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In strongly coupled, degenerate plasmas, the electron collision frequency has been

described by the Ziman formula with the ion-ion correlations modeled by the classical
one-component plasma (OCP). However, this model fails to reproduce the correct
quantum Lenard-Balescu result in the weak-coupling limit. It is demonstrated here that a

recently obtained correlation-function expression for the collision frequency reduces to the

Ziman and Lenard-Balescu results in the appropriate limits. In addition, it is shown that
an extension of the Lenard-Balescu result to include strong coupling can be interpreted as

the Ziman collision frequency with the OCP structure factor replaced by the ion-ion

structure factor for a two-component system. Numerical estimates of this structure fac-

tor are used to calculate the electrical conductivity in moderately coupled (I (2) hydro-

gen plasmas.

I. INTRODUCTION

A reliable. picture of electron transport in plas-
mas requires an accurate model for the electron
collision frequency. In strongly coupled, degen-
erate plasmas the collision frequency has been
described by the Ziman formula' with the ion
correlations modeled by the classical one-

component plasma (OCP). The primary difficulty
with this approach is that it treats the electrons
and ions as separate, independent subsystems. As

a result, this model fails in the weak-coupling limit

where the appropriate collision frequency is that
found from the quantum generalization of the
linearized Lenard-Balescu equation. ' The latter
equation treats electron and ion screening effects
symmetrically, and includes correlations between

the electrons and ions.
Recently, there has been progress in unifying

these two points of view. It has been shown that
the electron collision frequency in a neutral plasma
containing only a single ion species may be approx-
imated by'

d'k
v= I f,v„(k)k [(S (k, —co)S;;(k,co)—S„(k,—co)S;,(k,co)],

6m, n, —~ 2n (2tr)3

where v„(k) is the electron-ion potential, P is the

temperature, m, and n, are the electron mass and

number density, respectively, and the units are
selected so that %=1. As noted in Ref. 5, the
electron-electron collisions do not contribute to Eq.
(l), because they conserve the total electron
momentum.

The functions, S,b(k, co), are the dynamic struc-
ture factors in a true two-component quantum sys-

tem, and they are defined in terms of the density-

density time-correlation functions

S b(k, co) = I dt e'"'(p ( —tk)p, (k, t) )o,

where ( . . )o indicates an average over the
equilibrium grand canonical ensemble. The opera-
tor p, (k) represents the Fourier transformed densi-

I

ty of species a and is defined in terms of the quan-

tum position operators r„
N i1.r.(i)pa=0 z, e

where N, is the number of particles of species a
and Q is the volume of the system. The structure
factors are quite difficult to calculate in general,
but a considerable simplification results if the elec-

trons and ions are viewed as two independent,
one-component systems. In this approximation
S„.(k, co) vanishes, and it has been shown that if
S„(k,co) is calculated in the random-phase approx-
imation, and S;;(k,co) is calculated from a generali-
zation of this same approximation that includes
strong ion-ion correlations, the Ziman formula
mentioned above is obtained,
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f dk f,(k/2) k
12~ Z

m, w Bf(p) &u, v (k}
dp dk k

1271. Z o &p o eRpg(k, O}

v„.{k)
Socp(k) . (3)

Here, f, (p) is the electron momentum distribution,
Z is the net ionization of the ion, eRpA is the
random-phase dielectric function for a (one-

component) electron gas, and Socp(k) is the exact
static-structure factor for the classical one-

component plasma. Notice that while Eq. {3}ac-
counts for strong correlations among the ions, it
allows only weak electron-ion collisions through an

effective Born cross section.
This result requires that the electron-ion correla-

tions be neglected while the electron-electron and
ion-ion correlations are retained. Whenever this is
inappropriate a different approach is necessary. In
particular, we demonstrate in Sec. II that for weak

coupling, the functions, S,b (k, tv), in Eq. {1)can be
evaluated in the two-component random-phase ap-
proximation to reproduce the correct quantum
Lenard-Balescu result. By exploiting the large
ion-electron mass ratio, we show that the Lenard-
Balescu result is equivalent to Eq. {3)with Socp(k}
replaced by the weak-coupling limit of the two-

component ion-ion structure factor. In the third
section, we use this result and the strong-coupling
classical result to suggest a strong-coupling exten-
sion of the quantum Lenard-Balescu result for
nondegenerate plasmas, and show that it can also
be put into a Ziman-like form with the structure
factor generalized to include electron-ion correla-
tions. In the final two sections we present some
numerical results for the electrical conductivity of
hydrogen and a critique of the theory.

II. WEAKLY COUPLED QUANTUM SYSTEMS

In general, the structure factors Sb(k, co) are
related to the response functions,

Xob(k, z)

i J—dt e ([p, (k, t),pb( —k)])p,

Irnz &0 (4)

through a form of the fluctuation-dissipation
theorem,

2
S,b(k, to)= ~ Im[ lim X,b(k, to+i'})] .

(1—e~} q 0+

The procedure followed here will be to solve for
the structure factors from Eq. (5} by writing the
response functions in the form

X~(k,z) =—Tr~e ' Y,b(1;kz)0
and calculating the single-particle operators, Y,~,
from the weak-coupling kinetic equations for two
components

[z L, (1)]Y,b(1;—kz) gB~ (1)Y,—b(1;kz)
a'

= Y.b(1;k) .

The Liouville operator, L, (1), represents commuta-
tion with the kinetic energy of a particle of species

a, and the initial condition, Y,~ (1;k), is defined by

Y~{1;k)=—[e ',f,(1)], (&)

where f, (1) is the quantum operator whose
momentum matrix elements give f, (p). In the
weak-coupling limit, the mean-field operators B,b,
defined in Ref. 5, may be evaluated to lowest order
in the interactions to give

d3k'
B (1)Y,b(1;kz) = J 3 v (k')[e ',f, (1)]Tr e z' Y, b(2;kz)

(2~)3 ™
= v~(k)Y {1;k)X;b(k,z),
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which is the quantum generalization of the linear-

ized Vlasov operator for two components. Solving

Eqs. (7)—(9) gives

X~b(k, z)

=X,(k,z) 5,s+ g v (k)X, ~(k,z)
a'

tion for a two-component system,

e(k, z) = e, (k,z}e;(k,z}

—U,2,-(kg, (k,z)X,-(k,z)

= 1 —v„(k)X,(k,z)

—U;;(k)X;(k,z),

with

(10) and e, (k,z) is the corresponding one-component re-

sult,

X,(k,z)
6 (k,z) =1—U I(k)X, (k,z) . (16)

—:(2s, +1) d p fa(
I 0+ k

I
) —f.(p)

(2a) z+~E,

X (k,z) =6 (k,z)e;(k,z)y (k,z),

X„.(k,z) = X;,(k,z)

= e '(k, z)v„(k)X, (k,z)X;(k,z),

X;;(k,z) =e '(k, z)e, (k,z)g;(k, z),

(12)

(13)

(14)

where e(k,z) is the random-phase dielectric func-

In Eq. (11),s, is the spin of species a, and

I p+k I'
ma 2ma

is the kinetic. energy change of a particle of species
a. For two components, Eq. (10) represents a set

of four equations which may be solved simultane-

ously to give

S„(k,—co)S;;(k,co) —S„(k,—co)S;,(k, co)

4eI
, Ie(k, co)

I
ImX, ImX; .

(e —1)

By noting from Eq. (11) that

Imp, (k,co+i g)

(17)

d3
=n(2s, +1)f 35(co+bE, )(1—e ')

(2~)3

X f,(p)[1—f,(p+ k)]

Eq. (17) may be put into Eq. (1) and the frequency

integral performed to give the desired result,

The second line in Eq. (15) occurs because v„v;; =
UeI for the Coulomb interaction. By taking the im-

aginary parts of Eqs. (12)—(14), the structure fac-

tors may be found through use of Eq. (5). Corn-

bining the results then yields, after a few manipu-

lations,

v= f, f p, f,k' " f, (p)[1—f, (I p+&
I
)jf;(p)5(&E,+&E;),

3m, n, (2n )3 (2~)3 (2m)3 e(k, bE, )

(18)

where it has been assumed the ions obey Maxwell-

Boltzmann statistics. This is precisely the collision

frequency associated with the linearized form of
the quantum Lenard-Balescu equation studied by
Lampe.

In order to compare Eqs. (18)—(3) we have to
perform the integration over the ion momentum.
To lowest order in the electron-ion mass ratio this
may be done just as in Ref. 5 to obtain

S(k)—:n '~ f dYe "e k,

' 1/2

kY

=n. '~' f dYe " I1 v„(k)X,—(k,o)

I

where the cutoff of the k integration at 2p is due

to the energy conserving delta function in Eq. (18).
The function S(k) is defined by

f dp f dk k v„.(k)S(k),
12m Z ~p

(19)

—k; /k P(Y) I

where k; = 4nPn;Z~e2, and

(20)
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t(,( y) —;~'~2Ie —"' ~—~~'PP
—00 x —Y

(21)
In the second line of Eq. (20},we have used the
classical limit of P;, and the zero-frequency limit
of 7, . These approximations are correct to lowest
order in m, /m;. The integral may now be per-
formed using contour integration to obtain

S(k) = e, (k, O}e '(k, 0)
= eRp~(k, O}e (k,O), (22)

me v„(k)
dk f,(k/2)k

12' Z eRPA(k 0)e(k 0}

f "dk g( ")k'~ —" ~'S,, (k),
127r Z 2 eapA(k)

(23)

where the subscript "e"has been replaced with
"RPA" in order to conform to the notation used in
Eq. (3). Therefore, after a partial integration, Eq.
(19) becomes

where

S;;(k)= 1

I+Pn; U-eRp'A(k 0}

is the weak-coupling structure factor for ions in-
teracting through the Coulomb potential screened
by the electrons through eRp~. Equation (23)
reduces to the weak-coupling form of Eq. (3} only
when E'RpA 1 for the values of k of most signifi-
cance in Eq. (23). This can occur in an extremely
degenerate plasma in which the Thomas-Fermi
screening length becomes very large, but in such a
case the screening of v„. by the electrons would
also be negligibly small. Therefore, it appears that
it is inconsistent to screen v„. without also screen-
ing v;; in the calculation of the ion structure fac-
tor. '

It is interesting at this point to note that in the
Debye-Hiickel limit, Eq. (23) may also be written
as"

mq oo

$2~3Z 0
dk f, (k/2)k'

me~e

3Z 277m~

' 3/2

dke 'k
i i

S- (k)

which is of the same form as Eq. (3) with the Debye-Huckel estimate to the two-component ion-ion static
structure factor and to the electron screening function.

III. THE CLASSICAL LIMIT
AND STRONG COUPLING

In Sec. II we demonstrated that the collision fre-
quency predicted by the linearized, quantum
Lenard-Balescu equation is equivalent to the Zi-
man formula with the correct weak-coupling ion-

I

ion structure factor. The purpose of this section is
to discuss an approximation which will extend this
result to strong couping. However, to motivate
this approximation, we will first discuss the strong-
ly coupled classical limit of Eq. (1).

It has already been shown that for strongly cou-
pled classical systems, Eq. (1) can be generalized to

d kf f,k'u„(k)U„(k) [S„(k,—co)Sb(k, co)—S„(k,—co)S;,(k,co)j,6m, n, 2~ (2n )3 (25)

u,b(k)—:p'c, b(k) . — (26)

The direct correlation functions are defined by the
Ornstein-Zernike relations

where the generalized potentials, u,b, are defined in
terms of the direct correlation functions, c,b,

c,b(k) =h,b(k)+ g c (k)n,'h, b(k),
a'

h,b(k)= f d r e' " "[g,b(r) —1] .

In terms of these functions, the static structure
factors are

(27)

(28)
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S,b(k) = B,b+nbh, b(k)

5,b(1+Pn; u;;+Pn, u„) P—nbu, b

(1+Pn;u;; )(1+Pn,u„) P—n, n;u„

(29)

Equation (25) differs from Eq. (1) primarily due to
the replacement of one U„with u„.. This replace-
ment, which can be done exactly only in the classi-
cal limit, preserves the exact short-time behavior of
the memory operator from which the collision fre-

quency is calculated. '"

It is also possible in the classical limit to evalu-

ate the mean-field operators in Eq. (9) exactly in

terms of the u,b.
' As a result, the response func-

tions may now be determined from the classical
limit of Eq. (6):

d3
X,b(k, z) = f f d r e'"''

Y, b(pi';z)
(2~)3

d3= f , Y b(pk;z), (3o)
(2~)3 '

where Y,b(pk;z) is a function' which satisfies

z — Y,b(pk;z)+ g u„(k) f, (p)X, b(k, z) = — fe(p)5, b .
k.p Pk p — Pk p (31)

Solving Eq. (31) and using the classical form of Eq. (5) then yields

f " ", f "p, f ",k"„(k)U„(k)
i
&(k, k'F&M)

i

-'
3m, n, (2ir)' (2~)' (2~)'

x f, (p)f;(P)&
P

(32)

—u„(k)X,(k,co)X;(k,a)),

e( , k)F0=1 —u (k)X, (k,bi),

(33)

(34)

and with X, given by the classical limit of Eq.
(11). This result is a multicomponent generaliza-

tion of the effective interaction approximation
described by Gould and Mazenko. "'

The ion momentum integrations may now be
performed just as before with the result

mene pV=
2~me

u„(k)v„.(k)
dk k

e, (k, O)e(k, O)

mene p
~me

u„.(k)u„.(k)
dk k

2 Sii(k),
i
e, (k,O)

i

'

(35)

where both the electron and ion momentum distri-

butions are Maxwell-Boltzmann and a transforma-
tion to relative and center-of-mass coordinates has

been made. The reduced mass and total mass are

p(=m, ) and M(=m;), respectively. The screening
factors are defined just as before, but with u,b re-

placed by u~b

e(k, ro) = e, (k, co)e;(k, co)

where use has been made of Eq. (29).
This result is of the same general form as Eq.

(23) and Eq. (24), but with the ion structure factor
and electron screening function generalized to
strong coupling. However, the exponential, which

is responsible for the convergence of the integral in

Eq. (24), is absent from Eq. (35). Nevertheless, Eq.
(35) will still be finite because u„. decreases more

rapidly than U„at large k." For weak coupling,
however, u„- will cut off the integration more slow-

ly than the exponential, with the result that Eq.
(35) should give significantly larger answers than

Eq. (24) in the weak-coupling limit. The exponen-

tial does not appear in Eq. (35) because the classi-

cal form of the response functions leads to a delta
function in Eq. (32) which conserves energy only to
lowest order in the momentum transfer, k.

This comparison of the quantum weak-coupling

and classical results suggests using a "hybrid" ap-

proach in which the structure factors in Eq. (25)
are evaluated by using Eqs. (5)—(9), but with the
potentials appearing in the mean-field operator re-

placed with the classical generalized potentials in

Eq. (26). Such an approach should provide a
strong-coupling extension of Eq. (23) for nondegen-

erate plasmas that includes the quantum cutoff.
Following the procedure outlined above yields,
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v= f f f 3
k u ei(k)v (e(k) ie(k, k P/M)

~
fe(p)f;(P)5 +, (36)

27Tme

which is identical to Eq. (32) except that the delta function conserves energy, and the response functions are
given by their quantum forms in Eq. (11). Performing the ion momentum integrations now leads to

mn p m pk&ps~ 3 u„(k)v(k)
v dk e 'k

3Z 0 ee(k, O)e(k, O)

me&e

~me f dk e 'k ~S;;(k),
0

i
e, (k, O)

i

' (37)

(38)

where the second line uses the classical (low-k) limit of X,(k, O) in e and e, . This formula combines the
most important features of Eqs. (24) and (35). The exponential provides the correct quantum cutoff, while

the screening factors incorporate the short-range (local-field) corrections to the mean fields, which are im-

portant in strongly coupled plasmas. Nevertheless, Eq. (37) still contains only weak, Born-like collisions,
even though the particle correlations have modified the Born cross section in Eqs. (3) and (23) through the
appearance of the product u„(k)U„(k).

The transport properties of nondegenerate electron-ion plasmas have also been studied recently using
theoretical' and numerical simulation' techniques by Hansen and his co-workers. In order to make contact
with their results we note that Eq. (37) may also be written as

3
—pk'/8m ue)( )Ueg&v= f dk k'e ' [S„(k)S;;(k)—S„.(k)S;, (k)] .

e, (k, O)

The corresponding result from Ref. 15 is
' 3/2

mene p
~me f dk k w„.(k)[S„(k)S;;(k)—S„(k)S;,(k)], (39)

IV. NUMERICAL RESULTS

In this section, we will use Eq. (37) to estimate
the electrical conductivity of a fully ionized hydro-

gen plasma. The collision frequency is related to
the conductivity through

lie~=a(r)
meV

(40)

where w„(k) is a pseudopotential chosen to simu-

late quantum effects at short range and keep Eq.
(39) finite. This result was obtained by retaining
the exact initial values for S,b(k), but assuming the
time dependence corresponding to the classical pro-
pagation of free particles. By comparison, the re-
sult in Eq. (38) assumes the time dependence
corresponding to the quantum propagation of par-
ticles through a generalized mean field. The addi-
tional physics in Eq. (38) shows up as the exponen-
tial cutoff in the integration and the additional
electron screening factor. Because no direct corre-
lation function appears in Eq. (39), it fails to in-
clude the exact short-time behavior of the memory
operator.

where I =Pe (4nn;/3)'i is the plasma-coupling

parameter. The factor A,(l ) is a correction for the
fact that using Eq. (37) for v is equivalent to a
single-Sonine polynomial approximation. For very
small I, the two-polynomial results for hydrogen
are produced by taking A, =1.93. However, for
larger values of l this factor is greatly reduced, so
that using the value 1.93 in Eq. (40) will only place
an upper bound on the conductivity.

If we nonetheless select A, to be 1.93, Eqs. (40)
and (37) may be combined to give

1.93(377/2) '

4 r3/2A

1

3I A
(41)

where co~ is the electron plasma frequency, and A
is a generalization of the Coulomb logarithm de-
fined by

A= f dk 'k, S (k) .
u„-(k)

Me
f
e, (k, O)

(

(42)
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In the Debye-Hiickel limit, A may be evaluated

analytically, with the result

A ~ A+H =e '/ag& (1/a) ——,e1/2ag& (1/2tr )

—,(lna —y —ln2) = —,(lna —1.27),

(43)

~ —,[Inu —1 —In(4/m. ) ]

= —,(lna —1.24) . (44)

It seems remarkable that the numerical values of
the terms following the logarithms in Eqs. (43) and

(44) are so nearly equal.
We have also evaluated the integral in Eq. (42)

numerically using direct correlation functions and
structure factors found from the solution to the
HNC equation. ' The collapse of electron-ion

pairs is prevented through the use of a pseudopo-
tential, which at these temperatures and densities is
the same as that employed in Ref. 15. The results
of these calculations are presented in column A in

Tables I and II. Column B contains the results ob-

tained in the same manner, but with ueI. replaced

by v„ in Eq. (42). The conductivities found from
the Debye-Huckel result, Eq. (43), are presented in

column C. In columns D and E, we present, for

where a = (PkD/Sm, ) ', E~ (x) is the exponential
integral, and y is Eulers constant. ' The limiting
expression in the second line of Eq. (43)
corresponds precisely to that obtained by Williams
and DeWitt for their dynamic Born term. For
comparison, we note that the corresponding result
from Eq. (39) is'

nHs Ina+ In(m /4) —1+(4/ma)

2[1 (4/na—)].

the purposes of comparison, the numerical results

of Ref. 15. Column D shows the conductivity
from numerical integration of Eq. (39), with the
corresponding Debye-Huckel results in column E.
Finally, the columns labeled MD are the molecular

dynamics results of Hansen and McDonald. '

Columns A, B, and C all show the same qualita-

tive behavior. Initially, the conductivity decreases

with increasing I, reaches a minimum somewhere

near I = 1, and then starts to rise again for large
I . Columns D and E show the same decreasing
behavior, but appear to reach their minimum value

at larger I .
The difference between columns A and B in

Tables I and II is due to the different behavior of
u„and v„at large k. As mentioned before, u„.
falls off with k rapidly enough that it can cause
the integral in Eq. (42) to converge even without

the exponential. However, for low I the exponen-

tial appears to cutoff the integration before the u„.
can deviate significantly from k behavior. For
higher I the u„seems to gain more control over

the integral, and presumably at large enough I
would effectively cut the integration off before the

exponential could have a serious effect. It is possi-
ble that this "competition" is related to the appear-
ance of "high-temperature" and "low-temperature"
cutoffs in the early theories of electrical conduc-

tivity.

V. DISCUSSION

The primary objective of this paper has been to
use Eq. (1) to explore the connection between the

Ziman formula and the linearized quantum
Lenard-Balescu equation. In Sec. II we explicitly
demonstrate that the Lenard-Balescu collision fre-

TABLE I. Comparisons of o.* for various values of I" at r, = 0.4 (r, —:a,/ao, where a, =
(4', /3) ' and ao is the Bohr radius). Column A gives the results for Eq. (41) using the nu-

merical evaluation of Eq. (42); column B uses Eq. (42) with u„replaced by U„.; column C
gives the corresponding Debye-Huckel result, Eq. (43). Columns D, E, and MD are the re-

sults from Refs. 15 and 16.

B D MD

0.05
0.1

0.2
0.5
1.0
2.0

16.2
8.61
5.33
4.13
5.29

12.3

14.3
7.22
4.07
2.51
2.43
3.86

14.6
7.69
4.52
3.55
4.88

11.6

14.18
7.13
3.99
2.30
1.87

14.27
7.28
4.22
2.71
2.48

3.6
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TABLE II. Same as Table I, but with r, = 1.0.

B D E MD

0.05
0.1

0.2
0.5
1.0
2.0

12.7
6.16
3.36
2.07

2.13
3.72

11.8
5.61
2.91
1.49

1.14
1.25

11.9
5.77
3.12
1.87

1.88
3.11

11.72
5.57
2.87
1.43

0.99
0.82

11.78
5.65
2.99
1.63

1.29
1.27

2.15

quency is equivalent to the Ziman result with the
weak-coupling structure factor for screened ions.
This result is not equivalent to the weak-coupling
limit of the OCP result in Eq. (3).

In the third section, we use the classical form of
Eq. (I) to suggest a way to extend the result of Sec.
II to strongly coupled nondegenerate plasmas.
This extension is obtained by solving for the struc-
ture factors in Eq. (25} from the linearized, quan-
tum Vlasov equation for two components with the
potentials, veb(k), in Eq. (9) replaced by the gen-
eralized potentials, u,b(k), defined in Eq. (26). In
this approach, the local-field corrections to the
mean fields governing the motions of the electrons
and ions are related to the equilibrium correlation
functions in the same way as in classical kinetic
theory. "' ' However, the quantum-diffraction
effects upon the time development are included,
just as in the quantum weak-coupling case through
the commutator appearing in Eq. (9). This last
feature retains the energy-conserving delta function
in Eq. (36} and provides the correct quantum cut-
off for the k integration. As a result, Eq. (37)
reproduces the correct weak-coupling answer
without the introduction of a pseudopotential. Un-
fortunately, such a computational strategem is
necessary for more strongly coupled plasmas since
the most common techniques for finding equilibri-
um correlation functions, such as the solution of
the HNC equation employed here, are based upon
classical mechanics and cannot handle the attrac-

tive Coulomb potential. If a completely quantum-

mechanical method for calculating these structure
factors ever becomes practical, it could be em-

ployed in Eq. (37).
The approach described here differs from that

adopted by Hansen and his co-workers. ' ' They
model the electron-ion plasma as a classical system
of pseudoparticles which interact through the
Coulomb potential at large distances, but the po-
tential is modified at distances less than the ther-
mal de Broglie wavelength in a way that simulates
quantum diffraction effects. The fact that
columns B and D in Tables I and II are in essen-
tial agreement indicates that the behavior of the
classical pseudoparticles imitates that of the true,
quantum system fairly well, at least in the regions
of temperature and density examined so far. How-
ever, a major drawback of both theories is that,
while they allow for strong correlations, they fail
to include the effects of close, strong collisions
such as those described in the weak-coupling
theory of Williams and DeWitt. Such effects can
be very important ' and should be investigated
further.
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