11)
g(v) = —vPw2+ [1+vPFz ' e w2] (2.18)

c2(rl r2 v} c2 (rl r2)+vPw2(r12) (2.12)

where

where p= 1 rkT. Applying this relation to the
lowest-order result (2.9) yields

Note that (2.15) and (2.17) provide a refined ap-
proximation for p2(r&, r2, v), correcting the un-

correlated value in (2.8). If this result is used in

(2.7), we obtain a refined approximation to the free
energy

W(v) = W„(v) ——w2(0) fd r1 p( r1)

1o1, , 5 PW
~2 (ri r2) ='

5P(-)5P(-")
(2.13)

+P 'D(v),

= ~RPA(v) &
(2.19)

is the modified hard-sphere direct correlation func-
tion. Equation (2.12) is of course the familiar
"Ornstein-Zernike" approximation to c2(ri, r2, v).

where 8'„(v) is given by (2.9), w2(0)=w2(r =0),
and D (v) is the following "chain sum, "
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A(Q)D(v)=-,' Pvf fdridr2F& (r„r,}w,(r„)
2(pv) (Q) (Q)dridrzdr3dr4Fz (r&, rz)wz(rz3)Fz (r3 r4)wz(r4i)

3(pv} - - (0) -- A(Q) A(Q)+
3

dri. . .dr6Fz (r, , r2)w2(r2i)Fq (rq, r4)wz(r4~)F2 (r5, r6)w2(r6, ) —.. . . (2.20a)

This can be written in matrix notation as (see also
Ref. 6)

D(v)= —, Tr[ln(1+PvFi 'ew2)]

= —, Tr(ln[F& s [Fz „(v)] '] ), (2.20b)

where Tr denotes trace and the second line follows
from (2.17a). The approximation to the free ener-

gy given by (2.19) and (2.20) has previously been
derived graphically, ' by the functional-integral
method ' ' (considering the contribution from
density fluctuations in Gaussian approximation},
and, at least for uniform fluids, by the so-called
mode expansion. This corresponds to the
random-phase approximation (RPA).

In the context of y ordering, ' (2.17) accounts
for the leading-order terms in the expansion of the
two-particle Ursell function. This expansion gen-
erally involves the decomposition of Fz(r], rz', v)
into "short-range" (SR) and "long-range" (LR)
parts,

A$R LRF2(ri, ri, v)=F2 (ri, r2, v)+Fi (Ri, R2, v) .

(2.21)
A$RTo lowest order, Fz is equal to the reference-

system Ursell function Fz, and hence is indepen-
dent of y [considering the density profile on which
it functionally depends to be arbitrary, cf. our
comments following (2.10)]. The second term on
the right of (2.17b) represents the lowest-order ap-

LRproximation for Fz . The dominant order in y of
this term, for fixed values of R, =yr, and

Rz ——yrz, can be determined on approximating each
reference-system Ursell function appearing there
and in (2.18) by a 6 function of its arguments [cf.
(3.18) below ], and is found to be O(y ). The
combination of these lowest-order results for the
SR and LR terms of Fz yields a contribution to
the free energy, specifically the term D(v) defined
above, which is of dominant order y . [In using
this designation one must bear in mind, cf. the dis-

+x (r &, rz, v), (2.22)

where

5 D(v)
x(r&, rz', v) =

6p( r i)&p( rz)
(2.23)

The latter function can be shown to have a SR
part of dominant order y and a LR part of dom-
inant order y . The modified two-particle Ursell
function is found by applying (2.16); the next
correction to this function, beyond the lowest-order
result in (2.17), is obtained by keeping only terms
linear in x ( r &, rz,'v). Hence we find, in symbolic
notation,

Fz(v) =Fz,v(v) —Fz, u(v) +x(v) eFz, I (v) .

(2.24)

This can be shown, on manipulating the functional
derivatives involved in the definition of x (r&, rz,.v),
to agree with graph-theoretical results '; spix:ifical-

lg, this gives Fz (r„ri,v) to O(y ) and

Fz (R],Rz, v) to 0(y ). On inserting the pair-
correlation function obtained from this result and
(2.15) into the integral of (2.7), after a bit of effort
we find

cussion following (2.10), that the interfacial part of
the free energy is actually reduced by one factor of
y.

'
] Here we observe at lowest order an illustra-

tion of the more general fact ' that the SR part of
Fz for fixed rz —r& must be combined with the LR
part to one higher order in y for fixed R2 —Ri to
give thermodynamic contributions of the same ord-
er in

The same procedure as used above to refine the
mean-field free energy (2.9) into the RPA result
(2.19) can also be applied to the latter. On taking
two functional derivatives of (2.19) with respect to
density, we first derive a higher-order approxima-
tion for the modified direct correlation function:

c2(ri, ri.,v)-c2 (ri, r2)+vpwp(ri2)
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W(v) WRpA(v)

g g(o)
dri. . .dry Fq (ri, r5}g(r5, rs, v)Fz (rq, ri)g(r3, r4', v}

5p( r i )5p( r~)

M(Q) M(Q). . .Jdri . .drqF3 (i i rp r3)g(ri, rqv)g(ri, r5;v)g(r3 I fj v)FI (r4, r~, rs},12
(2.25)

III. DENSITY PROFILE

The terms in the y-ordered expressions for the
free energy and pair-correlation function given in
Sec. II contain the density profile p( r ) as well as

(Q) ~hard-sphere quantities, e.g., W' ' and Fq (ri, rq),
which are functionals of p(r). In principle, know-
ing these functional dependences, p(r) can be
determined by applying the fundamental rela-
tjOn 1 Sp 19p 29

5W =p —P,„(r),
5p(r)

(3.&)

M(Q)
where F& '(ri, rz, r3) is the modified three-particle
Ursell function for hard spheres. ' ' Equation
(2.25) has been given previously by Stell, +"' and
provides the exact correction term of dominant
order y .

The present recursive method is based simply on
use of the two exact relations, (2.7), which gives
8'(v) as a functional integral involving the pair-
correlation function (the integrand of dv' in this
relation can be identified as the excess internal en-

ergy at strength v'), and (2.11) expressing the direct
correlation function as the second functional
derivative of PS'(v) with respect to density. These
two relations are the functional generalizations of
the well-known internal energy and compressibility
routes, respectively, to bulk thermodynamics.
Each order of approximation to the free energy
and pair-correlation function generates its succes-
sor by attempting to satisfy both of these relations,
i.e., by seeking thermodynamic consistency, which,
however, can only be achieved asymptotically. On
initializing the sequence of approximations at the
mean-field level, each successive correction to
W(v} starts with one higher power of y, thus pro-
viding a simple derivation and reinterpretation of
y-ordering theory. In principle, further correc-
tions to W(v} and Fq( r i, ri, v} beyond those given
explicitly here can be generated in the same
fashion, although the analysis quickly becomes
very tedious.

I

where, from now on, it is implicit that v= l.
It is useful to separate out the pure hard-sphere

contribution 8' ' from the last equation. Recal-
ling (2.5) and (2.6},we have analogous to (3.1)

(3.2}

That is, p( r } can be equivalently viewed as the
density profile of a pure hard-sphere fluid at total
chemical potential p in the presence of the external
potential P,«(r). ' ' Strictly, the last equation
amounts to no more than a definition of P,«(r );
combined with (3.1), it can be expressed as

P,«(r)=P,„(r)+ (W —W' ') .
5p(r )

(3.3)

where the last term on the right is, more explicitly

=——,
' f Jdrqdr3((rz, r3)

5p(r i)
~(Q)

X
5p(r, )

(3.5)

Equation (3.2) together with (3.3) or (3.4) provides
a "closed" equation for the density profile on ex-
pressing 5W' '/5p(r) in terms of p(r). In a bulk
uniform fluid, with P,„(r)=0 and both p(r)=p,
({i,«(r) =P,«constant everywhere, the latter step is
formally trivial and leads to the equation of state

p'"(p }=p 0.«— (3.6)

where p' '(p) is the bulk chemical potential of hard
spheres at density p [denoted in our earlier
work' ' as ps(p)]. Under these circumstances,
on retaining only the first or mean-field term on
the right of (3.4), (3.6) becomes the familiar van

In particular, using the RPA approximation to W
from (2.19) and (2.20), this yields the prescription

({},«(ri) —P,„(ri)=Jdriwi(rip)p(ri)

——,wz(0)+P
1 5D

5p( ri)

(3 4)
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der Waals equation of state. '

The last equation can be generalized to the
nonuniform regime by use of y-ordering methods.
We restrict consideration to external fields which
are only slowly varying, i.e., on the length scale

y ', thus ignoring, e.g., the presence of walls. '

Hence we set $,„(r,)=P,„(Ri), R, =yr, . It will be
found, self-consistently, that the resulting density
variation occurs only on this length-scale, so that
p(r i) =p(Ri }. Using the same argument as applied
in (2.10},the first term on the right in (3.4) is seen
to be O(y } for fixed R, . The second term is a
constant proportional to y, cf. (2.2). The third
term can be shown by y-ordering techniques [see,
e.g. , the discussion following (2.21)] to be of lead-

ing order y for fixed Ri. Hence, to zeroth order

in y, P,rt(R&) consists of only the mean-field term

in (3.4},

p,g(R, )=p,„(Ri)+fdR24(Ri2)p(R2)

+O(y') . (3.7)

One anticipates that, to the same order, (3.6) still

applies with p' '(p) simply generalized to the "lo-
cal" hard-sphere chemical potential p'0'(p(Ri)).
This has been used, without forrnal proof, in our
earlier work, ' ' and will here be verified by a
method similar to that described in Appendix A of
Ref. 19. We consider the functional Taylor-series
expansion' of 5$' '/5p(r]) about its value
p' '(p(Ri)) in a uniform reference system of densi-

ty everywhere equal to p(R~). This gives

s w'"
=Pp, ' '(p(Ri)}+fdr2c2a(ri2)[p(Rq) —p(Ri)]

5p(r, )

+ —, Jd rzdrici a(rii, rii)[p(R2) —p(Ri)][p(R&) —p(Ri)]+. . . , (3.8)

where we have used (2.13) and where

s'pw"'
c3 (ri, r2, r3)

&p( ri)5p( r2)&p( r))
(3.9)

+y A' '(p(R, ))V a p(Ri)

is the modified three-particle direct correlation
function for hard sgheres. The subscript 8 on this
function and on c2 a(ri2) in (3.8} denotes that they
are to be evaluated in a bulk, translationally invari-

ant system of constant density p(Ri). Further-
more, since these are hard-sphere direct correlation
functions, they can be presumed to decay quickly
to zero when their arguments are separated merely

by microscopic distances. Hence, the standard gra-
dient expansion' of the slowly varying densities

p(RJ ), j=2,3, in the integrands of (3.8), i.e.,

p(R. )—p(R&) =yri. V- p(R&)

+~( r i,
.& -„)'p(Ri)+. . .

(3.10)

is justified in this case on the basis of y ordering.
Here, V z denotes the gradient with respect to the

1

scaled variable Ri ——yr&. Inserting (3.10) into (3.8),
the rest of the development otherwise proceeds in
the same manner described by Yang et al. ,

' re-

sulting in

g' '{p(Ri)}[Va p(R, )] +O(y ),

(3.11)

where

~"'(p(Ri))=-,' fdr]pcpgl(r12)r12, (3.12)

and A' '(p)—:BA' '(p)/Bp.
Equation (3.11) confirms the expectation that

5W' '/5p(r&) is given by the local hard-sphere
chemical potential to O(y ). Including all the
terms displayed in (3.11), substitution of this equa-
tion together with the mean field P,n(Ri) from
(3.7) into (3.2) yields an integro-differential equa-
tion for p(R&} valid to O(y ). We denote the re-

sulting, "van der Waals" approximation to the den-

sity profile as po(R]). These Iesults differ from
those of Yang et al. ' in that the only "local ther-
modynamic" functions which arise here, i.e.,
p' '(p(R&)) and A' '(p(R&)), refer strictly to a
hard-sphere fluid. (One significance' ' of this, of
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course, is that we thereby do not encounter any
problems arising from interpretation of local ther-
modynamic quantities at densities corresponding to
metastable or unstable portions of the bulk fluid
phase diagram. ) The contribution of intermolecu-
lar attractions is contained in the nonlocal term of
(3.7). There is no formal justification for carrying
out a further gradient expansion of p(Rq) in the in-

tegrand of this term, since truncation of such an
expansion will omit an infinite number of terms of
O(y ). Performing such an expansion'0""7 to
second-order gradients of p(Ri } and neglect of the
O(y ) terms in (3.11), leads to what is usually
called "van der Waals, Cahn-Hilliard, square-
gradient" theory.

The presence of walls leads to the existence of
an additional "short-range" component in the den-

sity profile, analogous to the decomposition (2.21)
of the pair correlation function into SR and LR
parts. This more general situation can also be
analyzed by a functional expansion method similar
to that used in this section. We shall not go into
this here, except to point out that, to strict O(y )

terms, the LR component of the density profile is
decoupled from the SR part and satisfies the same
equations as given above, with the inclusion of a
wall cutoff in the integrand of (3.7).' In this case,
the further approximation of gradient expanding
the density profile in this integrand, in addition to
being formally incorrect, gives rise to practical er-
rors. ' ' The SR component of the density profile
is determined by other means, ' not involving the
application of local thermodynamics, which clearly
cannot be sensibly applied to functions which un-

dergo the type of sharp oscillations expected in the
vicinity of a wall.

As noted above, the last two terms in the RPA
approximation (3.4) for ((i,if(R, ) are 0 (y ), and
hence will induce a correction of O(y ) in the den-

sity profile. It is more generally evident that the
successive corrections to the free energy discussed
in Sec. II, each starting with one higher power of
y, will lead via (3.3) to an ordering of the effective
potential in powers of y, and hence to an ordering
of the density profile which can be written as

tion

Vp(ri)= p—fdr2F2(ri, ri)VQ, „(pp)', (3.14)

or by the equivalent equation, which follows from
the Ornstein-Zernike relation (2.14),

PVP,„(r i ) = —fd r, c,( r i, ~, ) Vp(r, ) . (3.15)

We have reverted to expressing positions as r;,
since these equations apply under arbitrary spatial
variation of the density and external field. ' An
additional equivalence exists between the last two
equations and the following pair:

Vp(ri}= Pf d—rtFi '(ri, ri) Vg,rr(ri),

(3.16)

P ((},it(r i) = —fdric2 '(r, , ri) Vp(ri),

(3.17}

which can be generall~ verified using the defini-
tions of ci(ri, ri), ci (r i, r2), and P,ri(r), Eqs.
(2.11},(2.13), and (3.3), respectively, together with
the appropriate functional chain rule' ' ' for the
gradient operator. Of later significance, one can
specifically verify that (3.14) and (3.16) are
equivalent in lowest order, with F2(r &, r2) approxi-
mated by Fi „(ri, ri) defined in (2.17), and P,ff(r )

given in mean-field approximation. Functional ex-
(p)pansion of Fi '(r i, r2) in (3.16) then leads to results

identical to those discussed earlier in this section.
For example, the leading term p' '(p(Ri)) in (3.11)
is equivalent to use of the "local" approximation

(3.18a)

with

(3.18b)

Notice, again, that we only apply local thermo-
dynamics to hard-sphere quantities.

IV. CAPILLARY-WAVELIKE ANOMALIES
IN RPA

p(R) =pp(R)+ pi(R)+p2(R)+. . . , (3.13)

where p„(R) is of leading order y ". We shall ex-
plicitly analyze the first correction p&(R) in Sec.
IV. We conclude this section with the remark,
which will be of relevance in Sec. IV, that the
present results for the density profile can also be
obtained by use of the integro-differential equa-

In this section we carry out a partial analysis of
the RPA contributions to the free energy and den-
sity profile. Here we specialize to the situation of
a planar liquid-vapor interface in the presence of a
weak gravitational field mgz acting in the z direc-
tion. Strictly, to be consistent with a density pro-
file varying on the length scale y ', the gravita-
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where k is the Fourier wave vector in the xy plane
and s ]z is the projection of rz —r i onto this plane.
Central to the following analysis is the result, first
deduced by Wertheim and later extended by oth-
ers, ' that the transformed Ursell function
F2(z~, z2, k) under the present conditions should

display a small-k divergence

p'(z] )p'(z~ )
F&(z],z&, k )— , k 0

Pyk'+Pmgb, p
(4.2)

where p'(z) =dp(z) /dz, b p =p( —oo ) —p(+ oo ) is
the difference in coexisting bulk densities, and y is
the interfacial tension. The work in Refs. 21, 22,
and 29 has shown that the asymptotic result (4.2)
follows generally from any theory of the liquid-
vapor interface in a weak gravitational field, for
which the relevant density profile and Ursell func-
tion are related by (3.14) and for which the profile
approaches a well-defined limit or indeed slowly
washes out ' as g~O+. Since as noted at the end
of Sec. III, these conditions are satisfied by the
lowest-order van der Waals density profile po(z)
and the corresponding approximate Ursell function
Fq „(ri,rz), the relation (4.2) must in particular
hold for the transverse Fourier transform of- the
latter,

tional strength g should be replaced by the scaled
variable yg (we consider that y has been rendered
dimensionless, e.g., by expressing y ', the range of
attractive interactions, in units of a microscopic
length such as hard-sphere diameter). Such a scal-
ing goes along with the requirement' that each
linear dimension L; of the system be correspond-
ingly scaled to L; /y as y~O, yielding a change of
gravitational potential over the system, ~ gL;,
which is invariant under scaling. For notational
convenience in this section, we henceforth use units
in which y= 1, recognizing also the purely formal
smallness of y. '

The density profile can now be considered as
varying only in the z direction, and therefore
denoted p(z). Correspondingly, the two-particle
Ursell functions Fq(r&, rz) and Fz '(r&, rz) are
translationally invariant in the xy plane and hence
can be expressed in terms of transverse Fourier
transforms, e.g.,

F2(r&, r2}=
2 J dk F2(z„z2,k}e

(22r)
(4.1)

D = —, [ln[det(F2 )]—ln[det(F2 „)]], (4.4)

where Det denotes determinant. As described in
Sec. II, D yields a contribution of dominant order

y to the free energy, irrespective of the order of
approximation of the density profile on which the

m[0 jmatrices F~ and Fz „ in (4.4) functionally depend.
To leading order, therefore, we can take the profile
implicit in (4.4) as that given by the zeroth-order
van der Waals theory, po(z). Correspondingly, the
Ursell function Fz „ in the above equation satisfies
(4.3) for small k. To extract the contribution of
this divergence, we suppose that Fz, (z],zz, k) has a
spectral decomposition '

F2 U(zl, z2, k) = g e(~(zl )eg (Z2)f; „(k),
i=0

(4.5)

where the e;(z) are a complete set of appropriate
orthonormal eigenfunctions. Then the second term
on the right-hand side of (4.4) can be written as

D2 = ——, ln[det(F2 „)]

Jdk g lnf;„(k),
2(2n);o

(4.6)

where yo denotes the interfacial tension of the van

der Waals theory. This result has also been expli-

citly verified ' in the Landau-Ginzburg-Wilson
submodel of van der Waals theory. [This model is

derived ' by neglecting higher than second-order
terms in the wave-vector expansion of the Fourier
transform of wq(r), equivalent to the familiar
square-gradient approximation, and representing
the hard-sphere chemical potential Pp' '(p) by its
expansion to terms cubic in p —p„where p, is the
fluid critical density. ] In the following we demon-

strate how the divergence of Fq „(z],zq, k) in (4.3)
leads to capillary-wave-like anomalies in the
higher-order RPA contributions to the density pro-
file and free energy. Essentially the same mechan-
ism for the production of anomalies is implicit in

earlier analyses ' '; the more general nature of
the Hamiltonian model considered here and the ex-

plicit connection drawn to the work pioneered in
Ref. 29, justifies the present account.

We consider first the quantity D occurring in the
RPA free energy, (2.19) and (2.20). Application of
some matrix identities allows (2.20b) to be written

as

po(zi )po(z~ )
Fp „(zi,zp, k)- k~O

Pypk +Pmgbpp
(4.3) where M is the area of the interface. Since the

hard-sphere Ursell function Fz (z],z~, k) does not
m[0]
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suffer a small-k divergence analogous to (4.2), we
shall ignore the reinaining term in (4.4),
~ln[Det(Fz )].

As others ' ' have argued, (4.3) corresponds
in the limit g~0+ to a "ground state" eigenfunc-
tion Ep(z}=pa(z), apart from normalization con-
stant, and eigenvalue

fp „(k)= 1

Pyak ~+Pmghpa
(4.7)

to leading order in k. Using this leading estimate
for f0 „(k) in (4.6) and ignoring the contributions
of f~ „(k}for i & 0, which are not expected to
display small-k divergences, we find

k

Dq — I dk k ln(Pyak +Pmg+0}=4 8
I (@yak +Pmg+0)[ln(Pyak' +Pmghpa} —1]

—Pmgb pa[in(Pmghp0) —1]) . (4.8)

Here we have imposed a finite upper cutoff k
(Refs. 20, 22, and 28} to prevent an ultraviolet
divergence of the integrand, which is necessitated
by neglect of the i & 0 eigenvalues in (4.6). A pro-
cedure for estimating such a cutoff in terms of a
microscopic correlation length has been described
in Ref. 32, for the case of the Landau-Ginzburg-
Wilson submodel, based on the known large-k
behavior of the full eigenvalue spectrum in this
model. More generally, the large-k behavior of
Fq(zi, zq, k} is expected to depend on details of the
model [e.g., the nature of the potential wi(r}], so
we shall simply suppose that a microscopic k has

bly def
Thus it is found that the term D contributes a

I

bounded anomaly ——g lng to the RPA free ener-
gy', this is of the same form obtained by account-
ing for capillary-wave fluctuations in a "bare" in-
terface described by the van der Waals theory. It
should be noted that the density profile in the
mean-field component W„of the RPA free energy
(2.19) must be carried to O(y ), i.e., must include
the first correction pi(z} of (3.13), to account for
all terms of order y in W. Potentially, this could
contribute further anomalies to the RPA free ener-

gy, beyond that given in (4.8), due to the anticipat-
ed divergence of pi(z). It is clear, however, that
we need only linearize 8'„ in p~(z) to account for
its O(y } contribution. Using (3.1), we obtain

W„[p (z}+p,(z)]= W„[p,(z)]+Jdr '[p, P,„(,z—')]p, (z')+O(y'), (4.9)

where p0 is the van der Waals approximation to
the total chemical potential. On using (2.4) to
compute the grand potential 0, whose surface con-
tribution is yW where y is the interfacial tension, '

the terms containing p, (z) cancel, so that the only
anomaly in y through terms of order y is that oc-
curring in (4.8).

Turning now to the behavior of p&(z) itself, the
crucial quantity affecting this behavior is the last
tenn on the right in (3.4) for ({l,rr(r i), i.e.,
5D/5p(ri), which is given more explicitly in (3.5).
As in the above analysis of D, to leading order the
density profile implicit in this term can be approxi-
mated by its zeroth-order limit pa(z). Consistent
with this evaluation, we can use the local approxi-
mation (3.18) for the hard-sphere Ursell function,
obtaining

8a 1, ,
aX(0'

5p( r
& ) 2 Bp p=p0(z& )

(4.10)

I

It is evident from the relation between the Ursell
function Fq „(r„rz) and the chain bond in (2.17b),
and from the "local," nondivergent nature of
~(p)Fi (r, , rz), that g(r, ri) should exhibit the same
small-k divergence of its transverse Fourier
transform as shown by Fz „(z&,zz, k) in (4.3). Con-
cerning ourselves with extracting only this diver-
gent contribution, neglect of the first term on the
right in (2.17b) and use once more of (3.18}gives
US

5D 1 aX("rap
5p(r]) 2 (X' ') p=p (z )

g2pp(0)
Fp 1}(r]= &p) ~ (4 11)

~p ~ ~0(~1 )

We now assess the capillary-wave contribution to
Fq „(r]——rz) by inverse Fourier transforming the
divergent small-k limit in (4.3):
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1 M A
F2 o(r) ——r2) = dkF2, o(zi ——z2, k)

(21r)

[Po(21)] k
dk

(Pyok +Pmg+p)

of the last equation is evaluated as a functional of
p()(z). Combining the expressions for P,tt 1(z} given

by (4.13) and (4.15) yields the following solution
for pi(z) in terms of functionals of po(z):

[po«) }l' PFok'+&mg~po
ln

4~Pyp PmgtIipo

(4.12)

pi(zi) =fdr2F2„(r, ir2)

1 5D
X p[p)+ —,w, (0)]-

5p(r2)
(4.16)

:—0 tro(zi )+p,ff l(zi )+0(y ), (&.13)

where ((),tt p(zi ) denotes the mean-field approxima-
tion (3.7), considered as a functional of the zeroth-

order density pp(z). The effective potential can al-

ternatively be functionally expanded to terms linear
in p, (z), by use of the relation [cf. (2.13) and (3.2)]

~5(P 0 ft(rl }) (p)=c2 (ri, r2) ~

5p( r2}

Hence

(()([((((—4.tr, )(z))]=fdr2c2 (ri r2) l(,(s, )

(4.14}

Xpi(z2)+O(y ), (4 15)

where p& is the correction to the total chemical po-
tential given by RPA, and c2 ( r ~, r2) on the right

The last two equations therefore lead to a lng term
in the effective potential at the RPA level of ap-
proximation. Since this term is proportional to the
square of pp(z), its occurrence is confined to the re-

gion of the interface. Note, however, that it can-
not be claiined that the evaluation in (4.12} of the
small-r behavior of the Ursell function from
knowledge of the small-k properties of its Fourier
transform is by any means rigorous. The correct-
ness of this assessment of the capillary-wave diver-

gence in F2 „(ri——r2), nonetheless, is supported by
its agreement with an explicit calculation by Zit-
tartz in the case of the Landau-Ginzburg-Wilson
submodel, for which the full eigenvalue spectrum
of F2 „(z&,z2, k) is available.

One further step is needed to show that the ling

divergence of 5D/5p( r 1 ) gives rise to a similar
divergence in pi(z). First notice that, applying the
expansion of p(z) in (3.13), the full RPA expression
for the effective potential in (3.4) can be written, to
0(y ),

0 tt(zl ) p ff 0(zl )+fdr2 w2("12)pi(z2)

——,w2(0)+p ' +O(y )
5p(r 1 )

Notice that integration over the horizontal coordi-
nates of r2 in this equation reduces F2 „(r„r2) to
its transverse Fourier transform at k =0,
F2 „(z,,z2, k =0), which includes a 1/g divergence

as indicated in (4.3). It can be shown, however,

that such a 1/g term does not contribute to (4.16),
and hence that pi(z} exhibits the same logarithmic

singularity as 5D/5p(r2). Specifically, the term in

(4.16) resulting from the limiting behavior of
F2 „(zi,z2, k =0) given by (4.3) is proportional to
the integral

1 5DI=fdz2p—o(z2) p[p)+ —,w2(0)]-
5p( r2)

Defining the function d(z) by [cf. (2.20)]

D= fdrd(z),

(4.17)

(4.18)

use of a functional chain rule ' converts (4.17)
into

I = pbpp[p)—+ , w2(0)]+—(5.d, (4.19)

where b,d = [d ( —oo ) —d (+ oo )] is the difference
in coexisting bulk values of d(z). As a final exer-

cise, whose details we shall omit, it can be shown

that, on neglecting any gravitational effects in bulk
and requiring equality of the total pressures of the
coexisting phases, evaluated in RPA, the quantity I
given by the last equation is zero.

Thus it is demonstrated that p, (z), the leading

O(y ) term in the density profile, has a contribu-
tion proportional to lng. As noted in Sec. I, a
similar nonanalyticity in the profile was found by
Jasnow and Rudnick in the context of a "renor-
malized" RPA applied to the Landau-Ginzburg-
Wilson model of the interface. We shall comment
in the next section on the method described in
Refs. 25 and 32 to justify a resummation yielding
the correct capillary-wave anomaly (1.2). We close
the present section by describing an alternative
point of view, which relates the difference between
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(1.1}and (1.2) to the question of the "core condi-
tion" on the pair-correlation function. We refer
here to the well-known fact that the harsh repul-
sive forces between molecules should cause the pair
probability pz(r &, rz) to vanish at small separations

~
ri —r i ~

. This condition, however, is not satis-
fied by the strict y-ordered expansions discussed in
this paper. As noted in Sec. II, the LR part of the
two-particle Ursell function must be carried to one
higher order in y than the SR part to yield ther-
modynamic contributions of the same order, while
only if both SR and LR parts are evaluated to the
same order in y, is the core condition satisfied. '

Let us now consider applying the same steps as in-
volved in (4.12) to determine the zero-separation
value of the exact unmodified Ursell function

Fz(ri, rz)=pi(ri, ri) —p(zi)p(zp) . (4.20)

This differs from Fz(r&, rz) only by the term
p(zi)5(ri —ri}, and therefore exhibits the same
small-k divergence of its transverse Fourier
transform as given in (4.2). By applying the same
reasoning as in (4.12), Fz(r i ——rz) would be expect-
ed to contain a divergent term proportional to
[p'(zi )] lng. However, the vanishing of pz(r i ——ri)
and the expected boundedness of the density profile
shows, in view of (4 20), that Fz(ri = r&) should
properly be bounded. Thus, to prevent a diver-
gence in this function, p'(z) must satisfy (1.2).
This argument, of course, does not by itself pro-
vide an explicit means for calculating the detailed
form of the density profile.

V. CONCLUSIONS

We have shown that a microscopic model based
on a Kac-parametrized pair potential leads to sys-
tematic expansions for interfacial structure and
thermodynamics, providing a framework for inter-
relating several, sometimes disparate, ideas in
nonuniform-fluid theory. Specifically, the van der
Waals theory has been placed in the formal context
of a zeroth-order, fluctuationless result in expan-
sion of the density profile and free energy in
powers of y . The next level O(y ) theory, the
RPA, accounts approximately for the effects of
density fluctuations, including some which give
rise to capillary-wave-like anomalies in interfacial
structure and thermodynamics. We have observed

that the interfacial behavior at lowest order influ-
ences the production of anomalies at higher order
via the presence of a long-wavelength divergence in
the two-particle Ursell function. This provides mi-
croscopic justification for Weeks' ' thesis that the
same fluctuations responsible for the small-k diver-
gence of Fz(z„zz, k) also cause p'(z) to vanish as

g —+0+. This idea has been disputed by Evans,
but only on the grounds that the van der Waals
density profile po(z) is well behaved as g~0+,
discounting the contribution of fluctuation correc-
tions to this profile.

Several important questions are remaining.
Clearly, the contribution of higher-order terms in y
ordering, e.g., the O(y ) free energy in (2.25) and
its associated density profile, should be examined.
In view of the proliferation of chain bonds g(r „r&)
in the last two terms in (2.25), each displaying a
long-wavelength divergence, one could envisage
capillary-wave-like anomalies developing in profu-
sion from these terms, although some elimination
of these divergences may occur by a mechanism
similar to or generalizing that described in
(4.16)—(4.19). The occurrence of compounded
anomalies, however, is presumably related to and
should illuminate the basis for resummation from
(1.1) to (1.2). In Refs. 25 and 32, the result (1.2}
was derived, to an order of approximation con-
sistent with the RPA, using the method of Gervais
and Sakita to introduce the "bare" interface posi-
tion as a degree of freedom in the model (Landau-
Ginzburg-Wilson) partition function. In the con-
text of a Kac-parametrized Hamiltonian model
such as considered here, an analogous procedure
could in principle be adapted to the functional-
integral method. ' ' At the RPA level of approxi-
mation, fluctuation corrections to van der Waals
theory are generated by Gaussian functional in-
tegrals, ' ' so that to this order the prediction of
anomalies in agreement with the original Gaussian
model of Buff, Lovett, and Stillinger is to be an-
ticipated. As noted at the beginning of Sec. II,
however, the functional-integral method is some-
what unwieldy in deriving equations for the deriv-
ing profile, at least at its present stage of develop-
ment for nonuniform fluids. It is also expected
that in higher-order theory there is coupling of
"ordinary" (nondivergent) to capillary-wave-like
fluctuations, so that the ability to define an "in-
trinsic" interface becomes less clear. We have sug-
gested above that a key role in establishing (1.2) is
played by the core condition on the pair-correlation
function. This aspect deserves further exploration,
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both in the framework of y-ordered expansions
(particularly in view of our earlier remarks on how
the core condition is developed asymptotically in
such expansions) as well as in other directions.
For example, it is anticipated that an "optim-
ized" version of the RPA, equivalent to a mean-
spherical-like approximation, should yield essen-
tially correct capillary-wave-like effects.
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