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This paper deals with the strongly nonlinear regime of the atom and field interaction

which arises for both high cw input intensities and large absorption. The intensity of the

light inside the medium is then highly nonlinear with respect to the incident one, the ord-

er of magnitude of the nonlinearity being approximately al, for a cell of length l and an

absorption length a '. The transverse effects related to such a regime are analytically

treated. They are shown to induce self-focusing, blooming, and also spatial ringing.

These features strongly depend on the distance of the screen from the cell, on the detun-

ing between the incident wavelength and that of the atomic transition, and on the input

intensity. For self-focusing, analytical expressions of the focal point, of the waist, and of
the maximum intensity are given. This model for transverse effects in strong nonlinear

propagation of pulses would contribute to explain recent anomalous observations.

I. INTRODUCTION

Recent experiments of propagation of pulses

generated by dye lasers through dense absorbing

gaseous media have displayed many spatial effects
which are not yet fully explained. ' The interac-
tion of the light with the material modifies so
strongly the spatial shape of the incident beam that
the patterns of a visible transmitted beam display
blooming spots, surrounding rings, large and/or
small random speckles .... These effects are seen

to strongly depend on the intensity of the driving

pulse, on the detuning between the incident pulsa-

tion co (co=2nc/A, ) and the atomic one co„
5=~, —co, and also on the atomic density.

These transverse deshapings of the pulse must be
related to self-focusing or defocusing effects be-
cause of the very high intensities of the incident
beam, of magnitude of order a few mW/cm .

The concept of self-focusing " implies simul-

taneously the narrowing of the section of the opti-
cal beam and the enhancement of the on-axis in-

tensity. The narrowing of the beam section is a
consequence of a relevant nonlinear index of re-

fraction, that requires in the case of a cw light, or
a steady-state model, the off-resonance condition

(condition I}. The enhancement of the on-axis in-

tensity, which is understandable for amplifying
material requires two conditions for absorbing
media: (a) a dilute material in order that the ab-

sorption may be neglected (condition II) and (b) a
converging input pulse (condition III}. The stan-

dard theory for the steady-state self-focusing as-

sumes that the three above conditions are met.
Furthermore it assumes a cubic medium, or in oth-

er words, it takes only the lowest nonlinearity of
the index of refraction into account. This later as-

sumption implies that the input intensity I(0) nor-

malized to the saturation intensity (I+5 Ti )IP is
smaller than unity (The parameter P is equal to

~
is

~
Ti T2/fi, where is is the dipole moment for

an atom, and T& 2 are well-known relaxaton times
of the Bloch equations; the intensity is defined as
the squared modulus of the electric field. ) This con-
dition requires together with the condition (II) for
transparency the inequalities

al PI(0)
1+5'T,' 1+5'T,'2 2 2 2

to be fulfilled (a ' is the on-resonance absorption
length of the Beer's law and l is the cell length).
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The usual treatment of self-defocusing in the
steady-state model or the adiabatic following
model' also assumes the inequalities (1.1) to be sa-
tisfied.

Self-focusing in absorbing media was predicted
and analyzed by Wright and co-workers' ' in the
case of propagation of very short pulses, (i.e., in
transient regime), within the conditions for self-
induced transparency' (SIT). This effect which
proved that self-focusing, may be realized even for
large absorption (al » 1), and on resonance was
experimentally verified by Gibbs snd co-workers. '

The off-resonance condition (I) can be satisfied
without detuning since the time variation of the
field phase plays the role of an instantaneous de-
tuning. The enhancement of the on-axis intensity
which is found in spite of large aI results from a
competition between the absorption snd the trans-
verse effects. These latter proceed from the intro-
duction of the transverse Laplscian
Vz. ——B /Bx +B /By in the reduced Maxwell
equation that becomes relevant only if the incident
wave is not a plane wave.

The transverse effects mere generally neglected
in transient propagation effects, either self-induced
transparency or superfluoresccnce. The work of
Mattar' displayed important transverse effects in
SIT which were recognized in the aforesaid experi-
ment. ' More recently, Mattar' has shown the pri-
mary role of the transverse effects, expecially in
order to understand the absence of temporal ring-
ings in some cases of superfluorescence, as it mas
portended by two of us. '

Strong transverse effects would be also expected
in the case of an intense cw light propagating
through a dense absorbing medium. Such effects
would explain some of the anomalous features re-
cently reported.

The object of this paper is to deal with the
strong nonlinear regime, which appears when the
inequalities

al PI(0)
} $2+~ $2 2 (1.2)

are fulfiHed, and to propose an analytical treatment
of self-focusing or defocusing for this case [Eq.
(1.2)] where the standard theory~ ' breaks down.
Let us summarize the condition of our treatment
as follows:

(b) a monochromatic incident light of Gaussian
cross section and plane phase front;

(c) the slowly varying envelope and the paraxial

ray approximations leading both to the reduced
Maxwell equation;

(d) strongly nonlinear regime [cf. Eq. (1.2)].

With the above conditions let us divide the cell in
two parts:

(1) In the first part (0&z &z~L ) the diffraction
is negligible (cf. Appendix A where sufficient con-
dition is given), therefore the intensity obeys the
implicit equation firstly given by Icsevgi and Lamb
for an amplifying medium. In the vicinity of the
abscissa z&L defined in Sec. II in case of inequality
(1.2), the intensity I(z, r) is strongly nonlinear with
respect to I(o,r). It follows a narrowing of the
cross section only caused by the nonlinearities of
the intensity.

(2) In the second part (z~L, &z) we treat the dif-
fraction effects in the linear Maxwell equation ap-
proximation because I (z,0)« 1 « az in this
domain (Sec. III}. Let us point out that as soon as
the electric field e(z) is linear with respect to
e(zNL, ), it is strongly nonlinear with respect to eo,
consequently wc call it the "strong nonlinear re-
gime. " The general solution for the field ampli-
tude is shown to bc an infinite expansion in Kogel-
nik' functions f„(r,z) with waist wo/V'2n +1,
where w&& is the waist of the input beam (s =irw ii }.
For negative detuning self focusing is predicted, the
focus, the waist, and an estimation of thc on-axis
maximum intensity are given. After the focal
point, thc beam exhibits one or several spatial ring-
ings before it definitely blooms. For positive or
zero detuning the beam defocuses from the origin
zz~. Also ringings appear on a large range of pro-
pagation length, for 5~ 0. Thc patterns of these
oscillations are studied as a function of PI(0), 5,
snd z. The intensity patterns reveal also a small
ring surrounding the central spot for vanishing de-
tuning.

It would be desirable that a systematical experi-
mental study of these effects may be attempted in
order to check the present theoretical work.

I. MODEL

A. Basic equations

(a) An absorbing medium containing homogene-
ously broadened two-level atoms nearly resonant
with

VA'thin the semiclassical approach of the interac-
tion atoms and field, the transverse electric field
E(x,y,s) obeys the Maxwell equation with sources,
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I 8 E 4ir 8 P(x,y, z)
EE(x,y,z) ——

Bt2 ~ Bt~
(2.1) a~;5+ I ~; IPI eW

Bt T2

(2.5)
The polarization P(x,y,z) is defined for an homo-
geneous medium as

P(xy, z}=Np I dr +5(r rj—}RJ +H.c. , (2.2)
J

—+ . V~ e(xyz)B c
Bz 2l co

=2iir N~ p,
~

—H(x,y, z), (2.3)
c

where the second derivative B /Bz has been

neglected. The notation Vz means

—B' B'

B By
(2.4)

and H(x,y,z) represents the complex amplitude of
the positive frequency part of the polarization.

Neglecting the derivative term B e/Bz in (2.1)

requires the paraxial approximation to be valid.
This approximation was discussed by Lax and co-
workers ' in relation with the role of the transverse
effects and the Coulomb gauge framework. It is
found to be valid if the ratio between the
wavelength A, and the beam waist wo is much
smaller than unity. In the present paper, the con-
dition for neglecting 9 e/9z will be assumed to be
met.

The first term in the left-hand side of Eq. (2.3)
describes the variation of the field amplitude with
penetration in the medium. The left-hand side of
Eq. (2.3) reduces to it in the plane-wave approxi-
mation, e(x,y,z) =e(z). The second term will give
rise to the diffraction of the light. It is responsible
for self-focusing and defocusing.

The scalar H(x,y,z) obeys the Bloch equations
deduced from the Schrodinger equation

where R~ is the lowering operator for atom j from
its upper level ~+)J to its lower level

~

—}J,and

N is the atomic density. The vector p is the atom-

ic dipole moment, which is parallel to the electric
field in the case of an atomic gas.

With an input electric field,

E(x,y,z)= —,xe(x,y,z)e '"" '~'+c.c. ,

propagating in the forward direction Oz, the com-

plex amplitude e(x,y,z) is found to obey a reduced
Maxwell equation,

BW
Bt

I i imp[
Ti ' 2A

(W+ —) — (eH~ —c.c.),

where W(x,y,z) measures the population difference
between the upper and the lower levels for an atom
located at (x,y,z). The detuning 5 is the difference
between the atomic pulsation co, and co

(2.6)

—9'(x,y, z) =0,B

Bt

—8'(x,y,z) =0,B

Bt

(2.8)

leads to a closed equation for the field amplitude

1 2 a (1—i5T2)—+ V', ~(x,y,z)= ——
Bz 2ik 2

e(x,y,z)

I+ 2 ~

e(x,y, z) ~2
1+5'T,

(2.9)

The parameter P was defined in Sec. I. The ab-

sorption length a ' is defined by

4@co iiLt i
N . T2

T2—
cubi rg I

(2.10)

The relaxation times T& and T2 are the radiative
lifetime and the homogeneous lifetime, respective-

ly,

1 4' 2
p

(2.7)

1 1 1

T2 T2 2T&

The relaxation time T2 results from collisions

which conserve the atomic energy.
We will consider incident pulses with coherence

times much larger than Ti and T2 in order to
neglect transient effects. Then, the steady-state

conditions for the atoms
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where ~z is the superradiant time introduced in the
theory of superradiance.

B. Plane-wave approximation

As a first step, Eq. {2.9}can be solved within the
plane-wave approximation, e(x,y,z)—:e(z). Then

the solution e(z} of

a 1'= 21+'8T'
1+5'T,'

obeys the well-known equation

(2.11)

e(z)=e(0)exp — . —,[az —Pie(0)
i +Pie(z) i 1

1

1+i5T2 ' (2.12)

Then the normalized intensity

obeys the implicit equation

~( ) ~ —cu+ J'p —p(s)

(2.13)

{2.14}

I

g (z) as a function of g o for two penetrations
az = 10 and az =30, respectively (full lines).

For g o much smaller or much larger than az,
g (z) varies practically linearly with g o, either

(2.15a)

for the Beer's law regime, or

cJ&
10 Hz=30

(bi

-1
10

ocz =10

with the notations g o
=—/(0), and

a =ix(1+52Tz )

Figures 1(a} and 1(b} exhibit the behavior of

g (z) =/o —az, g o»& az (2.15b)

for a quasitransparent medium. Between these two
limits the Figs. 1 exhibit a nonlinear variation of
g (z} with respect to g o. For example, for pene-
tration az =30, g (z) decreases from 1 to 2 X 10
as g o decreases from 28 to 10. This very strong
nonlinear regime for g (z} can be well described by
the law

g(2)
10-

g(2) (2.16)

-5
10

1010

-1
10

valid for g (z) & 1. The expression (2.16) is plotted
with dotted lines in Figs. 1(a) and 1(b). More pre-
cisely, the strong nonlinear law (2.16}can be shown

to be valid for any

/'o &az —(1naz+ 1}, (2.17)

10

—105 —103

-5
10 —10

—1

10 100
-10

0.1 1 10 100 ~ 0.1 1Cgp)
FIG. l. (g ) as given by Eq. {2.14) as a function of

(g p). The full line corresponds to an input coherent
field. The dotted line exhibits the departure of the ap-
proximated lsw [Eq. (2.16}]from the exact one [Eq.
(2.14)]. The broken line corresponds to an input chaotic
field. The scale of the full line g'i' [Eq. {4.3)] as a func-
tion of (g 0) is given on the right side of the vertical
axis. In (a) az = 10 and (b) az =30.

(2.18)

when using Eq. (2.14) together with g (z~L, ) =e
Before we conclude this paragraph, let us study

the order of the nonlinearity of t with respect to
firstly we prove that the slope of g (g o) in

Eq. (2.16) is an increasing function of go and
—az. We have

lng =luau o—az+g o ,' (2.19)

for which / {z)& 1/e « az —g o in the case
az) 1. We will assume that the nonlinear regime
begins at penetration zivL, for which /(z} is equal
to e . Then, the origin for nonlinearities is relat-

ed to /o and a by

z~L, ——a '(+o+1+lnÃo}
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therefore the slope of the curve lng as a function
of lngp is

d (lng )
1

((ngp)

d (lng p)
(2.20a)

d(lng ) =az —lnaz .
d (lng p)

(2.20b}

For (g p),„,g (g p) can be written as

which grows monotonically in the domain defined
by Eq. (2.17). The maximum of the slope
corresponds to (gp) =az —(lnaz+1); it is

are fulfilled.
As z is much smaller than a 'g p, the medium

is quasitransparent; no modification of the input
beam is expected. As z increases, weak nonlineari-
ties appear with still appreciable values of g (z)
larger than unity. The strong nonlinearities, that
we are dealing with, will next appear for z-zNz.
In Sec. III, when we will treat the role of the dif-
fraction effects on the strong nonlinear regime
(valid for z &z~t },we will neglect them in the re-
gime of weak nonlinearities (z &z~L ). This ap-
proximation will be discussed in the Appendix.

g (z) ~ (g p)",

where

(2.21)
C. Introduction of a Gaussian input profile

n =az —lnaz, (2.22)

al»gp»1 (2.23)

gives the order of nonlinearity of the intensity.
In conclusion the behavior of g (z) as z increases

from z =0 can be described as follows when the
inequalities

Let us assume that the transverse profile of the
input beam is Gaussian

ep(r) =@@ (2.24)

As long as the diffraction term is neglected in the
Maxwell equation, the solutions for e(z, r) and
I(z, r) are

e(z, r }=op(r)exp — . [az PIp(r) +PI—(z, r}]
1

2(1+i5T2} (2.25)

I(z,r) =Ip(r)exp
2 2 [az PIp(r)+PI(z—,r)]

1

(1+5'7'2)

respectively, and the nonlinear solution for the intensity, which concerns us, becomes

1I (z, r}=Ip(r)exp — [az —PIp(r)]
1+5 T

(2.26)

(2.27)

valid for any z &zN~. The solutions (2.25) and
(2.26) mean that the electric field amplitude on a
cylindrical surface of radius r obeys the same pro-
pagation law as for a plane-wave input pulse of in-

—2p /wo2 2

tensity Ipe
The law (2.27) exhibits the deformation of the

input Gaussian shape due to strong nonlinearities
when the diffraction is neglected. The half-width
w of the profile (2.27) defined with the help of the
relation

w2 1 w2

2
———ln 1+ 1—

Wp gp Wp

(2.29)

w~wp
1 52T2 11/2

2PIp
(2.30)

when using Eqs. (2.27), (2.28), and definition (2.13).
This expression becomes

I(z,w) =—I(z,0),1

e

is given by

(2.28) in the limit of interest, PIp » 1 + 5 Tz. This
narrowing of the beam results from the nonlinear
absorption regime, the smaller the input intensity
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JT(z,r)=l [e(z,r)Vre*(z, r) —C. C.], (2.31a)

the more absorbed the light.
The diffraction term of the Maxwell equation

leads to the coupling between the annular rings. '

The transverse effects can be predicted in an

elegant manner with the help of the transverse
component of the energy current flow. ' ' It is
defined by the relation

negative, it indicates a focusing of the beam while
if JT is positive, spreading of the beam is expected.
Transient self-focusing and self-defocusing have
yet been related to the variations of the transverse
energy current flow by Mattar et al., especially for
superfluoresence. '

At the origin z)vL, , the calculation of Jr(z&L, r)
leads to

or equivalently

2r 131p
Jr(zeal. , r)=,5T2, 2 I(Z~L, r),

wo 1+5 Tp
(2.32)

JT(z, r) =2
~
e(z, r)

~

~ BS(z,r)
Br

(2.31b)

with e=
~

e
~

e' . Now it is known that aS/ar is
directly proportional to the variation Br z /Bz of
the transverse component r z of a ray normal to
the surface of constant phase. ' Then if JT is

when using the definition (2.31) together with Eq.
(2.27). Then if the transverse effects are taken into
account froin zNI, the sign of Jr(z~l, r) predicts
either narrowing (with eventually enhancement of
the on-axis intensity) for 5 & 0 or spreading for
5& 0, in agreement with the well-known results of
the standard self-focusing theory. "

D. When are the transverse effects important in the strong nonlinear regime?

A powerful way to get an insight into the diffraction effects is to apply the Huyghens's principle inside

the cell. The amplitude of the positive frequency part of field scattered by the atoms at location x is pro-
portional to

4. Nk 2
~ ~ f d 2, exp[ik (z z') ik—

(
x ——x'

( ]
k ix —x'I

where 9'(x) is the amplitude of the field radiated by a microscopic source located at x. The diffraction
kernel e '

I
" "

I /k
~

x —x'
~

can be well approximated by the integral
1

du J [k(1—g2)1/2X(r r i)]eiku ls —s'
I

~

(2.33)

(2.34)

in the paraxial approximation (the quantity X(r, r') gives the length of the projection of the vector x —x' on
a plane perpendicular to the Oz axis). Then if the cylindrical coordinates (r cos(p, r sin(p, z) are used and if
the integration over (p is performed, Eq. (2.33) becomes

I oo

e„„,(x)= 4inN
~

((7
~

k —f dz' dr'r'%(z', r')e'""
NL.

1

dQ e iku lz —z'I J [kr(1 (z2)1/2]J [kryo(1 &2)l/2]
0

Its part which propagates in the forward direction is

e',«(x)= 4imN
~

((7~ k—i f dz' f r'dr'9'(z'r')
1

d& eik(1 —u)(z —z')J [kr(1 +2)1/2]J [kryo(1 &2)1/2]
0

(2.35)

The expression (2.35) can be calculated by intro-
ducing in its right-hand member the solution
H(z', r') of the reduced Maxwell equation in which
the diffraction has been neglected,

I

Then by an obvious argument of self-consistency
these diffraction effects will be really negligible,
only if the right-hand member reduces to the
difference e(z, r) —e(z~l, r).

Let us perform this calculation in the strong
nonlinear regime. A rough approximation of the
field amplitude consists in assuming that its trans-
verse shape is a Gaussian of width wp/Qg p as
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deduced from Eq. (2.29),
—{1/2)m+(1/2)J o

—r /'o/eo
(2.36)

Then the integration over the area in Eq. (2.30) can

be simply performed and will lead to an easier esti-
mation of the role of the diffraction. If we put
Eq. (2.36) into Eq. (2.35), after taking into account
the relation between 9'(z, r) and e(z, r) we get

~(2
norw( ) 4 ~

I P I T k3 +1 / 1+o f d i —(1/2)B(z —s'1
~tg Z~r = —l'F g Eg8 J z e

The change of variables

k wo
(1—u)=U

4

X I du Xo[kr(1 —u )'/ ]
2 0

k wo(1 —u )
Xexp ik(1 —u)(z —z')—

4/0
. (2.37)

(2.38)

with the present condition kwo/+go)p 1 in order to satisfy the paraxial approximation, allows us to write

No I du J [k&(1 u2)l/2]&ik(1 —u)(z —z')&1 ~o/ &o1
0

4 O/1/70 ~ V 2g 00 2v 2[1-2i (s -z )/'O—/h'o2O)
du uJO 2r e

0 No

1

2i(z —z)+ 01—
kNO

, $0
exp —r

No 1—2i (z — )z+ 0

k%0
2

(2.39)

Therefore the integral (2.39) can be considered as
independent of z —z' for any z and z' in the cell,
only if the quantity 2lgo/kwo ls much smaller

than unity. This implies that the Fresnel number
M=mmo/A, l has to be much larger than the nor-
malized intensity g 0,

lu I2 T1T21&ol'
1+52T22

(2.40)

If this latter inequality is satisfied, then Eq. (2.39)
p2@ /~ 2

reduces to 2k 2e ' ' and Eq. (2.34) becomes

e„',«(x ) =e(z, r) e(z~L, ,r), — (2.41)

as expected when the diffraction effects are negligi-
ble.

In conclusion, the diffraction term is found to be
irrelevant only if the Fresnel number for the cell
obeys the inequality (2.40} which generalizes to the
nonlinear propagation case the customary condi-
tion Mgy 1 for vanishing transverse effects. I.et
us point out that the condition (2.40} can be under-
stood like M~g 1, where M is the Fresnel number
associated with the narrowed radius wo+g0.

I

No interactions between the annular rings with
intensity I (z, r) as given by Eq. (2.26) will be ex-

pected for large Fresnel number, and the patterns
of I(i,r) displayed on a screen located far from the
source will be the Fourier transform of a small

spot of radius ~ ID ', i.e., a spread spot of radius
cc IO

1/2

III. ANALYTICAL TREATMENT OP THE
DIFFRACTION FOR STRONG NONLINEAR

REGIME
A. Model

%'e are strictly dealing with the strong nonlinear
variation of the propagating beam with respect to
the input intensity.

Two assumptions are made:
(a) the strong nonlinear regime begins at penetra-

tion z~L, as given by Eq. (2.17),
(b) the diffraction effects were negligible before

the field reaches z&L. This assumption is discussed
in the Appendix. A sufficient condition is given

by ~)) (go) /nl.
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Then we have to solve the reduced Maxwell
equation

1 2 . a 1 —i5T2
E'+ . VTt= —

2 22 1+5'T, 1+p(
(3.1a)

where P=P[1+5 Tz] ', for any z &zNI, with the
initial condition

/Wo2 2

e(z)vI. ~r}=epe

—(1/2)[as —PIoexp( —2r /No) j(1—i5T&)
Xe

(3.1b)

()/2)1)(l i—sT2)I()(r)
Z(zivL, ,r) =&p(r e (3.5}

Therefore our treatment of focusing (defocusing)
effects amounts to the study of the diffraction of
light with the particular shape (3.5) of the cross
section resulting from the nonlinearities of the
medium.

The introduction of the term e ™
~
e(z, r)

~

needs a numerical integration of Eq. (3.4}. Its role
will be discussed elsewhere.

The treatment that we propose is really straight-
forward. The initial condition for e(zNI, r} can be
expanded as an infinite series in powers of Io

In Eq. (3.1b) we recognize the linear refractive in-
dex increment (no —1)

1 a5T2 1 a 5T2
(np 1}=—— =+——

2 k 2 k 1+52T2

(3.2a)

e(ziiI, r)

with

n

1 PIpe —(2n+1)r'/,'
a 1 2(1+52Z'2 }1/2

(3.6)

deduced from the identity

—,a5T2z=(np —1)kz . (3.2b)

p= —arctan 5T2 (3.7}

or, in other words, as an infinite series of Gaussian
functions

Therefore we can define the "diffraction" function —(2n+1)r /m
p„(zIII,r) =e (3.8)

+((/2)az(1 —15T2)
Z(z, r) =e(z, r)e

which obeys the differential equation

1 2 8
VT+ —e(z, r}

2ik Bz

(3.3)

p„(z,r)+ —VT1()„(z,r}=0,
Bz

" 2ik
(3 9)

Because of the above discussion about Eq. (3.4), it
—(2n+1)r /m

follows that e ' is the initial value of the
function P„(z,r}, solution of

=——(1 i5T2)e(z, r—)
a
2

1 —1
1+Pe

~
e(z, r)

~

(3.4)

Before we develop a treatment of focusing ef-
fects in the present case of strong nonlinearities, let
us recall the approach in the low-intensity and
small-absorption limit [Eq. (1.1)]. In this latter
case the focusing (defocusing) is treated from the
input z =0 with e(z =O, r}=ep(r) and the term in
large parentheses in the right-hand member of Eq.
(3.4) is generally approximated by the lowest non-
linear term —p ~

ep(r} ~, that leads to the well-
known cubic refractive index.

Here the nonlinearities appear in a somewhat
different way: Because of the strong absorption
(azNL &~ 1), the nonlinearities in the right-hand
member of Eq. (3.4) are assumed to be negligible
with respect to the strong nonlinearities yet includ-
ed in the initial condition

Wpz iver„(z) rz/w 2+i r 2k—/2R„(z)—
„(z,r) = e t

w„(z)

with

(3.10)

Wp

v'2n+1 '

w„(z )=w p„ 1 +2 2n+1
M(z —z)vt )

2
M(z —z)vt )

R„(z)=(z —zNL ) 1+
2n +1

2
7TW 0~(z —zNL )=

(z ZNL

2n +14„(z)=arctan
NL

(3.11)

for any z &z)vI. . The solution of Eq. (3.9) together
with Eq. (3.8) was first discussed by Kogelnik. '

They are
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Finally the solution for e(z, r) is

—(a/2)z(1 —i 5T& )
e(z, r) =e~

pIoe'p
X 2(1+5'T')' ' —„(z,r),

Ir dr —e(z, r)
a-
Br

~ -*a-+2lk E' —g —c c =0,
az

(3.14)

I r dr
~
e(z, r)

~

—
~
e(zJvt, r)

~

(3 ~ 13)

(3.12)
with Pa(z, r) given by Eq. (3.10). The solution

(3.12) is valid inside the cell, z & l. At the exit of
the material, the field amplitude retains the expan-
sion (3.12), but the exponential factor e has to
be replaced by e " ' . Therefore the expansion
(3.12) gives rise directly to the patterns of the
transmitted intensity on a screen located at any
z) l.

Owing to the series expansion of e(z, r) oscilla-
tions of the transmitted intensity I(z, r) may be ex-
pected.

The standard theory of the self-focusing often
refers to two integrals of motion. ' So let us give
their expressions in the case of a strong nonlinear

regime. The function e(z, r) obeys the two integrals
of motion,

which are easily deduced from the reduced
Maxwell equation. The first constant of motion
which conserves energy gives

f rdr
~

e(z, r)
~

= —,
'

wo (e —1),
0

(3.15)

when using (3 ~ 1b) together with (3.13). Note that
the left-hand side of (3.15) is exactly equal to the
product of the on-axis intensity

I(zpi1, 0)=Ioe (3.16)

by its area trwo/2+o [cf. Eq. (2.30)].
The identity (3.14) is obviously satisfied by any

Kogelnik function (3.11). Unfortunately, due to
the expansion (3.7), the constant of the motion
(3.14) does not lead to any useful information.

B. Results

The intensity I(z, r)l, a —i (m —p)arctaasT&I z, r) =ID ~ m V'pep.m.I
pI

. m+p

2(1+/&T )t~z (3.17)

has been calculated as a function of the propaga-
tion variable z for various normalized input inten-

sity go and for various positive or negative values

of 5T2.

ln2 1+5 T2
rp=wp

2 Ip
(3.18b)

I Selffocusing.

Ip
I(z~I. 0)=Ipexp 2 21+5 T2

and the width of the intensity defined at half-
height of the peak is expected to decrease from its
initial value

(3.18a)

The transverse energy current JT, calculated at
the origin zNL, predicts focusing for a negative de-
tuning (co, &cu). Then the value

The double summation (3.17) has been numeri-
cally performed for values of PIo extending from
40 to 450, and values of

~
5

~
Tq of magnitude of

order a few units. It displays self-focusing of the
intensity with respect to the initial conditions
(3.18). However, the net enhancement of the on-
axis intensity has to be related to the input intensi-

ty Ip and depends strongly on the attenuation fac-
tor exp( —al/1+5 T2).

Our systematical calculations of I(z, r) exhibit
the following features.

The focal point zI measured from z&L is given

by the relation
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or

7Twp Ip
2

(3.19a)
which is fulfilled for

pIo (al —pI&&)/s2T&2

52T2
(3.26)

zf I5I T2

I Ip
(3.19b)

(3.20}

Let us point out that the focal point zf and
i/2r;„, which is the radius associated with the
field amplitude define a local Fresnel number

—22~~ min

Azf

of magnitude of order unity for which the integral
(2.35) is maximum.

The law for the conservation of energy requires

dr rI(z, r) = r oI(zivL, O),
ln2

(3.21}

when using Eq. (3.15) together with definitions
(3.18). If the beam would retain the same shape as
the initial one I(z~l, r} the on-axis intensity of the
focus, I,„,would be given by

where (1+5 Tz )'/ has been approximated by

I
5

I T2, valid for
I
5

I
Ti & 2.

The waist r;„defined at half-height of the peak
intensity obeys approximately the law

ln2 I
&

I
T2

rmin too

Both conditions (3.24) and (3.26) lead to

lilPIo al PIo—

5 T2 5 T2
(3.27)

Ip

5 T2
(3.28)

This result is very interesting since self-focusing
is shown to be expected even for a large-absorption
regime. Moreover, we are able to predict the loca-
tion of the focus given by zf+zivt from the input
in the cell

zf+zm. Io
I
~

I T2=—+M
1 al PIo

(3.29)

the umist of the beam, Q(ln2/2)(
I
5

I TzlPIo), and
we can also give a good estimation of the on-axis
intensity at the focus.

Figure 2 displays the shape of the intensity

I(zf, r) at the focus together with the behavior of
the transverse energy current JT. This latter
reaches its minimum approximately at r =r;„.

which can be satisfied for large Io and
I
5

I
T2.

Note that inequality (3.27) together with the condi-
tion for strong absorption means also

2I,„= 2 I(zivt. ,O) =-I 5
I
T2I(z~L, O) . (3.22)

r min

$ 1(r, z ()/1(0, z ))
O, zf)

(3.23)

In fact the direct calculation of Eq. (3.17) shows
that I,„does not obey the law (3.22). The exact
value of I,„ is approximately twice the expression
(3.22). Nevertheless, the expression (3.22) can be
used to prescribe a condition for the enhancement
of the intensity with respect to the input. The on-
axis intensity at its waist will be enhanced with
respect to Ip, if the inequality

—~l /527222)I

Wp

is met, or by using the lower value (3.22) for I,„,

(3.24)

PI(z~c, O)

5 T
(1, (3.25)

This latter inequality has to be consistent with our
framework condition

FIG. 2. Shape of the intensity at its focus zf for
three different detunings as a function of the normalized
coordinates (r/mp)&~. At each pulse corresponds a
negative transverse energy current JT, normalized to the
maximum intensity: full lines for 5T2 ———3, broken
lines for 5T2 ———6, and dots and dashes for 5T2 ———9.
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1Z =(Z ZNL —)
gap M(z —ZNL )

(3.30)

for PIp ——200 and 5Tq ———6. Figure 3(a) exhibits
the behavior of I(z, r) before and after the focus
(zf =3X10 ). The formation of the spatial ring-
ings which occur after the focus is detailed on Fig.

The coincidence of the three curves for
—5T2 ——3,6,9 illustrates Eqs. (3.19) and (3.20).

Figures 3 show the deformation of the pulse
from z~l to z —+ ao as a function of the normalized
coordinate

3(b) with 0.08 &Z &0.2. After the beam goes by
its focus, it will definitely diverge. This property
is shown on Fig. 3(c) where the normalized inten-

sity I (z,r)/I, „(z) is plotted as a function of
In[1+(r/wp] and for 10 '&z &10. The oscilla-
tions which appear after the focus still exist for
large Z but they are more and more attenuated for
increasing Z.

2. Defoeusing

For positive detuning, the beam defocuses as it
propagates from its origin z&L. When the propa-
gation length (z —zNI ) approaches irwin/A, , then
the intensity patterns exhibit one or several rings.

Figure 4 displays the transverse shapes of I(z, r)
for fixed detuning, 5T2 ——5, and Z=10, as a func-
tion of the input intensity PIp. These figures
demonstrate that the patterns, especially the num-

ber of the oscillations, vary with PIp. The number
of the rings is found to be approximately

The half-width of the blooming, rb, defined as
the position of the maximum of the outside ring
plus its half-width is an increasing function of PIp.
The variation of rb is plotted in Fig. 5 as a func-
tion of PIp extending from 20 to 240 for two pene-
trations, Z =1 and Z =10. Up to now we have
not found an analytical expression to fit the curves.
We can only bound rb as follows.

In the limit Z » 1 the expression (3.12) can be

z +0.20

z~103

FIG. 3. Transverse shape of the intensity as a func-
tion of the normalized penetration Z =zA. /mop for
5T2 = —6 and PIp=200.

FIG. 4. Transverse shape of the intensity at Z =10,
for 5T2 ——+5 and with PIp ——60, 80, 120, and 140.
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100-rb

50-

r,/ Wp

100-

z =10

P IAg

I

100 200 30 10
FIG. 5. Blooming radius rs as a function of pI(), for

t~o penetrations, Z =1 and 10, and for 5T2 ——+5.

approximated by

Pgpe't 1
e(z, r) =pep

2(I+5'T2)'/' n!(2n+1} 1

01
I

eT2

—(r 2/w(2) )[M2/(2n +1)]
Xe FIG. 6. r& as a function of 5T2 for pI() ——60 and

Z =10.

Ipn= —1.
2(1+527 2 }1/2

(3.32)

For large values of this index n, given by Eq.
(3.32), the maxitnum weight can be approximated

by e" when using the Stirling formula for n!.
Therefore the field amplitude becomes negligible

for any r such that

r
exp n-

~p 2n +1

PIp r2 ~2
=exp

2(1+$2T }1/2 (J (2n +1)

It is easy to show that the weight of the exponen-

tial of waist mp&2n +1/M is maximum for 5T2 ——5. The transverse intensity is plotted as a
function of Z with 0.1 &Z & 1 to visualize the for-

mation of a ring. For large Z the ring disappears

and it remains a large spot of light. The variation

of the blooming radius rb is given in the last figure

(Fig. 8). For Z & 1, rs is proportional to Z', i.e.,
and for Z & 1, it varies like Z, i.e., M ' in

agreement with Eq. (3.34).

IV. PERSPECTIVE

If the observation of spatial ringing has been

often mentioned, ' its systematic study has not

i.e., for any

Ip 1

(1+$272 }1/2

(3.33)

(3.34)

I

I

I

I

I

So, we can predict that the blooming radius rb is
smaller than the right-hand member of the in-

equality (3.34), for any penetration Z & 1.
Figure 6 displays the role of the detuning for

13Ip 60 and Z=10. Th——e radius rb is found to
vary like (5T2) ' for the considered range of the
variable.

The deformation of the pulse shape along the
propagation is shown on Fig. 7, with PIp 60 and——

0.2

0.1

FIG. 7. Transverse shape of the intensity as a func-

tion of Z for 5T2 = +5 at)d pIo =60
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for a chaotic field, is after propagation

fb/wo (4.2)

It is obvious that the transmitted field keeps the

statistical properties of the input field only in the

case of a linear cell. Then the normalized mo-

ments g'"'

001
I

0.1 10
(I"(z))
(I(z))" (4.3)

FIG. 8. rb as a function of Z for 5T2 ——+5 and

PIO 40 and ——60.

yet been performed except in the case of the linear

conical shell first reported by Skinner and

Kleiber. 25

However, some experimental results indicate

that the diameter of the ring displayed on a screen

located far from the source (-2 m) decreases with

the detuning and increases with both Io and al.
The variation of the ring diameter with respect

to the atomic concentration does not explicitly ap-

pear in our model. However, it can be understood

as follows: The nonlinear intensity I varies ap-

proximately like (Io} [cf. Eqs. (2.21) and (2.22)]
—czlr /to

and I(r) like Ioe 0. Therefore, if the trans-

verse effects are neglected in the cell as a first ap-

proximation, the Fourier transform of I(r}
displayed on a screen has a width proportional to
a', i.e., N'~ . So we can predict that any ring, if
it exists, will be located inside this width.

The great interest of self-focusing is so known

that it is unnecessary to dwell upon the interest of
cw light self-focusing in strong absorbing cell.

Furthermore, let us point out a particular conse-

quence of the self-focusing effect in a strong non-

linear medium when the input intensity is a ran-

dom function. It appears that a chaotic field pre-

viously self-focused as described in this paper may
be more efficient than a chaotic field for multilevel

excitation for an atom (or a molecule). The statist-

ical properties of the pulse are modified due to the

propagation inside the nonlinear medium. Espe-

cially, the n-order moment of the intensity, which

is initially

are unchanged and equal to n! as for the chaotic

input field. For a nonlinear cell the situation is

quite different. Figures 1 display the variation of
the second-order normalized moment of the inten-

sity g' ' as a function of (g o) for az = 10 and

az =30. In the two limiting cases of linear regime,
either small or large (go), the beam retains its in-

itial statistical properties, and g' ' is of magnitude

of order 2. Between these limits, g' ' reaches a
large maximum for (g o) of magnitude of order

unity. The enormous values of g' ' displayed in

Fig. 1 are a consequence of the strong nonlineari-

ties (I o:Io ).
If the mean transmitted intensity (I(z) ) is

smaller than the input one, any moment (I"(z))
can be shown to be smaller than the incident one.

But, if the beam focuses, then the on-axis nth in-

tensity moment may become larger than the in-

cident one. It depends whether the nonlinearities

will cancel out or not when averaging over Io [see
integration (4.2)]. A positive answer can lead to
interesting effects. Especially, the probability for
an atom to simultaneously absorb n photons will

be much larger with an exciting chaotic field previ-

ously self-focused and self-bunched than with an

unperturbed chaotic field. Propagation effects of
the field statistics would be studied in a further

publication.

ACKN0%'LED GMENTS

We acknowledge F. Mattar for fruitful and live-

ly discussions during his visit in Orsay.

APPENDIX

(4.1)

We derive the sufficient condition for neglecting
the transverse effects on the propagation of a
Gaussian cross section electric field in a resonant
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steady-state medium. The generalization for the
off-resonant case is straightforward.

We recall the equation of propagation for the
electric field amplitude when the diffraction term
is included

a + . VS'(r z)
az 2ik

S'(p, z) = S'( '(p, z)+fS'"(p,z)+
(AS)

where S' '(p, z) obeys Eqs. (2.11) and (2.12).
We introduce the series expansion of Eq. (A. l).

At resonance 8' '(p, z) can be chosen real, then
S'"(p,z) is purely imaginary and obeys the follow-

ing equation:

(A 1)

( )
1 S'(p z}

ar ' P' =
21+PIs(pz)I' '

a S'(r,z)

1+PI S'(r,z)
I

We scale the axial variable by a ' and the trans-
verse one by wp. Then the dimensionless equation
becomes

—s'"(p,r}—i V',S'"(p,r}
az

S (1)(p z)
1+&

I

S'"'(p z}
I

'
Then the condition

Ifg'"(pz)
I
«

I

S' (pz)

(A6)

(A7)

where

r ap=, z= —z,
Wp

(A2)

(A3)

will provide a sufficient condition for the trans-
verse effects to be negligible. The solution of Eq.
(A6) is

s'"(p,z}=is'"(p,r) I dr'
0 s (0)(

V, is the transverse Laplacian in p, and f gives the
magnitude of the diffraction effects on an absorp-
tion length

XV,[S' '(p, z)] . (AS)

2k(xw p
(A4)

The integration of Eq. (AS) can be performed by
using the identity deduced easily from Eq. (Al)

Since f is a very sinall parameter we may intro-
duce the diffraction term in a perturbative way.
This approach was used by Mattar when he dis-
cussed the coherent resonant self-focusing. '

We develop the field amplitude in power of f,

a aI,
ap

[Ic(p,r)]=2p[1+pIO(P, O)] (p,r) .
az

(A9)

Then the final expression of 8'"(p,z) is given by

S'"(p,z)= 2i S' '(p—,z) [1+(1—p )go(p, O)]Z —p [1+/0(P, O)] Z+ln + Op|
(Alo)

with

Z=z+gc(p, z) —gc(P, O) . (Al 1)

I

and for p= 1 [which corresponds approximately to
the maximum of x(p)],

The magnitude of

I
S'"(p,z)

I
~

I

S'"'(p z}
I

x (1)=4Z (A14)

is given by the quantity

x(p)=2Z[ 1+(1—p )go(P, O)

p [1++0(p,O)]

For p=O, we get

x (0)=2Z g p(0, 0)=2Zg 0

(A12)

(A13)

(A15)

Since Z is smaller than z, a sufficient condition is

For large input intensities (g 0» e) we find from
Eqs. (A5}, (A13), and (A14), that the condition for
the transverse effects to be negligible is

SfZ «1 .
—So

e
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~ gp«z 2

kwp
(A16)

If the condition (A16) is realized for any 0 &z & I
the transverse effect will begin at the output of the
cell. Then the solution given in Sec. III describes
the exact solution of the field outside the cell.

The transverse effects will be negligible before

z~L -PIpla if the condition

deduced from (A16) is verified. In Sec. II, we have
shown that the diffraction becomes significant in-

side the cell if the inequality was realized

(A18)

In conclusion, the conditions for negligible diffrac-
tion before z~L and significant one before the end
of the cell can be summarized by the inequalities

(gp)'
al

(A17)
(g p)'

al (A19)
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