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Saturation effects in coherent anti-Stokes Raman scattering
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Saturation effects in coherent anti-Stokes Raman scattering (CARS) spectroscopy are discussed. The discussion is
limited to Raman-resonant CARS (co, —co, =co», where cu„are the frequencies of the pump fields with powers P,„,
and m» is the frequency of the Raman transition ~1) ~~2)) with the possible addition of a one-photon resonance
(co, =re» is the frequency of the electronic transition

~
1)~~ 3)). For these cases we show that the CARS polarization

6'«„, is proportional to the off-diagonal density-matrix element p». In order to determine p», we use Laplace
transforms to solve the Bloch equations for the effective two-level system

~
1) and ~2) when cu, is far from resonance,

or for the three-level system ~1), ~2), and ~3), when ra, cu» The. steady-state expression for 4'«« in the former
case gives +«Rs ~ P,P,'" at low powers and 6 «» ~ P,'P, '" at high powers. In the three-level system, we show that
when the pressure is low and at least one field is weak, the slow time dependence ofp» must be considered. When
one field is strong and the other weak, the CARS spectrum is Stark split. When P, is high, for example,
a'C„„Scf-Pf P,'" fOr CO, CO„and ~C„R,~ (P,P, j'" When CO, CO32+ VI3 Where VI3 iS the One-phOtOn Rabi frequenCy fOr
the ~1) ~~3) transition. The Wilcox-Lamb approximation is used to reduce the three-level Bloch equations to rate
equations containing one- and two-photon terms. When the fields are so weak that both one- and two-photon terms
are small compared to the decay terms, the usual expression for &«„, is reproduced. If only the direct two-photon
processes are important, the effective-two-level-system results are reproduced. When both fields are intense and
nearly resonant, the steady state is rapidly achieved. The results for the case where one field is much stronger than
the other are essentially the same as those for one strong and one weak field. When the fields are of comparable
strength, 6 c„„,~ P,' "P,' for co, u» and cu, co», and the CARS spectrum is split into five components.

I. INTRODUCTION &d, (see Fig. 1) are such that

Many techniques' ' have been devised to enhance
the Raman-resonant contribution to CARS' (co-
herent anti-Stokes Raman scattering) with respect
to the nonresonant background contribution. One
of the most popular methods is resonance enhance-
ment"' in which one or more of the incident fre-
quencies is tuned near to electronic resonances of
the atom or molecule being studied. In most CARS
experiments, saturation is deliberately avoided by
decreasing the intensity of the incident lasers.
Saturation effects' have, however, been reported
but only for complicated systems which do not per-
mit easy interpretation of the results obtained. To
our knowledge, only one detailed analysis' of satur-
ation effects in CARS exists, although there are
several treatments of saturation effects in the re-
lated phenomena of two-photon resonant third-har-
monic generation' and stimulated Raman. ' The
theory of intensity effects in CARS presented here
differs from the treatment of Druet et al. ,

' in that
it is based on the full solution of the appropriate
Bloch equations, rather than a simple extension
of the traditional approach' involving the third-
order nonlinear susceptibility X

" to higher-order
susceptibilities. ' Our approach also allows trans-
ient and relaxation effects to be discussed in an ob-
vious manner.

In order to simplify the discussion, we consider
only Raman-resonant contributions to the CARS
process in which the two pump frequencies ~g and

(d
g

—(dg —C02i .

In addition, we limit our discussion to the case
where either cog is nearly resonant with the molec-
ular-electronic-transition frequency co3i, so that
the Bloch equations for the three-level system
~1), ~2), and ~3) must be solved" (this is a par-
ticular case of doubly resonant CARS' and is analo-
gous to resonance fluorescence), or where &u, is
sufficiently far from resonance with +» so that the
three-level Bloch equations can be reduced to those
of an effective two-level system"'" (singly reso-
nant CARS, ' which is analogous to resonance Raman
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FIG. l. Energy-level scheme for Raman-resonant
CARS (cog

—co~ = co2i) with additional one-photon resonance
(cog c03f) ~ The pump frequencies are (d

g
and cu and the

coherent light is emitted at the anti-Stokes frequency
COu = 2 GO
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scattering). We do not consider the case where
4) 2477 Q) g the coherent anti -Stokes frequency,
is in near resonance with an electronic-transition
frequency (another example of doubly resonant
CARS' ). This case could be treated by a straight-
forward modification of the theory presented here.
Nor do we consider the ease where both w, and

~, are in near resonance with molecular-transition
frequencies (triply resonant CARS') which would
require the solution of the four-level. Bloch equa-
tions. "

In Sec. II A we derive, for the cases we wish to
discuss, a general expression for the GARS po-
larization 6 «~s using projection-operator tech-
niques' and show that it is proportional to the off-
diagonal element of the density matrix p». In Sec.
II B, we write the three-level Bloeh equations"
which must be solved in order to obtain p» and
hence 6(-A&s for the case of doubly resonant CARS
outlined above (Fig. 1). We include phenomenolo-
gical decay terms in the equations which express
both decay to lower levels of the three-level sys-
tem and to a set of states ( ~l)}whose populations
are assumed to remain in thermal equilibrium. In
addition we derive the Bloch equations for the ef-
fective two-level system'"" from which p» and
hence 6'«„s can be obtained for the case of singly
resonant CARS. In Sec. IIC, we briefly discuss
some of the techniques to be used in See. III to
solve the Bloch equations: the Wilcox-Lamb ap-
proximation, "Laplace transforms, and an exten-
sion of the perturbation theory devised by Schenzle
and Bl ewer.

The Bloeh equations for the effective two-level
system are solved in Sec. III A in both the transient
and steady-state regimes. We show that whereas
at low intensities, the steady-state 6'«&s ~P7PQ
where P,„are the powers of the pump fields at
frequencies ~&,„at high values of P» 6'c„„s be-
comes independent of P„and at high values of

-1/2
&cA~s

"P
In the remaining subsections of See. III we solve

the three-level Bloeh equations for various limit-
ing eases. In general we are interested in only
the slowest-decaying and steady-state contributions
to (P«„s. The existence of these slowly decaying
contributions to g~„~s, for example, in low-pres-
sure molecular CARS, has not been pointed out be-
fore. In order to obtain simple analytical expres-
sions for these terms, we shall assume that
(1/T, )„, the rate of decay of population from level
~3) to the reservoir ( ~l)}, is the fastest decay rate
in the system.

In See. III 8, we consider the case where the
~1) —

~
3) transition is saturated by the &o, field,

whereas the ~2) —~3) transition is only weakly
coupled to the ~, field. We find that for time

t» (T,)», &p „„ is independent of P, and propor-
tional to P', ' when &u, = &u» and PcA„, ~ (P,P,)' '
when &,= v„+V„, where V„ is the one-photon
Rabi frequency for the ~1) —~3) transition. The
existence of Stark splitting in the CARS excitation
spectrum is also demonstrated. In addition we
discuss the analogous case where the ~3) —~2)

transition is saturated by the w, field and the
~l) - ~3) is weakly coupled to the up, field. There

expect 5'CA~&~P&P ' wh &s NSI and +«
~P, and independent of P, when +$ (i')3$+ V23.

In See. IIIC, we employ the Wilcox-Lamb ap-
proximation in order to reduce the three-level
Bloeh equations to rate equations which contain
both one-photon terms relating to the ~1) —~3) and

~2) —~3) transitions and two-photon terms relating
to the ~1) —~2) transition. We show that when
the intensity is sufficiently low so that the two-
photon terms ean be neglected, there are two slow-
ly decaying contributions to 6~„. In addition, we
show that the usual low-intensity assumption

p« = p",„where p«' is the population of level ~i) at
thermal equilibrium, is reproduced when the one-
photon terms are small compared to the decay
rates in the equations. On the other hand, when the
intermediate level is sufficiently far from reson-
ance and the intensity sufficiently high so that the
one-photon terms can be dropped in favor of the
two-photon terms, the effective two-level system
steady-state result is reproduced. The slowly de-
caying contribution to p» for this ease is also
evaluated.

In Sec. IIID, we give the steady-state solutions
for the case where both fields saturate and are
near resonance with the appropriate transitions.
In this case, all time-dependent contributions to

p» can be assumed to decay rapidly. We find that
when V„» V„or V„» V„, the results are also
almost identical to those of Sec. IIIB where we con-
sidered the case of one saturated transition and
one weakly excited transition. When, however,
V/3 V23 —V, the CARS spectrum splits into five
Stark split peaks. For example, when ~, is var-
ied, peaks are predicted at ~, = +», +»+ V, and

~,2+ 2V. When ~, = ~3, and ~, = ~„we find that
g c„~~P', "and independent of P, .

We assume throughout that even in the presence
of saturating fields, the CARS intensity is still
proportional to the absolute value squared of the
coefficient of exp( i&a, t) in the ex-pression for
g«„s. , In the absence of saturation this coefficient
is proportional to Xc„„sP,P,' ' where yc„„s is the
usual intensity-independent CARS susceptibility.

II. THE MODEL

A. General expression for CARS polarization

We begin by extracting from the total polariza-
tion vector (expressed in the interaction picture)
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P=gli&(il, Q= Z I»&l, P+Q=l
~=1 ACls 2g3

(2.2)

(2.1)
those terms which derive from the processes shown
in Fig. 1. In order to do this we define the projec-
tion operators ~ and Q" where

3

ThusP refers to those levels which are nearly reso-
nant with some combination of the pump frequencies
(d), and (t), (see Fig. 1) whereas Q refers to those
levels which are far from resonance with the in-
cident frequencies. In a previous publication, '"~

we showed that the formal equations of motion for
the P and Q levels are given by

N =PVzP I4'z(f)& P—V—,Q 7'exp -& QVzQ &t" QV~P Iqtz(t'))&t',
~p~ q's(f)&

dt (2.3)

Qlp(t)) pf=Vdttp(-pf QVQdt (QVP"IV(t )), '

In Eqs. (2.3) and (2.4), the "chronologically ordered exponential"

i t (}(' ' 2 t t
& exp —— QV, Q dt" =1+ -& QV, (t")Q dt" +

I -& QV~(t")QV~(t"')Q tft" dt" +
t t t

Vz = exp(iH, t/K) V exp( iH, tl-h),

where H, is the Hamiltonian of the unperturbed molecular system with eigenstates ln&:

HQ l&&=)I~. I&& t

(2.4)

(2 3)

(2 6)

(2.7}
and V is the matter-field interaction Hamiltonian which we write in the electric-dipole-moment approxima-
tion, assuming for simplicity that both the pump fields are linearly polarized with unit polarization vectorJt

Xy

V= V'+ V' V' ~ '= --'p x(S, ,e '"~
~ d'+c. c.)

with

8,~, = IS,,, lexp[-i(y, , -k... )].
We further assume that I~, ,, I

and Q, ,, are slowly varying functions of time.
It can be shown by integration by parts that if

dh (f) dP I )Itg(t) &

dt dt
«(f) ' ~ Iq, (f)&

(2.8)

(2.9)

(2.10)

where & is the frequency offset of a typical far-from-resonance transition, we can write Eqs. (2.3) and
(2.4) as

dP I 4'g I
(2.11)

Z
t

Qlp, (t)) -V f Vppp=( fVQVQdt Q-V(t )pdt p"lp, (t)). ''
where the effective Hamiltonian 3C(f) is given by

t i t
tt(t) PVQ PV Q v xp —=——QV Qdt )QV Pdd . '

t

(2.12)

(2.13)

We note that the second condition of Eq. (2.10) can be written in the rotating-wave approximation (RWA) as

(2.14)
where & is the frequency offset of a typical near-resonance transition.

This method of calculating the effective Hamiltonian 3C(f) has two distinct advantages over other meth-
ods": first, it is applicable to any number of levels resonant with the incident fields and second, it de-
scribes the evolution of the nonresonant levels as well as the resonant ones. It is currently being used as
the basis of a general theory of nonlinear coherent processes. "
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Using Eqs. (2.1) and (2.2) we can now rewrite the total polarization vector as

8 = N (gr I
(P + Q)p, 1(P + @) Iq'I & ~ (2.16)

In order to extract those terms that correspond to Fig. 1, we employ Eqs. (2.2), (2.6)-(2.9), and (2.12) to
first order in 8, or 8*, . Thus

a""'=*'a""'="E3'I"'la'I»(aaa'f (ala'~ c""('}(ll3' 'c'c

+)CZ(3 l»(a)lac ~l»(—,
' ()lf (a la, ~l»cc"'«'}(( ~la' ).c.c.

&g( ~&+~2z) g ~« ~r+~2i) ~

Z p'13P'32
I
P21 1 I 1 P12 1 i g +C.C. )

k a2 g J (+pg+ g) )
where the density operator p is given by

P = I+,(f)&&~,(f) I

(2.16)

(2.17)

) „=(iIP xI)&. (2.18)

We note that the sum over the states Ik& in Eq. (2.16) includes the state I3&. Now invoking the Raman
resonance condition of Eq. (1.1) and defining

++ = (Og —(Os —(O2, ,

P21 = P21 exp(2+(a)f)

Eq. (2.16) becomes

(2.19)

(2.20)

N~ 1 1
cARs

= „Z P lplap 33~1 + I~ ' +c~ c ~

(~& —~~) (~a&+ ~t))

Equation (2.21) is the fundamental result of this section. In Sec. III, we shall derive expressions for

p,', for several different cases. For example, for the simplest case where level I3) is far from resonance
with the pump fields and the Il&- I2& two-photon transition is unsaturated, we find that in the steady-state
regime

(2.21)

*(ur) ~"""(( — )'( ~ ))~"* ""
where p»~ and p,", are the populations of levels

I
1) and

I
2) at thermal equilibrium and (I/T2)» is the relaxa-

tion rate of the off-diagonal density-matrix element p2, . Substitution of Eq. (2.22) into Eq. (2. 21) gives the
traditional expression for the polarization of Raman-resonant (singly resonant) CARS."'

We note that the approximation introduced on going from Eq. (2.4) to Eq. (2.12) excludes possible modi-
fications of (», in Eq. (2.21) due to the Stark effect. Since the CARS signal is measured as a function of the

input frequencies (excitation spectrum) rather than the scattered frequency, this does not limit the validity

of Eq. (2.21).

iw —„=[v„p]dp (2.23)

and on including phenomenological relaxation terms,

B. Bloch equations

1. Three-level system

In this section, we write the Bloch equations for
the three-level system"

I 1&, I2&, 3) assuming
that (d, is near resonance with the 1) —I3) transi-
tion frequency ~». The von Neumann equation for
the density-matrix operator defined in Eq. (2.17) is
given by

the following Bloch equations are obtained:

Pl 1 13(P31 P13) ( / 1)21(P22 P22)

+ (1/T, )31(p33 - p3332) —(1/Tl)1(p, l - p1312), (2.24)

P22 23(P32 P23) ( /Tl)32(P33 P33)

- (1/T, ).(p,.—p,",), (2.25)

P = -2 -P13) -2 23(P32 P23) —( /Tl)3(P33 -P33) a

(2.26)

p2', = iV,3P23+iV-„p,', —[(I/T2)21 -i&(o]p,', , (2.27)
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'p.', =-zV„(p„-p )+zV.e -[(1/T.) +2~. ]p'.
(2.28)

P» zV»(P» P 2}2 +zV lpz» [(1/T2}»+z4»]p» ~

(2.29)

where the rapidly oscillating terms have been
eliminated by the substitutions

p„=p.', (@,/ I h, I)
" ', p., = p,'.(h./ I &,

I
) "",

2

f'=P'+Q', f"=2 lz&( I, Q'=+ l~'&&'I (236)
i=1 k'

The effective Hamiltonian for the
I 1), I2) two-

level system can then be obtained by replacing
P and Q by P' and Q' in Eq. (2.13) and invoking
Eqs. (2.5)-(2.9), (2.14), and the RWA. We find that

1
ii

p =p" (blab /Ih Ilb I)e' '=p' e

(2.30)

(2.31)
i=1, 2 (2.37)

v„=z „IS,I/m, v„=z „IS,I/2a-,

31 31 l y 32 32

~ Q)32 31 l & 21 '

(2.32)

(2.33}

Following Schenzle and Brewer, "we have as-
sumed that the molecules relax via spontaneous
decay or collisions out of the states 1), I2), and

I3& into lower levels or into a reservoir (labeled f)
which remains in thermal equilibrium. The total
decay rate for levels Il), I2&, and I3) are given
by

(1/T, ), = (1/T, )„,
(1/T, ), = (1/Tl)2, + (1/T, )2, ,

(1/T, )2 = (1/T, )2, + (1/T, )22+ (1/T, )2, ,

(2.34)

2. Effective-hvo-level system

When ~, is sufficiently far from resonance with
any of the molecular-transition frequencies so that
Eq. (2.14}holds, we can redefine the projection
operator P of Eq. (2.2) such that

where (1/T, )zz (Ref. 18) is the rate of transitions
from level Ii) —lj&. By redefining (1/T, ), we can
include the case of excited-state CARS." In writ-
ing Eqs. (2.24)-(2.26), we have assumed levels
Il&, I2), and I3) to be repopulated by the reservoir

at the constant rates (1/T, ),ptzz. The dephasing
rates (1/T2), z for the off-diagonal density-matrix
elements p&& are given by

(1/Tz)z~ = 2 [(1/T,)z+ (1/T, )z]+ (1/Tf)zz, (2.35)

where (1/T2*)zz is the rate of phase-interrupting
collisions.

Since population is not conserved in the three-
level system, a full solution of Eqs. (2.24)-(2.29)
requires the solution of nine equations. Before
proceeding to solve these equations, we give the
effective-two-level Bloch equations for the case
where ~, is far from resonance with 31.

where &k, =~k, -&, and &w is defined in Eq.
(2.33). Then 0 can be reexpressed in the notation
of the previous section as

g Vl2V2;
k

(2.41)

Using Eqs. (2.11), (2.17), (2.31), (2.37), and

(2.38) and including relaxation terms as in the
previous section, we obtain the following Bloch
equations for the effective two-level system:

Pll ~(P21 P12) ( /Tl)2(P22 P22)

—(1/Tl)l (pll —pl,'),

p» —-zQ(p» —p») —(1/T, )2(p 22
—p, 2),

P2"l = fl(pll -P22) —[( /T2)21 -z ~)pz'l,

(2.42)

(2.43)

(2.44)

where rapidly oscillating terms have been elim-
inated using the transformation of Eq. (2.31) and
&g is defined as

6(j = Kill+ (n,E, —nE2)/E. (2.45}

These equations are identical in form to the Bloch
equations for the ordinary two-level system.

3c., = -@f1(bib.*/
I &, I lb. I)e ""', viz = x,*, , (2.38)

where &Ez is the ac Stark shift of the level Ii) and
the two-photon Rabi frequency 0 is given by"

L4', IIb', I ~ 1 1
2 ~1k ~k248 k'1 —r k'1+ ~

(2.39}

We note that in order for 0 to be sufficiently large
so that saturation of the two-level system can take
place for reasonable powers of the pumping fields, "
there must be at least one ll&-(lk'&] transition
that is near resonance with &, while, of course,
still maintaining the condition of Eq. (2.14):

(2.40)
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C. Methods used in solving Bloch equations

1. Wilcox-Lamb approximation

This approximation" involves setting the time
derivatives of the off-diagonal elements of the
density matrix equal to zero. In this way, the n
n-level Bloch equations can be reduced to n n-
level rate equations. A number of comparisons
between the numerical solutions of the Bloch equa-
tions (or Schrodinger equations) and the rate equa-
tions have been made for multiphoton ionization
of atoms" and multiphoton absorption and dis-
sociation of molecules. "'"'" The general rule
which emerges from these studies and which has
recently been demonstated theoretically'~ is that
rate equations are appropriate for those cases
where coherent pumping processes are much slow-
er than incoherent decay processes. Great care
must be exercised in interpreting the results ob-
tained using the Wilcox-Lamb approximation as it
involves the assumption that the off-diagonal ele-
ments of the density matrix p&& relax very rapidly
to their steady-state values p', I&. In fact, the time
dependence of all the elements of the density ma-
trix can be expressed as

p„=g p",,' exp(ZI)+ p'„' (2.46}

and so the assumption p, &
=0 for iW j implies the

reliability of only the slowest-decaying contribu-
tions to p&& obtained from the rate equations.

A number of authors have shown numerically"
(but without presenting justification) that in the
opposite limit (thatis, whencoherentpumpingpro-
cesses are much faster than incoherent relaxation
processes) the rate equations give the time average
of the populations obtained from the Bloch equa-
tions. We point out that in this limit all the states
are so strongly coupled that all the real parts of
Z2 in Eq. (2.46) are approximately equal and all
the density-matrix elements achieve their steady-
state values at the same rate as the fastest-decay-
ing state. A critical discussion of the validity of
the Wilcox-Lamb approximation in this regime has
been given by Stone and Goodman. "'"

2. Laplace transforms

b~+r

P,&(f) =2 . e 'P&&(z)dz.
4 ~+r

(2.48)

3. Perturbation theory

In order to find the poles of the Laplace trans-
formation, one must solve an nth-order equation
in Z.

F(Z) =0. (2.49)

For n& 2, there is often no simple analytical solu-
tion of this equation and so one must resort to nu-
merical solutions or to approximate zeroth-order
solutions which can be improved by first- or sec-
ond-order perturbation theory. We improve on the
distinct zeroth-order solutions Z'&" by using the
first-order solutions" (that is, solutions which are
correct up to first order) obtained from the Taylor
expansion

Z(1) Z(0) F(Z 0 )/F'(Z(0))i (2.50)

and on pairs of identical zeroth-order solutions
~

f j ] by using the second -order solutions derived
from the Taylor expansion

Z( 2& Z( o& F ((Z( 0& )/F «(Z( 0&)
k, 5+& i

+([Z(0) +F (Z( ())/F0«(Z(0))]2

[2F(Z( 0) )/F «(Z( 0)
) + Z( 0) 2]]

& / 2

(2.51)

In Eqs. (2.50) and (2.51), F' and F" are the first
and second derivatives of F with respect to Z. In
all cases where these approximations were made,
the results were compared with the numerical
solution of Eq. (2.49).

We shall solve the Bloch equations of Sec. III
(or the rate equations derived from them) by ap-
plying the Laplace transform

«„(«) J=«„(0~*'&),
0

(2.47)
2«( «)2««(0) =f (I/((0+ 4)

0

assuming that at time t=0, the system is in ther-
mal equilibrium so that p&z(0}=p&026&& Th.e inverse
Laplace transform is given by

III. PARTICULAR SOLUTIONS OF THE BLOCH EQUATIONS

A. Effective two-level system

The solutions of Eqs. (2.42)-(2.44), for pulses which are sufficiently short so that decay can be neglected,
are well known"'"; p,', is given by

sin2[z(4Q + Cko&~)'@f] 2 sin[&(402+ 4(d~)'~ f] cos[2(4A + 4(0 ) ~ f] (3.1)
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For systems prepared under steady-state condi-
tions or after all the transients have decayed, the
solutions of Eqs. (2.42)-(2.44) are obtained by
setting all the time derivatives equal to zero. Thus
we find that

fl(p„-p,",) [~(d'+ (1/Z', )!,1
[4(d + i( 1 / T,)22] [4(() + (1/T2)2, + 20f] '

where

[(1/T, ), + (1/T, ), —(1/T, )„](1/T,)„
(1/T ) (1/T, )

For molecular systems in which ~1) and ~2) are
vibrational-rotational states and collisional pro-
cesses are significant, it is often true" that
(1/T, )» «(1/T, ),—(1/T, ),—(1/T, )», so that f2 2.
For excited-state atoms whose CARS spectra are
of current experimental interest, "( ' (1/T, )„
& (1/T, ),~ (1/T, )22i (1/T, )», so that f= 2(1/T, )»/
(1/T, )„' a typical system might be ~1)=Na(3'P, /2)

and ~2)=Na(3'P, /, ). For atoms with a single
~2) —~1) decay channel, (1/T, ), =0, (1/T, ), =(1/
T,)», and one can show using Eqs. (2.42)-(2.44)
that f= 2(1/T, ),i/(1/T, )„.

We note that when 202f «&(d'+ (1/T, )',„Eq. (3.2)
reduces to the expression obtained by trivially set-
ting p„=pii2, p22

= p2'22, 'and 6(d = 4(d in Eq. (2.44).
When this expression is combined with Eqs. (2.31)
and (2.39), Eq. (2.22) is obtained. We pointed out
in Sec. IIA that the traditional expression for the
polarization of Raman-resonant CARS" can be
derived by substituting Eq. (2.22) into Eq. (2.21).
Substituting the expression for p",, obtained from
Eqs. (3.2), (2.31), and (2.39) into Eq. (2.21), we
see that (Pc«2 is proportional to ~8, ~

' when the in-
tensity of the &, pumping field is low, and inde-
pendent of ~&5,

~

when the intensity of the (d, pumping
field is so high that the ~1)- ~2) two-photon transi-
tion is completely saturated. However, as the
intensity of the &, pumping field is raised, 6 c«s
goes from being proportional to ~$,

~
at low inten-

sities to being inversely proportional to ~$,
~

at
high intensities.

(1/T, )2i )) V22, (1/T, )2i, (1/T, )2i, (1/T, )22, (1/T, )ii,

(1/T, )„,(1/T22) „,(1/T22) 2„(1/T22)2, .

(3.5)

These assumptions allow us to solve Eqs. (2.24),
(2.26), and (2.28) neglecting all terms that relate
to level ~2). Following Schenzle and Brewer' s"
treatment of the two-level system, we solve their
Eq. (2.16) in the limit of Eq. (3.4) using the per-
turbation theory described in Sec. IIC 3. We find
that the time development of ping p33 and p,', is
given by Eq. (2.46) with

Z(o) 0le2

Z(0) ~Z(4V2 + g2 )1/2

v2Vi2(1/Tl)2l(4Vi2+ +21) ~

(3.6)

Thus, as expected for strong coupling, all the con-
tributions to the density-matrix elements decay
according to the fastest-decay rate, namely,
(1/T, )„. Thus for t»(T, )» we can safely assume
that p», p», and p3$ have achieved their steady-
state values

B. Three-level system: V&3&& V23

In this section, we solve the three-level Bloch
equations, Eqs. (2.24)-(2.29), for the case where
the ~1) —3) transition is saturated by the field
at frequency (d, whereas the ~2) —~3) transition is
only weakly coupled to the field at frequency &,."
In addition, we assume for simplicity that the
fastest decay process is the transfer of population
from level ~3) to the reservoir ~l). This assump-
tion is mainly true for molecular CARS at low
pressures. When collisions are important, the
steady state is quickly achieved [see Eq. (3.25) and

the Appendix]. Thus

(3.4)

(3 7)

(3.8)

(3 9)

(3.10)

pi~i(1/T, ),[x,, + (1/T, ),]+p ~x[i2(1 T/, ) —
2 (1/T, )„]

xi2 [(1/Ti), + (1/T, )2 —(1/Ti)2, ] + (1/T, ),(1/T, )2

x,2(1/T, ),p,'i2+ p2222(xi2 [(1/T, )2 —(1/T, )„]+(1/T, ),(1/T, )2)

xi2[(1/T, )i+(1/T, )2 —(1/T, )2,]+ (1/T, ),(1/T, )2

V„(1/T,),(1/T, ),
(1/T, )„*„[(1/T,), ~ (1/T, ),'—(1/T, )„]~ (1/T, ),(1/T, ), ) '

where the pumping rate for the ~1) —
~
3) transition is given by

x,2
= 2V,2(1/T2)22/[n22+ (1/T, ),i].

We now replace p», p», and p2, by their steady-state values in Eqs. (2.25), (2.2V), and (2.29) and solve

for p2y No great simplification is obtained by assuming p,', =0, thereby reducing the number of equations
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to be solved from five to three, and so we proceed with the solution of all five equations which we write in

the form

P=UP+V,

where

f'
p

pie

par

pas

(3.11)

(3.12)

-(1/T, ),

iVas

ivas

ih(-g) —(1/T2)2 ~

i V.,s

iotas —(1/T, )»
-iV, s

-iVas

-iV, s

i&„-(1/T.),

iVas

iV,s

ia»-—(1/T, }„

(3.13)

( /T, )„0&"..-pss) + (1/T, ).p2I

-iVasp, s

zVas ps

iVaspss

-iVaspss

(S.i4)

Applying the Laplace transform of Eq. (2.4V) to Eq. (S.ll) we obtain

(Z —U)P(Z) = V',

where

(3.15)

V'= V/Z+6, ~g.
Thus,

p,', (Z) —=P, (Z) = Q (Z —U),~)V,',

(3.16)

(3.17)

where

(Z —U)~) = aqs/det(Z —U) .

The cofactors a].„are given by

a,s
= -V,SV,S{Z + [(1/T2)2, + (1/T2)s, +i(no) + 4»)]+ V»+ [(1/T2)2, + i&(u] [(1/T2 )»+ i&»]),

&as = &isles

a» = Z'+ Z'[(1/T, )» + 2(1/T, )»+ (1/T, ), +i&~]

+Z {V~s+2V +'(12/3T2)»+ [(1/T,}2+2(1/Tm)»][(1/T2)»+i&(u]+ 2(1/T~)2(1T2)»]

+Z([2V23+ 62»+ (1/T2)32][(1/T2)2, + W(g]+ 2V23(1/T2)sm+ V~3[(1/Ta)» —id~2]

+ (1/T, )2{A~+(1/T, )S2+ A/2+ 2(1/T2)S2[(1/T2)2, +i&(o]))+ V,3V,~

+ 2V2~(1/T2)» [(1/T~)»+ W(o] + (1/T~)2{Vip[(1/T2)32 —in»] + [(1/T2)32+ &S~][(1/T2)»+i&(o]),

(S.iS)

(3.19)
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a43 = i-V, (3Z' +Z'[(1/T 2) 32+(1/T, )„+(1/T), + jh(d + i432]

+Z(V,3+ V23+ (1/T, ),[(1/T, )32+ (1/T, )2, + i n(d+ i 632]

+[(1/T,)„+i&„][(l/T,)„+i&(d]}

+ (1/T, )2{V,'3+ [(1/T,)„+i&32][(1/T, )2, +i &(d] + V,'3 [(1/T2)2, + i&((1]}},

a33 = -iV,3V223[Z+ (1/T2)2, + id, (d],

and det(Z —U) can be written
n

det(Z —U) =g c,Z', n = 5 (3.20)

with

c, =1,
c,= (1/T, ), + 2[(1/T,)„+(1/T, )„],
C3 = 2(V,', + V,'3) + 4((1 + 432+ 2(1/T, )2[(1/T, ),1+(1/T, ),2)

+ [(1/T, )3, + (1/T, ),1+4(1/T2)„(1/T, )3,],
C2 = (1/T1)2[6((1 + 632+ (1/T2)32+ (1/T2)2, + 4(1/T1)21(1/T2)32+ 2V13]

+ 2[&(d (1/T, )32 + &3'2(1/T2)21+ [(1/T,)„+(1/T, )„][(1/T,)„(1/T,)„+V,'3]

+ V,', [2(1/T2)2, + (1/T, )3,]},
C, = 2(1/T, )2[[(1/T2)21 + (1/T, )3,][V13+(1/T, )„(l/T, ),2] + (1/T2)32&((1'+ (1/T2)2, 432}

+ [&32+ (1/T2)32) [&(d + (1/T2)21] + 2 V13[(1/T2)21( 1/T2)32 —&(d&32]+ V13(V13+ 2V23)

+ 2V23[2(1/T2)„(1/T, )32+ (1/T, )',, + &(d ],
C3 = (1/T1)2([432 + (1/T2)32] [&((1 + (1/T2)21] + 2 V,3[(1/T2)21(1/T2)3, —4(d 432 ]+ V13}

+ 2(1/T, )32V23[4(d + (1/T2)21] + 2(1/T2)21V13 V23 .

(3.21)

The denominators of Eq. (3.17}are either of the form Z det(Z —U) or det(Z —U) and thus the poles of the
transformation are given by the solutions of the equations Zdet(Z —U) =0 or det(Z —U} =0. We see from
the inverse Laplace transform of Eq. (2.48) that the terms in p,",(f) that derive from the pole at Z = 0 give
rise to p,",". Within the context of Eqs. (3.4) and (3.5), it can be shown that the other poles are given by

Z, =0, Z,' = -c /c, —(1/T, ) (3.22)

2 ~ 3 4 4 1 2( /T2)32 13 1

(0& ~ ~ I /4 (3.23)
43 4 4 1 2( /T232 13

with the first- and second-order corrections to Z2 3 4 5 being much smaller than the leading terms given in

Eq. (3.23). Since we are only interested in t» (T,)„we need only consider those contributions to p» that
decay according to the rate constant ((/T, )2 or that contribute to p2",". We note that since p. ,Z. = -c, and

~Z2 3„,~

» ~Z,
~

we can use the approximation

(Z, —Z, )(Z, —Z, )(Z4 —Z, )(Z, —Z, )= -c,/Z, = c, (3.24)

(3.25)

where

in evaluating the inverse Laplace transform4
Combining Eqs. (2.48), (3.16)-(3.19), (3.21), (3.22), and (3.24) and considering only leading terms, we

find that for t»(T, )3, :

(~(=t( ) -(~"""*""' '" ' ' ""((-"'""*'()rig'~ ~

VI~V~~
V2 —[n,(d + i(1/T, )2,][432 + i(1/T2)32] '

which on ignoring line-broadening effects reduces to

(3.26}
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VlsV23

[(4)S 2 ((d32 (4) 1 (4)21) 2 (4V13 31) ][(4)S 2 ((d32 (() 1 (d21) 2 (4+13 31) ]

(for (d, —-(d31}.
((4)S (4)32 13)((()S (4)32 13)

(3.2'I }

An analogous Stark splitting effect ' should be obtained in the case where V,s» Vls there we expect
V„V„/I(~, ~„+V„)(~,—~„-V„}]I when e, =~„.

Substituting the expression for p2, (t} obtained from Eqs. (2.31}, (2.32), (3.8), and (3.25) into Eq. (2.21},
we see that for very high intensities of the field at frequency &„Spc„»is independent of

~ h,
~

and propor-
tional to ~8,

~

when (d, = &u„. If, however, u&, = ru„+ V», we find that (p«»cc ~$(~~(g, . Similarly, for the
case V23» V», we expect to obtain 6)c„n3cc

~
8( '

~
&g,

~

' when (4), = (4)» and Spc„»(x:
~
h, and independent of

(
(g,

)
when ~, = ~„q V„.

We note that the steady-state expression for p„given in Eq. (3.25) is generally valid provided that the
~1) —~3) transition is saturated by the ~, field while the ~2) - ~3) transition is only weakly coupled to the
&, field. Its validity does not depend on the relative magnitudes of the decay constants.

t . Three-level system: Wilcox-Lamb approximation

The rate equations obtained from Eqs. (2.24)-(2.29) by setting the time derivatives of the off-diagonal
elements of the density matrix equal to zero can be expressed as in Eq. (3.11) of the previous section with

P =l ~22

~ss

(3.28)

Here

(B —(1/T, ), 4 (1/T,)„-(4+B)+(1/T,)„

l
A C —(1/T, ), -(A + C) + (1/T, )„

—(4 B) —(4 Cl 24 B C —(1/T, ), )
r

(1/T, ),p;,' —((/T, )„PP —(1/T, ),P
(1/T, )2p22. —(1/T1)32p33

(r(/, ) 4l4

SP*,,P", /4|4(4„(1/r, )„—A„((/r, )., l ~ (1/r. ).,(4.,4„~(1/r. )„(1/r.)..I)
[4(4) + (1/T, )'„]~I, [n„+(I/T2)31][&32+ (1/T, )3,]

2V'„V„(2a(d&„(1/T,)„—(1/T, )„[4',, —(1/TB)3,]
[&(d'+ (1/T, )',,] i, [&'„+(1/ T,)',,]'

(3.29)

(3.30)

(3.31}

(3.32}

(3.33)

V23&31 13&32
n.*„+(1/T, }',, n'„+ (1/T, );, (3.35)

Once p„, p», and pss are known one can calculate
p2", using the following expression derived from
Eqs. (2.24}-(2.29}:

with F23, the pumping rate for the ~2) —
~
3) transi-

tion defined analogously to x» [Eq. (3.10)] and

V„(l/T, )„+ V1,(l/T, )32
( / 2)21 ( / 2}21 g2 4 (I /T )2 g2 + (I/T )2 t

(3.34)

[r ~+ t(1/T, )„]
(3.36)

X13, X„«(I/TS}„,(1/T,)„. (3.37}

Of course, the steady-state solutions of the rate
equations will still be valid even when Eq. (3.37)
does not hold.

In order for the Wilcox-Lamb approximation to be
valid, we require (see the discussion in Sec. IIC 1)
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On examining the above rate equations, we first
note that the term A. contains only contributions
from the ~1) - ~3) - ~2) two-photon process where-
as B and C contain contributions from both one-
and two-photon processes. In Sec. IIIC 1 we shall
consider the special case where the intensity is so
low that direct two-photon processes can be dis-
regarded and we can write

8 —-x 3, C —-x o&g. (3.38)

«(1/T, )„, (1/T, )„, (3.41)

respectively.
In Sec. IIIC 2 we shall consider the special case

where the intermediate level is far from resonance
[Eq. (3.40)] and the intensity is sufficiently high so
that two-photon processes must be taken into ac-
count. If in addition, we assume that (1/T, )»
= (I/T, )», we can write

We shall see that the usual assumption p„.= p", , is
recovered when in addition x» and x23 are small
compared to the decay terms in the rate equations.
When the intermediate level is either near reso-
nance such that

(3.39)

or far from resonance such that

I d» I

= ln» I
» In~ I, (1/T, )„,(1/T, ), , (3.40)

Eq. (3.38) can be rewritten as

V,', (I/T, )„V2,( 1/T, )„

transition and 0 is defined by Eq. (2.41) with k' = 3.
We shall show that the effective two-level expres-
sion for p2","is recovered whenever x» and x» can
be dropped from the rate equations, that is when

X12 X13 0 X23 (3.44)

Here the intensity dependence of &~ and (1/T, )»
becomes important and both the one- and two-pho-
ton contributions to A. , B, and C must be taken into
account.

In order to solve the rate equations, we apply
the Laplace transform of Eq. (2.47) to Eq. (3.11)
and obtain Eq. (3.15) with

Equations (3.40) and (3.44) together imply that

V,', (1/f', )„V,', (1/T ) „
n "2+ (I/T" )» n "2+(I/T )2

(3.45)

We note that this condition is consistent with the
Wilcox-Lamb condition of Eq. (3.37).

In order to simplify the evaluation of the slow
time development of p2', (f), we shall assume as in
Sec. III B [Eq. (3.5)] that (T,)„ is the shortest
decay time in the system. When this assumption
is invalid, we expect the steady state to be
achieved rapidly (see the discussion in Sec. III B).

In Sec. IIID, we discuss the steady-state solution
of the rate equations for the case of saturating
near-resonant fields, that is, where

(3.46)

A=x B= -x x C=121 12 13 t 12 23 y

where

(3.42) V' = V /Z +p'~ .

Thus,

(3.47)

(3.43)
20'(I/T, )„

&~'+ (1/T )'

is the pumping rate of the ~1) —~2) two-photon where the cofactors n,-& are given by

(3.48)

(3.49)

n„=Z -Z[2A +B + C —(I/T~)2 —(1/T, ),]+ [2A +B + C —(I/T, )~][C —(I/T, ),] —(A + C)[A + C —(I/T, )32],
u, ~ =ZA -A[2A +B+C —(1/T, )3]+(A+B)[A +C —(1/T, )32],

u~~ = -Z(A +B) + (A +B)[C —(1/T, )2) —A (A+ C),
n„=Z[A + (1/T, )„]—[A +(1/T, )2,][2A +B+C —(I/T, )~) + (A +C)[A+8 —(1/T, )„],
n22 = Z' -Z[2A + 2B +C —(1/T, ), —(1/T, )3]+[B —(1/T, ),] [2A +B+C —(1/T, )3]

—(A +B)[A+B —(I/Tx4, 1,

n = -Z(A+C) —(A+C)[B —(1/T, ),] —(A+B)[A+(1/T ),],
n = -Z[A+B —(I/T~)~~] + [A+B —(I/T~)3, ) [C —(I/T~)2]

—[A+(I/T, ) )[A+C —(1/T, ) ],
n32= -Z [A+ C —(I/T~)~2] + [A+ C —(I/T~)~, ][B —(1/T, ),] —A [A +B —(I/T, )~,],
u» = Z Z[B + C —(1/T, ), —(1-/T, )2]+ [B—(1/T, ),] [C —(1/T, ),] -A [A+ (1/T, )2,],
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and det(Z —U) is expanded as in Eq. (3.20) with n = 3 and

cs =1,
c, = -[2(A+B +C) —(1/T, ), —(1/T, )3 —(1/T, )3],
c, = [2A+B + C -(1/T', ) ][B+C —(1/T, ), —(1/T, ),)+[B —(1/T, ),][C —(1/T, )3] —A[A + (1/T1)3,]

—(A+ C) [A+ C —(1/T1)33] —(A+B)[A+B —(1/T1)31],

c3 = [2A+B + C —(1/T, )3](A [A+ (1/T1)3, ] —[B—(1/T1)1][C —(1/T1)3)]

+ (A+ C)([B—(1/T, ),][A+ C —(1/T, )3,] —A [A+B —(1/T1)31]}
—(A+B)([A+ (1/T', )„][A+ C —(1/T, )33] —[C —(1/T, )3][A+B —(1/T1)31]].

(3.50)

l. Very low intensity: t~o-photon processes negngSle

When the substitutions of Eq. (3.38) are made in
Eq. (3.50) and it is assumed that (1/T1)» is the
largest decay rate, we obtain the following poles
of the Laplace transform:

Z',"= -(1/T, ), ,

b3 [x13 x23 ( /T1}1](P23 P33} &

f, = (1/T, )3[x„+(1/T, )1](P33 —p33) .

(3.54)

It is interesting to note that if

(T,)„«t«[x,3+(1/T, ),] ', [x33+(1/T,), ] ', (3.55)

then

Z,"= -(1/T, )3 —(1/T, )1 —(1/T1)3 —x,3
—x,3,

Z',"= 0, Z", ' = -(1/T, ), —x1, ,

~g] -~ss =~gg -~ss

and if

(3.56}

1
Z'2'Z'2', = 1, 2

2 S

a1= [x» -x»+(1/T, ),](p„-p33)

—(1/T, ),1p33

b, = (1/T, ),(P1', P33} —(1/—T1)31P33|
f, = (1/T, )1[x33+(1/T1)3](P ~11 —p333)

x23( /T1}21(P22. P33} &

a, = (1/T1)3(p33 P33),

(3.52)

(3.53)

In keeping with the discussion of Sec. IIC 1, we
consider only those poles that give the slowest
decaying terms of p«. We therefore conclude
from Eqs. (2.48), (3.38), (3.48), and (3.51) that
for t»(T, ),1.

z'» z'~

s I

( z2 t zs2)t

fbi (Zla ZI3))Z(3) (Z(3) Z(31)Z 31
2 S 2 2 S S

t» [x,3+(1/T, ),] ', [x3,+(1/T, )3] ', (3.5V)

which is the case in many CARS experiments

P13 —P33 =
P13

—P33 =f3/Z3

=Pg -P'ss y (3.58)

provided the intensity is so low that terms con-
taining x» and g2s can be neglected. That this con-
clusion is quite general and does not depend on
the relative magnitude of the decay rates can be
checked by substituting A=B = C = 0 in Eqs. (A2),
(A4}, and (A5) of the Appendix. Similarly a more
general expression of p",, —p33 at low intensities
can be found by substituting Eq. (3.38) into Eqs.
(A2), (A4), and (A5).

The usual steady-state formula for a «„3 (Refs.
3 and 7) for the case where the pump fields are
weak and &, is nearly resonant with an electronic
transition can be obtained by replacing p« —pss
by p1', —pp3 in Eqs. (3.36) and substituting the re-
sulting expression for p,', in Eq. (2.21). The above
discussion shows that even for weak fields this
expression may require modification.

2. Intermediate level far from resonance. inclusion of two-photon terms

When the substitut1ons of Eq. (3.42) are made in Eq. (3.50) and itis assumed that(T, )» isthefastest decay
time, we find that simple (similar) analytical expressions can be found for the poles of the transformation
for the two extreme cases

x„-(1/T, }.»x„, x„
(1/T, ), » x,3» x„, x„.

(3.59)

(3.60)
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When Eq. (3.59) holds,

Z'1" =0, Z', "= -2[(1/T, ), +(I/T, )21+«»+x»]+O((1/T1}2') )

Z, = -(1/T, )2 —2[(1/T, ), +(1/T, )2, +3x,2+3«22], Z2" = -(1/T, )2 —x,2
—x„+O((1/T,),'

Z2 = -2x12 —~z[(1/Tz), +(1/T1)21+x12+x22], Z2
' =Z2 +O(1/«, 2),

(3.61)

(3.62)

0 x, ,/~„) [(1/T,},+ (1/T, ), + (1/T, )„]
[n&2+z(1/T ) ] l~

' 4«

and when Eq. (3.60) holds,

Z',"= o, Z',"= --.'[(1/T, ), +(1/T, )., +...+...]+o(1/...),
Z'2) =0, Z 2) = -2x„—2[(1/T, ), +(1/T, )21+x,2+x,2]+O(1/x„},
Z22 = -(1/T, )2, Z2' = -(1/T, )2 —[2x,2+x,2+x,2+(1/T, ), +(1/T, ),]+O((1/T, )2') ~

Thus in both cases, the slowest decay time is ~Z,
~

and we find that for t » (1/T, )„(1/x») the leading
terms are given by

where

-p" ' " )P"+P") ' " *'
)

~ ()-e*")u-'(sfz, ),
22 2(1/T ) 11 22 4« 21 (3.63)

p
"2' = „./- ([p2»2(1/Tz), 1

—p,'12(1/Tz)1] [x22 + (1/T1)2]+p2»2(1/T1)2 [x12+ (1/T1)1 —(1/T1)21]}

x
~

«,2[«,2+ x„+(1/T1), + (1/T, ), —(1/T, )2,) —x„«22

+ [x„+(1/T, ),][x„+(1/T, ),] I (3.64)

The above steady-state expression reduces to that of the effective two-level system [Eq. (3.2)] when
terms containing x» and x» can be neglected. This conclusion is valid even when (1/T, )„is not the larg-
est-decay rate as can be checked by substituting A = -B = -C = x» in Eqs. (A2), (A4), and (A5) and the re-
sulting expressions in Eq. (3.36). We note that «u- «9 and (I/$2)2- (1/T, )„for the case where k' = 3
and level ~3} is not too far from resonance with &)),.

D. Both fields strong and near resonance

(3.65)

We now consider the case where both transitions are saturated by near-resonant fields, "that is, where
Eq. (3.46) holds. In this regime, the Wilcox-Lamb approximation is invalid and p2'1(t) can only be obtained
by solving the Bloch equations numerically. However, in this strong-coupling situation, we expect the
steady state to be achieved at a rate determined by the fastest decay rate. Thus the steady-state solution
should be valid for low-pressure ground-state CARS at times t» (T,)„ for low-pressure excited-state
CARS at times t» (T,),= (T,),= (T,)„and for high-Pressure CARS at times t» (T2)»= (T2)»= (T,)».

An expression for p,","for the present case can be obtained from Eqs. (3.36}, (A2), (A4), and (A5) by
noting that when Eq. (3.46) holds,

A = 2V„V2,/(1/T, )„(1/T,)„(1/T,)„,
2V„B= -( /- ) ("/ )

[(I/T2}21+V»/( /T2}22)

2V2

( / ) (1/ )
[( /T2)21 22/( / 2)21]

T2 21 T2 S2

A ' BC -2A -(1/T2—)2, .

(3.66)

(3.67)

(3.68)

We shall consider three limiting cases: (i) V»» V», (ii) V»» V,2, and (iii) V»-—V»-—V. For case (i), we
find on combining Eqs. (3.34)-(3.36), (3.65)-(3.68}, and (A2)-(A5) that the leading term of p2'122 is given by

(V122 —[«)) )- z(1/T2)21] [&22 + t(1/T2)22]} ([(1/T,), + (1/T1)2 —(1/T, )21) —[(1/T,)„(1/T,)22/(1/T, )2]}
'
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which is identical to the expression of Eq. (3.25) provided [(1/T,)»(1/T, )»/(1/T, ),] «[(1/T, ), + (1/T, ),
—(1/T, )„]which is usually the case. Similarly, for case (ii), we find that

~~88 ~ 13~23P ll
[V + [&(o+i(1/T ) ][& —i(1/T ),]) '

which on ignoring line-broadening effects reduces to the result predicted in Sec. IIIC 2.
For case (iii) we obtain

(3.70)

ss s f p,'~(1/ T,),[(1/ T,), + (1/ T,), —(1/ T,)„]' ([(1/T, )s + 2(1/T, )„][(1/T,), + (1/T, )„]+2(1/T, )„(1/T,)„}'

where

V'[~&+ i(1/T, )„+i(1/T, )„]
([&(u+ i(1/Ts)s~][&s, —i(1/Ts)s~] [ass+ i(1/Ts)»]+ V [4(u+ i(1/Ts)s, + i(1/Ts)ss]) '

which on ignoring line-broadening effects reduces to

Vf(~g l ~s) =
Vs+ n 31 32

=SV'[4((o, -s)„)((u, —&u„)+(~, —(u„—V)((o, —(o„—2V)+((og —s)„+V)(&u, —(u» +2V)

+(+, —&us, —2V)(+, —(dss —V)+ (&u, —+s, +2V)((u, —&us, + V)] '.

(3.71)

(3.72)

(3.'t3)

Thus we expect to obtain five Stark split peaks in the CARS spectrum at the frequencies &g 31' Q)31+Vy
and &u» +2V with relative intensities of 1; V'/(V+ &»)'; V'/(V + 24»)' if &a, is kept constant, and five peaks
at the frequencies &u, = &o», &u»+ V, and &u» +2V with relative intensities of 1; V'/(V+&»)'; V'/(V +24»)'
if &, is kept constant. Similar effects have been analyzed in the absorption and fluorescence spectra of two
simultaneously saturated transitions using a dressed-atom'" ' or quasilevel approach. '" ' On substituting
the expression for p,', (t) obtained from Eqs. (2.31), (3.71) and (3.72) into Eq. (2.21), we find that (P«»

~h, ~
and independent of ~hs~.

IV. DISCUSSION

We have discussed saturation in CARS spectro-
scopy, limiting ourselves to Raman-resonant
CARS (&u, -up, = ~») with the possible addition of
the one-photon resonance &u, = ~» (see Fig. 1). We
have derived a general expression for the CARS
polarization 6'«Rs for these cases which shows
that 6'~ARs is proportional to the off-diagonal ele-
ment of the density matrix p». For the case where
the Raman resonance is the only resonance, p»
can be determined by solving the Bloch equations
for the effective two-level system formed by the
levels ~1) and ~2). However, when the one-photon
resonance is also present, the three-level Bloch
equations must be solved. In both the two- and

three-level Bloch equations, we have included
terms describing decay both to the lower levels of
the system and to a set of levels gl)) whose popu-
lations are assumed to remain in thermal equili-
brium.

The Bloch equations, and the rate equations de-
rived from the three-level Bloch equations by
means of the Wilcox-Lamb approximation, were
solved using Laplace transform techniques. In
order to obtain simple analytical solutions, the
poles of the transforms were determined using

first- and second-order perturbation theory. The
general approach was to neglect fast decaying con-
tributions to p» and to consider only slowly decay-
ing contributions (where they exist) and the steady
state. Such slowly decaying contributions are of
great importance in the low-pressure regime when

at least one pumping field is weak. However, when

the pressure is high, collisions ensure that the
steady state is rapidly achieved and when both
fields are intense, all the states are strongly
coupled and, therefore, decay at the rate of the
fastest decaying state.

When the effective two-level model is appropriate,
that is, when sequential one-photon processes can
be neglected in favor of the direct two-photon pro-
cess and the fields are weak, we have reproduced
the usual expression for +cARS in which 6'cARs

I',I", ' where I'&,, are the powers of the pump
fields at frequencies &„co,. However, when the
two-level system is saturated, we found that 6«Rs
is independent of P, and inversely proportional to
~l /2

Several special cases of the three-level model
have been treated. We found that when the
~1) —~3) ( ~2) —~3)) transition is strongly coupled

to the &u, (&us) field, while the other one-photon
transition is only weakly coupled to the &u, (&o,)
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field, (p«„sand, hence, the CARS excitations spec-
trum is split into two Stark split (or shifted) peaks.
When &u, is the weak (probe) field, 6 c», ~P',P', ~'

for v,= &» whereas 0«„s P', 'P,' ' when the
probe field is tuned to one of the components of the
Stark split level

~
3), that is, &u,= ~» a V» where

V» is the one -photon Rabi frequency for the
~1) —~3) transition. On the other hand, when &g,

is the weak field, +CARs~P, P,' ' for co, = ~» and
g „„PsP',for ~i= ~3&+ 23

The Wilcox-Lamb approximation was employed
in order to reduce the three-level Bloch equations
to rate equations which contain terms which derive
from both one- and two-photon processes. We
showed that when the intensity is so low so that
both one- and two-photon processes are small com-
pared to the decay terms in the rate equations, we
can reproduce the usual expression for one-photon
resonant 6«Rs. Expressions were also derived for
&«Rs when the one-photon terms are significant.
When the one-photon terms can be neglected in
favor of the two-photon terms, we showed that the
expressions for the effective two-level system

could be obtained.
Finally, we discussed the case where both fields

are saturating and near resonance. Here both one-
and two-photon processes must be considered on
the same footing and only the steady-state solution
need be considered since strong coupling will en-
sure that it is rapidly achieved. We discussed
three special cases: V»» V», V»» V», and
V» V23 V. In the first two cases, the results
were essentially the same as Chose obtained for
the case of one strong and one weak field. When,
however, both fields are of comparable strengths,
we found that the CARS spectrum splits into five
Stark split components at ~,= ~3/ (Jof (J03$+
and cg» +2V if w, is held constant, and at ~,—~32,
+32 + V, and &» + 2 V if m, is held constant. When
(d

g
(IL 3J and &,= (d» we found that (pc ARs ~P', P', .
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APPENDIX GENERAL EXPRESSION FOR p
'"'

Using Eqs. (2.48), (3.47), and (3.48), we find that

&as g & (Z —0)~V (Al)
0

where V„o&,, and c, are given by Eqs. (3.47), (3.49), and (3.50), respectively. The expression for c, can
be rewritten

co = (BC -A2}[(1/T, ), + (1/T, )2, + (1/T, )~,] +d,A + dp + d, C+ (1/T, )~(1/T, ),(1/T, ), ,

with

d, = (1/T, )2(1/T, )~, + (1/T, )2,(1/T, )~2+ (1/T, ),(l/T~)» —(1/T, )2~(l/T~)~ —2(1/T, ),(1/T, )2,

d, = -(1/T, )2[(1/T, ), + (1/T, ), —(1/T, )„]+(1/T, )„(1/T,)3, ,

d, = (1/T, ),[(1/T, )3, —(1/T, ), —(1/T, ),] .

(A2)

(A3)

From Eq. (Al) we find that

c,(p",, —pas) = [(1/T, )p,'f —(1/T, )»p2I,' —(1/T, )»pp] {(A + C)[(1/T, )» —(1/T, ),] -C(l/T, ), + (1/T, ),(1/T, ),}
+ [(1/T, ),p )a~ —(1/T, )»p f~~] {(A+C) [(1/T, ), —(1/T, )„—(1/T, )„]+ A (1/T, ), + (1/T, )„(1/z;),}
+ (1/T, )spf~q{[(1/T, )32 —(1/T, )2]A + [(1/T, ), —(1/T, )2, -(1/Tg~, ]C

+ (1/T~)2~(1/T, )~2 + (1/T, )2(1/Tg)» —(1/T, )~(1/T, )~},
c,(p~»' —p,",) = [(1/T,),pf[—(1/T, }»p,", —(1/T, )»pse,']{-(A+B)[(1/T, )» —(1/T, ),]+A (1/T, ),}

+ [(1/T, )2p22~ —(1/Tg}~,pf3~]{-(A+B)[(1/T,), —(1/T, )2, —(1/T~)3, ] B(1/T, )3-+ (1/T, ),(1/T, )3}

+ (1/T, )~)~{-[(1/T,)» —(1/T, ),]B —[(1/T, ), —(1/T~)2~ —(1/T, )»]A
+ (1/Tg)~(1/T, )~, —(1/T, ),(1/T, )2}.

(A4)

(A6)

A general expression for pg can now be obtained by inserting Eqs. (A4) and (A5) into Eq. (3.36).
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