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Two-atom resonance fiuorescence including the dipole-dipole interaction»
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The spectrum of resonance fluorescence and the second-order correlation function are
calculated for a system of two identical two-level cooperative systems interacting via the
dipole-dipole interaction. The results are valid for arbitrary incident-field strengths and
for atomic separations much less than the resonant wavelength. The intensity of the side-
bands at the Rabi frequency is diminished by the dipole interaction, whereas that of the
sidebands at twice the Rabi frequency is enhanced. Both the cooperative behavior and
the dipole-dipole interaction act to diminish the photon antibunching, as shown by the
second-order correlation function.

I. INTRODUCTION

Resonance fluorescence, or the resonant interac-
tion of electromagnetic radiation with an atomic
system, has received considerable attention in re-
cent years. Mollow's original prediction' of a
three-peaked spectrum for one atom at a suitably
high excitation-field strength has been experimen-
tally verified, and several papers dealing with
the collective behavior of several two-level systems
(TLS's) have predicted additional structure in the
spectrum. For the special case of two TLS's, a
second pair of peaks in the scattered spectrum has
been predicted, and in four papers " the ef-
fect of the first-order dispersion force, ' or dipole-
dipole interaction, has also been considered. We
refer the reader to the papers of Mavroyannis and
Agarwal et al. for a more complete list of refer-
ences.

The purpose of this paper is to present analytic
results for the spectrum of resonance fluorescence
for two atoms interacting via the dipole-dipole in-
teraction, which are valid for arbitrary incident-
field strengths and for atomic separations much
less than a wavelength. In our model we assume
two identical TLS's, separated by a distance R,
which may be described as coupled spin- —, systems
interacting with an external radiation field and
with each other. Any state of the system may be
written as a superposition of states which are sym-
metric and antisymmetric under interchange of the
atoms. The master equation' for the reduced
atomic-density operator for such a system leads to
a set of 15 coupled equations. ' The spatial phase
factor of the driving field couples the symmetric

operators with the antisymmetric. Since we are in-
terested in the effect of the dipole-dipole interac-
tion, which increases strongly with decreasing
atomic separation, ' we assume that atomic separa-
tions are much less than the resonant wavelength.
This has the added advantage that symmetric and
antisymmetric operators no longer appear in the
same equations; we must now solve a set of eight
coupled equations containing only symmetric
operators. From these symmetric operators, the
first- and second-order field correlation functions'

IE (t+s.)E+(t) i

and

(E (t)E (t +—r)E+(—t +r)E+(t) )I

may be calculated; the Fourier transform of the
first yields the scattered spectrum, and the second
yields information about the so-called antibunching
phenomenon.

The master equation for this system is described
in Sec. II and its solution is presented in Appendix
A. The atomic correlation functions, which are
proportional to the field correlation functions, ' are
derived in Appendix B. Several plots of the scat-
tered spectrum are displayed and discussed in Sec.
III. The effect of the dipole-dipole interaction is
to broaden and flatten the central peak and the
first pair of sidebands, while enhancing the height
of the second pair of sidebands. The Laplace
transform of the second-order correlation function
is presented in Sec. IV, along with its value at t =0
and as t~ 00. These results are compared with
those of Agarwal et al. The antibunching
phenomenon is reduced by the interaction between
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the atoms.

II. DESCRIPTION OF THE MODEL

1

Each TLS may be described as a spin- —, system,
characterized by operators S;+—and S, which are
the ordinary spin angular momentum operators.
We assume that one TLS is at the origin r1 ——0,
while the other is located at r2 ——R. The incident
EM field is given by

E(r, t) =Eu cos(toot),

with frequency cop equal to the resonant frequency
of one TLS. It is assumed that the atomic separa-
tion is much less than the resonant wavelength so
that the spatial dependence of the field may be
neglected.

The master equation for the reduced density
operator in the rotating-wave, Born, and Markov
approximations, in a frame rotating with the fre-
quency of the applied laser field, is'

at
= —i Qd [S)+Sg +Sp+S),p]

ed from the Laplace transform of the solution of

Eq. (2),

9
(S+(z)}=gf;(z)(J;(r=O)}, (4a)

and

9
(S+S (z) }= g g;(z)(J;(r=O) } . (4b)

III. THE SPECTRUM OF RESONANCE

FLUORESCENCE

As shown in Appendix B, the steady-state first-
order correlation function is given by

I,(z) = g f, (z) lim (J;(t)S (t) }
l

t~ ao

The f~(z} and g;(z} are polynomials in z, and the

(J;(O) ) are the initial values of the atomic opera-

tors as defined in Appendix A.

——,iQ„[S++S,p]

—y(pS+S —2S pS++S+S p) . (2)

2a Jp
[n ~ (z)x&&+znz(z)uo

zBD (z)

Qd =
3 ( I —3 cos 8) =yto~3y 2

2(kpR)
(3)

represents the dipole-dipole interaction, where ku
=cop/c, and cos O=d.R. The dipole moments d
of the atoms are assumed identical. In Eq. (2), the
first term represents the coupling of the atoms
through the dipole-dipole interaction, while the
second represents the coupling between the driving
field and the atoms. The final term arises from
the atom-field coupling and the atom-atom radia-
tive coupling.

From Eq. (2), a set of eight equations for the
time dependence of the symmetric atomic opera-
tors is derived. The solution of this set of equa-
tions is simplified by using the Laplace-
transformed equations and is presented in Appen-
dix A. As shown in Appendix B, the Laplace
transform of the first- and second-order atomic
correlation functions (S+(t +r)S (t) ) and
(S+(t)S+(t+r)S (t+r)S (t)) may be calculat-

S+ = S1+ + S2+ are the collective atomic dipole
operators, 2y is the Einstein A coefficient and
represents the natural linewidth of the atom, Qz
= d Eo—:ytus is the Rabi frequency, and

+ &dz 2 u 2 +4N gz 2z 4 ] ~

2 4 2 2

where z„=z+n, Jp is a constant dependent upon
the initial conditions,

B=64+16cog +3cog +16cog,

and n~(z), n2(z), xu, uu, u2, and D(z) are polyno-
mials in z which are listed in Appendix B. Note
that Eq. (5) contains no imaginary term. This
means that the spectrum is symmetric, contrary to
the results of Kus and Wodkiewicz, ' who perform
a similar calculation.

In the limit toq~O (no dipole-dipole interaction},
we find

R Jp ~1(z)r, = +
ZUp xp

which agrees with Agarwal et al. for the case of
both atoms initially in the ground state (Jp ——4),
after we account for notational differences by mak-

ing the substitutions z~2z and tua ~4P.
The spectrum of resonance fluorescence

S(co,R,H) is given by

S(tu, R,8)—:Re I'~[i(t0 —to&&)] .
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In Fig. 1 the spectrum is shown for various
strengths of the dipole-dipole interaction and coq
= 14. This may be compared with similar figures
in the papers by Ja Kilin and Freedhoff. ' The
central peak is flattened by the dipole term, while
the sidebands are broadened; additional peaks ap-
pear displaced from resonance by frequencies other
than the Rabi frequency and may be ascribed to
the presence of the dipole-dipole interaction.

The experiments cited have used atomic-
beam methods to reduce the Doppler broadening.
This means that the atomic separation distance R
and the atomic orientation are random variables;
the spectrum should be averaged over co~,

Ro
S(co)-=f dQ f dR P(R)S(cc,R, O)

4m 0

+ S(co) f„dRP(R) .
0

The first term includes values of R for which the
dipole-dipole interaction is greatest. The remain-

ing contribution is significant only for the case of
the smallest number density considered here, and
even then, only at resonance and for co+ & 1. We
evaluate this term by replacing S(co,R,8) by the
two-atom spectrum for large separations' which
may be factored from the integral. This approach
is most meaningful when R0 is chosen to satisfy
the condition

S(m)= f dQ f dR P(R)S(ro,R, &),
4n. 0

(9)
~

cog(Rc 8=0)
~

= 1 (12)

where

P(R)=4m(N)R exp( 4n(N)R—/3. ) (10)

is the probability that two nearest-neighbor atoms
in an atomic beam are separated by a distance R,
assuming that the atoms are randomly located.
(N) is the atomic-number density. We assume
that the most important collective effects arise
from atomic pairs, and we ignore collective effects
due to groups of three or more atoms. The in-
tegration over R must be consistent with the ap-
proximations made above; the integral is separated
into two parts,

Figures 2 —5 display the averaged spectrum for
various values of the Rabi frequency. Each figure
shows the spectrum for co~ = 0, and for (N ) =
10' cm, 10' cm, and 10' cm . For case
(a) of Fig. 2, the second integral of Eq. (11) is
dominant at resonance, and we feel that our calcu-
lation of that contribution is not to be trusted; con-
sequently we have suppressed those points in our
figure. Each spectrum is normalized by dividing
the intensity by the value at resonance in the ab-
sence of the dipole term. One effect of the dipole
interaction is to broaden and flatten the peaks.
For large enough values of the Rabi frequency, the
first pair of sidebands appears (Fig. 3); for still
larger values, a second set of sidebands becomes
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FIG. 1. Plot of Eq. (8) for a Rabi frequency of 14@
and for the dipole-dipole strength coq varying between 0
and 35.

FIG. 2. Plot of Eq. (11) for a Rabi frequency 1.2y
and (a) (N) = 10' cm ', (b) 10"cm 3, and (c) 10'
cm . The dashed curve is the spectrum without the
dipole-dipole interaction; its value at resonance is used
to normalize the curves (a), (b), and (c).
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values of cod and m~ has been noted in the paper
of Ja Kilin. " As the number density (N) in-

creases, the fluorescence energy is shifted increas-
ingly into regions away from resonance.

IV. THE SECOND-ORDER
CORRELATION FUNCTION
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The Laplace-transformed steady-state second-

order correlation function may be obtained from
Eq. (B8) of Appendix B,

FIG. 3. As in Fig. 2, but for co& ——14.
~ Jo (4+~g ) t()

P2(z) = 1—8 z 2D (z)

apparent (Fig. 5). It is interesting to notice that
the amplitude of these extra peaks increases with
increasing (N ), while the amplitude of the first
set of peaks decreases. This behavior for suitable where

—2
D (z)

and

tp =xp[8zqz4+ 8toazzq top (—3z +8)]+toozqz4[8zq(zq +z4 )+ 16toazi —toy ]+8todzqz4,
2 2 2 4 2 2 2 2 4 4 2 (14a)

ti ——xp[2zqz4 —2toa(z +7z +19z+20)—5toaz3]

+ togzi[2zzz4(zi+z4) —2toaz4(z —2) —toaz7]+2tooziz4 .2 2 2 2 2 4 2 (14b)

Its value as ~~ ao is given by

4toii Jp(4+ tory'
I 2(7 ~ ao ) = lim Z r2(z) =

z~o g2 (15)

I

state (Jo ——4). The normalized second-order corre-
lation function may be defined as

I 2(z)
yp(z)=

q
——

q ~ q q
I'i(z) . (16)

[I i(r=0)]' toa~p«+ piii)'
which reduces to [I i(r =0)] for the case of both
atoms in the ground state, or both in the excited At ~=0, the normalized function has the value
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FIG. 4. As in Fig. 2, but for coq ——80 only the por-
tion of the spectrum around the first sideband is shown.

FIG. 5. As in Fig. 4, but for the portion of the spec-
trum around the second sideband.
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y2(~=0) = lim zy2(z)z~ 00

64+ 16cog +3cog + 16cod

Jp(4+ cog )

atomic operators. The solution of the resulting

eight equations is simplified by using the following
symmetric operators:

SH = —,(S++S ),
For Jp ——4, and in the limit m~ && 1 and cod &&coq,
y2(r=0) = 0.75, which agrees with Agarwal
et al. For the case of a single atom, y2 (0) = 0, '

which is complete antibunching. Thus, the anti-
bunching effect is greatly reduced by the coopera-
tive behavior of two atoms and by their dipole-
dipole interaction.

In the limit of weak incident-field strength, the
correlation function depends strongly on the
dipole-dipole energy, and the antibunching is great-
ly reduced.

V. DISCUSSION

1S„—:—(S+—S ),
2l

S,=S)'+S2',

g„=-,'(s, +s,++s, -s,-),
g„=——(s, +s, + —s, -s,-),1

2l

TH
—= —,[(S)++S) )Sz'+(S2++Sz )S)'],

1T„=—[(S)+—S) )Sz'+(Sz+ —Sz )S('] .,
2i

R:—S +S2 +S +S)

(Al)

We have calculated the spectrum of resonance
fluorescence and the second-order correlation func-
tion for a system of two two-level systems interact-
ing via the dipole-dipole interaction and via radia-
tive coupling. The scattered spectrum is sym-
metric about the resonant frequency and is altered
significantly by the presence of the dipole-dipole
term. Pairs of sidebands are displaced from reso-
nance by +co~ and +2~~, where co& is the Rabi
frequency. The intensity of the first pair is dimin-
ished by the dipole interaction, whereas that of the
second pair is enhanced. Perhaps this second set
of sidebands would be observable in an atomic-
beam experiment for suitably large atomic number
densities.

The second-order correlation function predicts
incomplete antibunching for strong incident-field
strengths. At weak-field strengths the antibunch-

ing depends strongly on the dipole-dipole energy.

One of us (R. D. G.) wishes to thank the Purdue
Research Foundation for the award of a David
Ross Fellowship which partially supported this
research.

where ~=yt is used to simplify the notation. The
transformed equations are

z]SH ——Ii +2TH +2cod Tz,

z)Sg ——I2 —2a)d TH +2' —cog S, ,

2
z2Sz = I3 — —2R +cogSg

z

z2QH I4+coa Ta-—
z2gw Is —cpa TH ~——

3 1

zs TH I6 ——,SH + , cp——d Sq +co~—gq, (A3)

Ip I 3
z5 Tg —— I7 Ng —,codS~ ——,Sq

3+ cps( —,R —Qa),

Ip
z6R = I8+4—+2S,—2'~ T&,

z

The Laplace transform of an operator O(r) is
defined by

0:—(O(z) ) =L j (O(r) ) j = f dr e "(O(r)),
(A2)

APPENDIX A: SOLUTION OF THE
MASTER EQUATION

where z„=z+n,the I; are the initial values of the
operators, e.g., I~ ——(SH(v=0) ), I2 ——

(S~(v=0)), etc., and

The master equation (2) is used to calculate the
time dependence of the expectation values of the

Ip ——(R (0)+2si'S2*(0) )
= s(s+1)——, ,
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9
(S+(z))= g f;(z)(J;(r=o)), (A4}

where s is the total spin quantum number for the
two-atom system. The notation for the Laplace-
transformed operators is the same as that for the
time-dependent operators except for argument.

These equations when solved give for S+ and
s+s-

(E (t)E (t+r)E+{t+r)E+(t))
~ (S+(t)S+(t +r)S (t+r)S (t) ) .

Since we are interested in the steady-state func-
tions, we define the correlation functions by

I;(z)= lim f dr e-"1,.(t,r}, (B3)

where
and

9
(S+S (z))= yg;(z)(J~(r=o)), (A5)

and

I (it, r)=( $+(t +r) S (t)), (B4)

where Ji ——SH(r}, J2 ——Sq(r), etc., J9 ——1 and
the f~(z} and g;(z} are polynomials in z of order 7
or less. ' Equations (A4) and (AS) are used in Ap-
pendix B to calculate the correlation functions.

APPENDIX B: THE CORRELATION

FUNCTIONS

I,(t,r) = (S+(t)$+(t +r)$ (t +r)$ (t) ) .

(B5)

Equanons (A4), (A5), (Bl), (B2},and {B3)together

imply

I,(z)= g f~(z)[ liin (J;(t)S (t))],
f~oo

The quantum-regression theorem states that if
B and J; are system operators such that

and

(B6)

then

(&(t+r))= g f;(r)(J;(t)), (B1)
I z(z) = gg;(z)[ lim (S+(t)J;(t)S (t))] .

f~tN

{B7}
(&(t)&(t +r)C(t) )

=gf;(r)(&(t)J;(t)c(t)) . (B2)
Upon simplification of Eq. {B6),we find

a Jp
2

I i(z)= [ ni(z)xc+zni(z)us
The field correlation functions are proportional to
the atomic correlation functions, '

(,E (t+r)E+(t))~($+(t+r)S (t))

and where

+ Ngz2v2+Mgzgz4],2 4 2 2

and

Jp ——3+2Ip,

8=64+ 16cog +3a)g + 16')g,

D(z) =xpup+co~z2U i +co~z2Z4,
2 4 2 2

2 2
Xp =Z2Z4+ N g Z i

Up=Z2Z4+cog(5z +37z +88Z+64)+4ugz3

v i ——z2z4(z2 +z4 }+2togz iz4(3z + 8}+toit z6,2 2 2 2 4

U2 ——4z2z4(z2+z4)+cogz4(z + 10z +60z +144z+96)+ —,a)g(5z +32z +60z+64),

n i(z) =4z2z4+ —,co+(z +17z +156z +696z +1408z+1024)+2'&(z +7z +23z+32),

1 2
2( ) R( 3 4+R )

Io is defined in Appendix A, and z„=z+n The solution of. Eq. (B7) is Eq. (13) in Sec. IV.
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