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We consider the correlation of two particles on a sphere interacting via various

repulsive forces: a Coulomb repulsion, a Gaussian, and a 5 function. This "rigid-bender"

picture with Coulomb repulsion provides a schematic model of intrashell angular
correlation in doubly excited two-electron atoms. We examine energy levels and reduced

densities p(8») for states corresponding to shells n
&

——n2 ——2, 3,4. Energy levels for fully

converged states fall into remarkable rovibrator patterns, as found in the corresponding
three-dimensional case by Kellman and Herrick. The rovibrator nature of the states is

directly reflected in plots of p(8&2), which reveal both collective rotations and vibrations

and even the influence of centrifugal distortion. A minimal basis (l,„=n —1) is

inadequate to represent angular correlation in the higher-energy states. of each shell. The
repulsive Gaussian potential, which is finite at 8~2

——0, shows the onset of independent-

particle shell-model behavior in higher-energy states. Comparison of the Coulomb case
with the delta-function potential exhibits the degree to which kinematics governs wave-

function character.

I. INTRODUCTION

The dynamics of electrons in doubly excited
states of two-electron atoms is dominated by the
interelectronic Coulomb repulsion. For such states,
individual particle orbital angular momenta are not
at all conserved quantities, and there have been

many efforts to find approximate constants of the
motion with which to classify the configuration-
mixed states. '

Recent work" ' has shed important new light
on the nature of doubly excited states. Starting
from a group-theoretical point of view, Kellman
and Herrick" ' organized the manifold of two-
electron states resulting from reduction of the
direct product of two O(4) irreducible representa-
tions [associated with the O(4) degeneracy of hy-
drogenic atom shells] into larger "multiplets" of
states in two complementary ways, so called I and
d supermultiplets. When organized in this way,
computed energy levels for intrashell states fall
into patterns highly suggestive of those associated
with the rotation-vibration spectrum of a linear
XYq triatomic molecule' with zero quanta of sym-
metric and asymmetric stretch vibrations. The
manifold of states is truncated due to the finite
number of shell states involved. The recognition
of superrnultiplets extended earlier work in which
rotor series had been identified in calculated energy
level patterns. ' Furthermore, Kellman and Her-
rick were able to demonstrate a 1:1 correspondence
between symmetry labels arising from the super-

multiplet scheme and the usual quantum numbers
for a bending, rotating linear triatomic. ' In this

way, they fit the calculated spectra quite satisfac-
torily using molecular term formulas, and derived

scaling laws for the effective molecular parameters.
Characteristic ratios of rotational to vibrational en-

ergies were found to be significantly larger than
those for conventional rigid molecules, indicating
that the two-electron system in fact behaves as a
rather "floppy" XY2 molecule. The remarkable re-

sult is that intrashell doubly excited states appear
to exhibit the properties of collective rotation and
vibration, at least for low values of nuclear charge.
Both phenomena are, of course, well known in

molecules and nuclei, ' ' but are traditionally
unexpected for atomic systems.

The present work is concerned with the further
elucidation of these findings and with their general
significance for collective motion in few-body sys-

tems. We wish to determine to what extent phe-

nomenologically identified rotation-vibration pat-
terns can be related to intrinsic "moleculelike"
features of the two-electron wave functions. In
particular, is the naive inference that the electrons
are localized at about the same distance from the
nucleus but on opposite sides with interelectronic
angle around 180' really correct? In short, does a
doubly excited atom have a shape?

We have already shown by examination of con-
ditional probability densities' from accurate
Hylleraas-Kinoshita wave functions for He, H
and Li+ that the Kellman-Herrick picture is essen-
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tially confirmed for S' (Ref. 19) and P' states of
the N=2 shell. Thus, the lowest 'S' state of He
is a "rotor state" corresponding to the ground rota-
tional state with zero quanta of bending vibration;
the next-highest 3P' state is also a rotor state, hav-
ing one unit of rotational excitation; the 'P' state
corresponds to one quantum of bending vibration,
where the bend is, in fact, clearly coupled by
Coriolis interactions to "asymmetric-stretch" rno-

tion, and the highest 'S' state is a rotationless state
with two quanta of bend. The molecular interpre-
tation of these states is precisely that suggested by
Kellman and Herrick. We also note that the inter-
shell "2s 3s" S' states of He and Li+ are associat-
ed with pure "antisymmetric-stretch" motions of a
normal vibrational mode, again as expected from
the molecular picture. '

Eventually we would like to extend these de-

tailed analyses of accurate two-electron wave func-
tions to include all the states in a given doubly ex-
cited shell. Work along these lines is currently in

progress. '

The present paper, however, is concerned with a
particular aspect of two-electron dynamics, namely,
angular correlation. Recognizing that electronic
radial wave functions tend to be fairly sharply
peaked at characteristic distances corresponding to
shell radii, we consider a model problem involving
the motion of two particles ielectrons) on the sur-
face of a sphere of fixed radius interacting via a
Coulomb repulsion. Such a picture with frozen ra-
dial motions enables us to study angular correla-
tion in the absence of any interaction with in-out
radial correlation, and has been used previously by
Herrick as a schematic model for intrashell doubly
excited states. This model is, however, nothing
more than Bunker's "rigid-bender" model for tria-
tomics exhibiting large-amplitude bending mo-
tion, so that contact can readily be made with the
concepts of molecular spectroscopy.

For two particles on a sphere, we find that cal-
culated energy levels fall into well defined patterns
suggestive of collective rotations and vibrations.
The main purpose of the present work is to show
that, for particles on a sphere at least, the rovibra-
tor nature of the system inferred from calculated
energies is directly reflected in the forms of the
wave functions themselves. It is interesting to find
that superposition of relatively few independent-
particle configurations leads to correlated wave
functions that are so clearly moleculelike, in which
we can readily identify collective rotational and vi-
brational states and even observe such subtle ef-

fects as centrifugal distortion.
In this paper we proceed as follows: Section II

deals with the simple quantum-mechanical calcula-
tions involved. The key point here is that, al-

though our straightforward calculations of energy
levels and wave functions are all carried out in
independent-particle space-fixed coordinates, there
is a general and tractable expression for calculating
pi9, z}, the reduced two-particle density, as a func-
tion of the interelectronic angle Oiq only. It is
therefore possible to move into an atom-fixed
frame to examine the form of the two-electron
density. Energies and reduced densities p(8&z) for
states corresponding to shells n

&
——nz ——2, 3,4 are

presented in Sec. III. While we mainly present ful-

ly converged results, the effect of incomplete bases,
specifically, minimal or DESB-type with l &N —1,
is examined briefly. As mentioned above, energies
for correlated functions fall into remarkable
rotation-vibration patterns, just like those found in

the three-dimensional case. In Sec. IV we consider
two non-Coulombic interparticle interactions, the
repulsive 5 function and Gaussian potentials. The
extremely short-range 5 function potential is in a
sense the direct opposite of the long-range Cou-
lomb interaction, so that examination of reduced
densities in this case shows the extent to which
kinematics determines the form of the wave func-
tion. At low energies a smooth Gaussian potential
confines the particles on opposite sides of the
sphere, leading to rotor states with 6&z-m. . At
slightly higher energies electron density can, how-

ever, shift into the region around O~q-0, owing to
the finite value of the potential there; this is in
contrast to the Coulomb case where the potential is
infinite at 0&z

——0. Our general conclusions are
given in Sec. V.

II. CALCULATION OF ENERGY LEVELS,
WAVE FUNCTIONS, AND REDUCED DENSITIES

with two-particle Hamiltonian

2 2lz 1H= —2Z/R+
~ + ~ +

2R 2R
(2)

in atomic units, where R is the radius of the sphere

The quantum-mechanical calculations required
to obtain energy levels and wave functions for two
particles on a sphere are very straightforward. We
need to solve the Schrodinger equation

HP=EP
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Z is the nuclear charge, l; is the orbital angular
momentum vector for electron i and 1/r&2 is the
interelectronic Coulomb repulsion. The electron-
nucleus Coulomb attraction —2Z/R merely adds a
constant term to the energy and may be disregard-
ed. In fact, the only role of the nuclear charge Z
in this model problem is to scale the size of the
sphere R (see below). The two-electron spatial
wave function with total orbital angular momen-
tum quantum numbers j and m is expanded in
terms of a coupled single-particle angular momen-
tum basis:

f~ (r),r2)=g g cq J qY
' (r, )

J)J2 m)m2

)& Y (r2)(j,m~ j2m2
~
jm ),

(3)

where antisymmetrization is taken care of by the
conditions cj J 1

——cz z J for a singlet function andJ)J2J J2J)J

c& j j———cj. J &
for a triplet, and the parity ~ is

( —)
' '. The electron-electron Coulomb interac-

tion is then expanded in familiar fashion

1/r~2 ——1/RQCk(r
~

) Ck(r2)
k

(4)

and matrix elements evaluated using standard an-
gular momentum techniques. All matrix diago-
nalizations are performed using standard
EISPACK routines.

Proceeding in this way we have been able to ob-
tain fully coverged energy levels —typically to 7 —8
significant figures —for two electrons on spheres of
various radii, together with correspondingly con-
verged wave functions. Convergence for all states
of interest is usually found at about 10-15 angu-
lar configurations, although up to 40 angular con-
figurations have been used as a check in many
cases.

The method for calculating the sphere radii R
corresponding to particular shells must be ex-
plained. In their supermultiplet analysis of doubly
excited manifolds, ' Kellman and Herrick ob-
tained the dependence of the effective rotational
constant on the principle shell quantum number N
for He and H, viz. ,

(8)

(ii) Recouple the single-particle angular momenta
to give a rotationally invariant expression for
p'~'(r &,r2) in terms of Legendre polynomials
~k(cos012).

TABLE I. Values of sphere radius R in atomic units
for shells N =2,3,4, 5 and nuclear charges Z =1,2 (cal-
culated from Ref. 13).

He
Z=2

H
Z=1

a rigid linear XY2 molecule

B8 ——1/4R

to calculate effective sphere radii for shells with

n~ ——n2 ——2, 3,4, 5 for He and H . The resulting
values of R are given in Table I. Although this
simple prescription for the effective sphere radii
yields values that are somewhat larger than expect-
ed from the positions of maxima in typical radial
distribution functions, the qualitative features of
the results described in the next section are in fact
insensitive to the precise choice of R. (It is well

known from nuclear physics that the moment of
inertia problem, i.e., the problem of the interpreta-
tion of effective rotational constants derived from
observed or computed collective rotation spectra, in
general presents many difficulties' ).

Having obtained accurate wave functions for
two particles on a sphere whose radius corresponds
to a particular doubly excited intrashell manifold
for either He or H, we can calculate the reduced
two-electron density as a function of the interelec-
tronic angle 0&2. The function p(0&2) contains all
essential information on interparticle correlation on
the sphere, since it excludes irrevelant details con-
cerning the rotational wave function of the system,
the latter being determined essentially by rotational
symmetry alone. A general expression for
p'J'(0&z) for an arbitrary two-electron wave func-
tion having total angular mometum j and ex-

pressed in terms of single-particle coordinates is
derived as follows:

(i) Form the rotational-invariant two-electron
density by summing over the magnetic quantum
number m:

8, =0.169N He,

88 Oo058N ' H o

(5)

(6)

We have used these results together with the ex-
pression for the rotational constant appropriate for

N=2
3
4
5

5.6
13.7
25.8
42.0

9.2
22.0
40.9
66.1
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(iii) Integrate directly over the Euler angles
describing the orientation of the electron-nucleus-
electron triangle in space. Since the Jacobian for
the transformation from independent-particle angu-
lar coordinates to Euler angles describing the
orientation of the atom-fixed frame together with

8&2 is + 1 with natural weight functions, this
step simply involves multiplication by the Euler
angle volume 8n .

We thereby obtain an explicit expression for the
reduced density p' '(8&2) in terms of the coefficients

J)J2J'

p'J'(Hi2)= g c', , cj J J —,[(2ji+1)(2ji+1)(2j2+l)(2j2+1)]'
))))

)2J2

y( )J «(2k 1) J j k j2 j k k p ( 8 )000 000 J2JJ2 k 12

(10)

Also, the expression for p'J'(8») is identical with the expectation value of the angular delta function
5(cos8&2 —cos8&z), which is just the two-particle angular density matrix

i&i(8 } gc;., c. . .g (g,g2J ~ ~

C«(1) &«(2)
I I

Jijzj)P«(cosHi~) .(2k+1)
i)i/i )~ 2 2

))i )

J2J2

This formula has recently been used by Warner et at. Finally, the value of p'~'(Hi2) at Hi2
——0 is given by

p'J'(8, 2
—0}=g c', , c, —,[(2ji+1)(2j', +1}(2j2+1)(2jz+1)]'

i)) )

J2J2

There are several points to be noted concerning this result. First of all, it is an explicit and tractable expres-
sion involving a natural expansion of the reduced density in terms of Legendre polynomials. The sum over
the extra variable k is finite, terminating at k,„=min(ji+ ji,j2+ j2 ). The expression (9) is much more
convenient than that given previously by Rhemus et al. , ' which involved an integral over a function of both
old and new coordinates. The reduced density p'&'(Hi2) is correctly normalized, as is easily verified

—i 2f p'~'(H, z)d(cosHi2)= g ~ cj j J+1 )»2

ji j2J JiJ2 j000 0 00 (12)

which is (twice) the "pairing density" defined by

In the next section energy levels and reduced
densities obtained by the methods just described
are examined in some detail.

III. COULOMB POTENTIAL

Figure 1 shows fully converged calculated ener-
gies of 19 states for two electrons on a sphere of
radius 13.7 bohr, corresponding to the states of the
He N =3 doubly excited shell. The first thing to

be noted is that the energy level pattern is striking-

ly similar to those calculated for the three-dimen-
sional case by Herrick and Kellman, ' ' and clear-
ly has the appearance of a fragment of the
rotation-vibration manifold of a linear triatomic
molecule with a low ratio of bending to rotation
frequency. There is, however, one important
difference between the level patterns for converged
states of particles on a sphere and electrons in an
atom. Thus, in the real atomic case the so-called
T(1) doubling has opposite sign to that for electrons
on a sphere or linear molecules. The significance
of this reversal is discussed below. Each state can
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FIG. 1. Calculated energy levels for two particles on a sphere of radius 13.7 bohr interacting via a Coulomb repul-

sion. The 19 states shown correspond to the He N =3 doubly excited shell, and are arranged according to the
rotation-vibration pattern. Assigned molecular quantum numbers are also shown (see text).

be assigned a set of molecular quantum numbers

based upon its position in the calculated rotation-
vibration manifold. These quantum numbers are

v2, the number of quanta of bending vibration, I,
the projection of the vibrational angular momen-
tum due to the degenerate bending mode along the
molecular axis, and J, the total angular momen-
tum. The following hierarchical relations hold:

v2
——0, 1,2. . . ,

1 =u2, v2 —2, v2 —4, . . . 1 or 0,
J=l,1+1,. . . .

(13a)

(13b)

(13c)

8/10 Ry B

N=2
3
4

20.0
3.0
0.82

15.9
2.66
0.71

For every state the parity and permutational sym-
metries given in the term symbol agree with those
calculated from the associated molecular quantum
numbers. ' '

According to the molecular picture, the five
states iS', P0 iD', P', and iG~ on the left-hand
side of Fig. 1 form a rotor series based on the vi-

brationless ground state. The calculated energy
levels for these states are indeed very closely fitted

by the rigid-rotor expression EJ =BJ(J+1); the

TABLE II. Rotational constants 8 for N =2,3,4
shells of "He" (8/10 ' Ry). Column A: Fitted to "ob-
served" levels. Column B: Rigid rotor value 1/4R' a.u.

derived value of the rotational constant 8 is
3X 10 Ry, which is in good agreement with a
rigid-rotor value of 1/4R atomic units -2.7

X 10 Ry (cf. Table II).
It can therefore be inferred that correlation of

electrons on the sphere results in localization of the
particles around 8&2-m, and that collective rota-
tion of the linear configuration of particles can
then occur.

Bending vibration levels are also clearly identifi-
able in Fig. 1. For example, the three nearly even-

ly spaced 'S' states shown correspond (left to
right) to 0, 2, and 4 quanta of bending vibration,
respectively. In addition, closely spaced doublets

such as P'/'P', D'/'D' are assigned to vibra-

tional levels with nonzero values of I. Thus, the
sequence of doublets P'/'P', 'D'/ D', and
I'/'I" form a rotor series with vibrational angu-

lar momentum 1 =1. In the absence of any in-

teraction between bending and rotational motion,
the 1 (or T) (Ref. 12) doublets would be degenerate;
in fact, calculated centrifugal splittings increase
with increasing angular momentum J, as expect-
ed. ' Note that left- (right-) hand partner states
are —(+ ) states analogous to (+) lambda-doublet

eigenstates in diatomic molecules.
Rotational constants and bending frequencies ob-

tained from calculated energy levels are given in

Tables II and III, respectively, for the N =2,3,4, 5

shells of "helium". The fitted values of vibrational
frequencies are in good agreement with those cal-
culated from a harmonic approximation to the in-

terparticle Coulomb potential obtained by expand-
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TABLE III. Vibrational frequencies for N =3,4, 5

shells of "He" (/10 Ry). Column A: Values ob-
tained from calculated spacings of levels with fully con-

verged calculations. Column B: Values obtained from
the harmonic term in the expansion of potential about
the linear configuration. Column C: Values obtained
from the shape of the wave function.

B

N=3
4
5

19.0
7.45
3.62

19.7
7.57
3.67

18.9
7.52
3.58

(14)

where n =(vq —l)/2 is the number of nodes in the
angular wave function, g=(kp)'~ P is a scaled
bending coordinate, p =2R is the reduced mass
for bending, the harmonic approximation to the
bending potential is given by V- I/2kP, and N„ i

is a normalization constant.
Figure 2 shows density profiles p(8, i) for all the

N =3 shell states given in Fig. 1, calculated from
the corresponding fully converged wave functions.
The quantity actually plotted is p/p, „vs 0&z,
where p,„ is the maximum value of the density in
the interval 0 to n., so that all plots are normalized
to unity.

The plots in Fig. 2 display many significant and
striking regularities. First of all, we see that the
five states provisionally assigned to a rotor series
based on the vibrationless ground state have virtu-
ally indistinguishable (scaled) profiles p(0&z), which

ing about the linear configuration. ' Higher-order
rotation-vibration constants have not been fitted to
these levels.

We therefore conclude from our examination of
calculated energy levels that, in addition to under-

going overall collective rotation, two electrons on a
sphere execute well-defined bending vibrations
about the linear configuration, and that there is
significant but not overwhelming vibration-rotation
interaction.

We now turn to the calculated densities p(Hid) in
order to determine whether or not the inferences
drawn above concerning localization are in fact
supported by the forms of the electron distribu-
tions themselves. First recall that densities associ-
ated with pure linear molecule wave funcions are
well known. If the state has vibrational quantum
numbers vq and I, and the bending coordinate is
P=(ir —Hiq)/2, the density p is the functionio

p=N', , ie '7'P.'(V)]',

are to very good approximation Gaussian in shape.
This result reveals the essential feature of collective
rotation, which is that the set of states forming a
collective rotor series have an internal shape which
is little altered by addition of rotational angular
momentum to the system. ' In fact, there are
slight but systematic variations of the density pro-
files with increasing angular momentum, due to
centrifugal distortion (see below). From the half-
width of the ground state 'S' Gaussian profile it is
possible to calculate an effective vibrational fre-

quency in good agreement with the "observed" and
harmonic approximation value (Table III).

In three doublets P'/'P', 'D'/ D', and F'/'F'
assigned to vz ——1 form a particularly interesting
set of states. We see that the density profiles

p(0&z) for near degenerate I-doublet partner states
are identical; it should be emphasized that partner
states have distinct global symmetries and spins, so
that the corresponding wave functions and p's are
obtained from completely independent blocks of
the Hamiltonian. The densities themselves have
precisely the form expected from (14) for states
with vibrational quantum numbers vz ——1 and 1=1,
confirming the original assignment. It can also be
seen that there is relatively little centrifugal distor-
tion of the vq ——1 profiles, at least up to J=3 (F
states).

The nodal structure of the reduced two-electron
density is of some importance. Since the Coulomb
repulsive potential rises to infinity at 0&z ——0, all
wave functions are expected to vanish at this point
unless constrained to do otherwise. In addition,
for some space and spin symmetries the two-
electron wave function and hence p must necessari-
ly have a node at O~q

——~. Thus, when

O, z ——m(ri —— rq) the fo—llowing two operations
must have an identical effect on the wave function:

(i) Interchange of particle coordinates

(ii) Inversion

For the wave function to be nonzero at O~z ——~ we

must therefore have ( —)
' '=+1 (singlet),

( —)
' '= —1 (triplet), so that the following states

rigorously have nodes at 0&z ——m.: triplet even and
singlet odd. All the v~

——1 manifold of states are
therefore constrained to have a node at Oiq

——m., ir-
respective of the exact degree of resemblance to 2-d
oscillator functions. The two-electron wave func-
tion also vanishes identically at Oiq

——m. or 0 if it is
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FIG. 2. Reduced two-electron densities p(8~2) calculated for the states shown in Fig. 1. The quantity actually plot-

ted is p/p, „, so that all densities are normalized to a maximum value of unity.

not symmetric with respect to reflection in a plane
containing ri and r2 ——+r&. It follows that the
wave function vanishes at 0&2

——0 or m if
( —) is —1, i.e., the following states haveJ&+J2—J ~

(so-called Class I)' nodes at 8~2 ——0 or m-.

even j, odd parity,

odd j, even parity .

The l doubling calculated for the fully converged
states of two electrons on a sphere has the same
sign as that usually found in linear molecules, '

i.e., the (+ ) states (such as 'P') lie lower than the
( —) states (such as 3P'). For the particles on a
sphere, the ordering of the levels is easily under-
stood in terms of the energy levels of a slightly
asymmetric top, where an effective nonlinearity is
induced by the bending vibration (cf. Fig. 2). In
linear molecules, there is an additional splitting
due to coriolis interaction of the bend with the
asymmetric stretch mode. ' If the asymmetric
stretch has a higher frequency than the bend, as it
usually does, the interaction tends to push the (+ )

states still lower with respect to the ( —) states.
However, the l(T) doublet splittings obtained

from calculated energies' ' of intrashell doubly
excited states of He and H atoms all have oppo-
site signs to those found for particles on a sphere
and linear molecules. We believe that this reversal
is due to the relative density of suitable interacting
states above and below the levels of interest in the

atomic case. For the P'/'P' pair in, say, the
N =2 double excited atomic shell, the "2p " P'
state is the lowest state of that global symmetry,
whereas there are infinitely many 'P' levels lying
below, as well as above, the "2s2p" 'P' state. Any
interaction with those lower-lying states will tend
to push the 'P' partner up in energy with respect
to P' (given that the molecular model implies a
near degeneracy). The P' state can only be
pushed down. Similar arguments hold for the T
doublets 'D'/ D' and F'/'F' of the N =3 shell.

An after-the-fact rationalization of the relative

ordering of the l doublets can be obtained by ex-

amining reduced probability densities p(rq, 8,2 ~

ri )

for the N =2 P' and 'P' states of He calculated
from high quality Sturrnian wave functions. ' Ac-
cording to Ref. 14, the ( —) states [those with

11(—) = —1] always lie lowest in energy, and this
rule is confirmed by our own calculations. These
states all have Class I nodes (see above), so that

p(r2|), 2 ~

r, ) =0 at 9~2 ——0 or m. for all values of r,
and rz. There is therefore no buildup of electron

density at Olz ——0, r
&
-r2 for the 1( —) P' state, as

can be seen very clearly in plots of p. ' For the
1(+ )'P' state, however, there is no such restric-
tion and plots of p do in fact show nonvanishing

density at OI2 ——0, rl -r2. ' The level ordering can
therefore be rationalized on the basis of the larger
Coulomb repulsion in the 'P' state. The fact that
we invoke the behavior of the wave function
around HI2-0 to explain the sign of the splitting is
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in accord with the discussion of T doubling given
in Ref. 14.

It is therefore important to note an essential
difference between electron correlation in the real
atom and that found in the model system of two
particles on a sphere. By including sufficiently
many angular configurations for the two particles
on a sphere, it is possible to obtain enough angular
correlation so that p(8~q ——0)-0 for singlet p-
doublet states without Class I nodes, e.g., 'P', and
the system behaves like an asymmetric top. Pre-
sumably in-out radial correlations prevent a similar
degree of angular localization in corresponding
states in the atomic case. These results imply that,
using a smaller angular basis for particles on the
sphere, it should be possible to reverse the sign of
the l doubling for certain pairs of states. This is
indeed the case. The splitting of the upper
P'/'P' pair shown in Fig. 6 (see below) is oppo-

site in sign to that of the lower pair; the upper pair
exhibits the atomic ordering and has appreciable
density around HI&

——0 in the 'P' state, whereas the
lower states exhibits the molecular ordering and
has p(8~q)-0 around 8,z ——0 for both states.

The three rotor states 'S', P', and 'D' assigned
the vibrational quantum numbers vq

——2, I =0 have
densities qualitatively just as expected from (14)
for two quanta of bend, with the quantitative
difference that the actual profiles do not fall off
quite as rapidily as the pure molecular wave func-
tions for large values of P=(n —8&z)/2. The two
partner states D'/'D' corresponding to the vq ——2,
I =2 pair illustrate the points made above concern-
ing nodal structure. Thus, the D' state is con-
strained to have a Class I node at Olq

——~, and so
has the qualitative shape given by (14). However,
the 'D' partner state has no such constraint, and
can have finite electron density at Oiq

——m without
violating any symmetry requirement (recall that
'D' corresponds to the (+ ) partner state of the I
doublet). A buildup of density at 6~q ——0 can be
considered a result of mixing of a pure vz

——2, I=2
molecular wave function with the nearest 'D' level

(vq ——2, l =0). Because the energy of the 'D'(vz
=2, l=0) is higher than that with l =2, this mix-
ing leads to lowering of the energy of the
I =2(+)'D' state with respect to its partner D'.
We stress that the bump at HI& ——0 for the 'D' state
is not an artifact resulting from use of too small a
basis. Rather, it persists and actually increases
with the size of basis until convergence is attained.
This mixing of "bending" angular momentum of
the I =2 state and "rigid" rotation of the I =0

np ——N —d —1=(vp —I)/2,

d=0, 1, . . .N —1,
(15a)

(15b)

where N is the shell principal quantum number, so

state is analogous to A doubling in linear mol-
ecules. The effect is even more pronounced in the
plots of p for the N =4 shell (see below).

Moving on to the two vq
——3, 1=1, P'/'P'

states, we find once again that the calculated re-
duced densities are remarkably similar and of pre-
cisely the form expected from the assigned molecu-
lar quantum numbers. There is no nearby rotor
state to contribute to A doubling for this pair, so
they remain almost degenerate, with identical wave
functions. Finally, the highest energy 'S' state has
a density profile appropriate for a state with 4
quanta of bending vibration.

As mentioned above, the wave functions exhibit
the effects of centrifugal distortion. In Fig. 3(a)
we superimpose the five reduced densities for the
vz ——0 rotor series of the N =3 shell. It can be
seen that there is a progressive narrowing of the
Gaussian profiles with increasing angular momen-
turn, due to centrifugal distortion. In classical
terms, centrifugal forces resulting from overall ro-
tation have a tendency to push electrons toward
the linear configuration, and this effect is manifest
in quantum mechanics as a narrowing of the angu-
lar distributions around 8lz ——m. Figure 3(b) shows
the corresponding effect in the vz ——2 rotor series.

Our results on both energy levels and wave func-
tions for the "N =3 shell" of two particles on a
sphere show that correlation due to Coulomb
repulsion induces a remarkable degree of collective,
moleculelike behavior. It seems entirely plausible
that such molecular behavior may persist in doubly
excited states of real two-electron atoms when radi-
al motions come into play, as suggested by the
work of Herrick and Kellman.

We now describe much more briefly results for
some other "shells. " In Fig. 4 we show reduced
densities for the six states corresponding to the He
N =2 shell (R =5.6 bohr). Whereas the states of
the N =3 shell were displayed in Fig. 2 so as to
bring out the rotation-vibration structure as clearly
as possible, the states in Fig. 4 are arranged slight-
ly differently to form so-called d supermultiplets. '

All states in a given d supermultiplet have the
same number nz of nodes (or near nodes, since d is
not a rigorously good quantum number) in the
bending wave function between Oiq

——0 and m. The
relation between d and nz is
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FIG. 3. Centrifugal distortion in the "He 1V =3 shell. " In (a) we superimpose density profiles for vz ——0 rotor series,

while in (b) density profiles for the vz ——2 rotor series are superimposed.
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FIG. 4. Reduced two-electron densities for the "He
8 =2 shell" (sphere of radius 5.6 bohr). The states are

arranged in so-called d supermultiplets.

that d supermultiplets are made up of states having

constant values of the difference vq —1 (which may

be interpreted as the degree of excitation in the

bending mode' ). The states in a given d super-

multiplet are arranged symmetrically around a cen-

tral column of states with I =0, with I (and there-

fore vz) increasing by one per step to the left or

right, and total angular momentum J increasing

vertically. These points are illustrated in Fig. 4,
which shows the two d supermultiplets associated

with the He N =2 shell. The d =1 supermultiplet

contains five states with no nodes in the bending

wave functions (nz ——0): these are the rotor series
'S', P', and 'D' with Uz

——0 I =0, and the Uz
——1

I =1 doublet P'/'P'. The d =0 supermultiplet

consists of one state, 'S' with Uz ——2. The mole-

culelike character of all the states is evident from

Fig. 4; note particularly the similarity between den-

sity profiles for partner states P' and 'P'. Fol-

lowing Herrick and Kellman, +( —) states appear

on the right- (left-) hand side of a d supermultiplet.

Figure 5(a) shows the d =3(nq ——0) supermulti-

plet of the "He N =4 shell" (R =25.8 a.u.). The
notable features are by now familiar:

(i) a well-defined central (vi ——0) collective rotor

series, in which the states have Gaussian profiles;

(ii) well-defined I doublets associated with degen-

erate collective bends, with reduced densities quali-

tatively similar to those given by (14); for example,

the g' factor in (14) implies a slower rise of p away

from (=0, Hid ——m with increasing 1: just such a

trend can be observed in the states iF'[1 =1(—)],
'F'[1=2( —)], and F'[1=3(—)];

(iii) pronounced centrifugal mixing leading to a
buildup of electron density at 0&z ——m for states
where this is allowed by symmetry [for example,

the 1=2(+ ) rotor series 'D', 3F', and '6']. In

Fig. 5(b) we show the remaining states of the N =4
shell, arranged into d supermultiplets. The molec-

ular character of the wave functions is apparent
throughout the whole N =4 intrashell manifold.

In the remainder of this section we examine very

briefly the effect of an inadequate basis upon the

calculated reduced densities. It is of particular in-

terest to make a comparison between fully con-

verged wave functions and those constructed using

a minimal angular basis, i.e., one in which the
maximum value of the single-particle angular

momentum I is N —1 for a given shell. This latter
case is important since O(4)-based theories of
correlation in doubly excited intrashell states use a
direct product basis of hydrogenic functions where

the above restriction on I holds. The question is,
then, how well does a minimal basis represent an-

gular correlation?
In Fig. 6 we show reduced densities for the He

N =3 shell calculated from wave functions ob-

tained with a minimal angular basis. Figure 6



1522 GREGORY S. EZRA AND R. STEPHEN BERRY 25

1&e
1.0 (a)

H

I

Q m/2 7T
'

I.O I.O

H

1.0

I.O

0 &/2 & 0 &/2 & 0 &/2
0.0 ' 0.0 0.0

I.O I.p (.0
1Ge

I.O

1.0
1F3Fe 3Fo

0.0 0.0 ~ 0.0 ' . 0.0 0.0
Q &/2 7T 0 &/2 7t' 0 &/2 7T 0 &/2 & 0 &/2

—I.O I.p I.p I.O I.p

1F 3F 1

1.0

0 &/2 ~ '
0 ~/2

0.0

~(z
3

0.0
7r

'

(.0
0 ~/2 ~ 0

0.0 '

1.0
1p

&/2 W 0 &/2 W Q &/2 T P &/2 T0.0 0.0 0.0 ' 0.0

I.O 1.0 lg) 81)
3 1

Q S/2

~(z

0.0 ' 0.0 '

P ~/2 W
'

0
I.O

0.0 I

(.0

0.0 I 0.0

I.O

0 &/2 Z
'

0 r/2 P '
0 ~/2 r '0.0 ' 0.0 0.0

I 0 g(2

P/Pm ox

0.0
Q m/2

~(z

I.Q

/Pmp x

Q w/2

IP g 10 I.p Se
1.0

p
I.P

r/2 X 0
0.0 '

1.0

P/p„„

m/2 m
'

Q ~/2 w
'0.0 0.0

I.P p I.P 1.0 1.0

P/p px

o.o
Q v/2

0.0
p

0.0 0
0.0

0
0.0 0 / ~0.0

(2

I

0 &/2

1.0 1.0 1.0

Plpmax

Q w/2 7'
Q v/2 v'

Q w/2
0.0 ' 0.0 ' 0.0

I.p

00
/ 000 /

00

I.p g

Q v/2
0.0

~(2

pp
P v/2

FIG. 5. Reduced two-electron densities for the "He N =4 shell" (sphere of radius 25.8 bohr). (a) shows the d =3
supermultiplet, while (b) shows the d =2, 1,0 supermultiplets.



25 CORRELATION OF TWO PARTICLES ON A SPHERE 1523

1.0

0.0
p ~/p 7T

1.0 1.0 —1.0

1.0

—1.0

0.0 ' OD 0.0
p

1.0 —1.0 -1.0

0.0 ' 0.0 0.0
p w/p v 0 «/p ~

'
0 &/2

3
I.Q

3
1.0 1.0

0.0
Q y/p

—1.0

0.0
0 ~/~

—I.Q 1.0 1.0

1.0 —1.0

Oa 00
p ~/q ~ p

~ OX)
0 &/2

I 0.0 0.0 0.0
p w/p w

'
Q

' &/2 &
'

Q &/2

1.0
S

-0.0 ' 0.0 ' 0.0
p m/p ~ '

0 ~/p & 0 &/2

I Q.O
0 &/2

e,
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must be compared directly with Fig. 2. Several
qualitative features are immediately obvious.
Thus, there are states of low energy whose wave
functions (and energies) are well described using a
minimal basis, e.g., 'S'(v2 ——0), 'S'(u2 ——2), P'/
'P'(u2 ——1, 1=1). However, with increasing energy
the ability of the basis to give the correct trends
found with fully converged wave functions is limit-
ed. For example, we note that the density profiles
in the u2 ——0 rotor series appear to spread out with

increasing angular momentum rather than con-
tract, as they do with converged functions. Simi-

larly, the reduced densities for partner states
'D'/ D'(v2 ——1, I =1) are no longer identical with
those derived from a minimal basis. Finally, there
are several states at high energies for which use of
a minimal basis leads to qualitatively incorrect
forms of the reduced density. Examples are the
'6'(v2 ——0), 'F'(v2 ——1, I = 1), 'D'(u2 ——2, l =0),
'P'(vz ——3, I = I), and 'S'(v2 ——4) states. In all

these cases there is an apparent localization of elec-
tron density at 0&2 ——0, which is characteristic of
so-called antirotor states. Such antirotor character
is here clearly spurious, being a consequence of the
orthogonality constraints imposed by use of too
small an angular basis. An apparent localization
around 0&2

——0 was also noted by Brickstock and
Pople for single-configuration 'P' two-electron
wave functions.

Similar results are found when using minimal

angular bases for other shells. In general we find

that, for a given shell, it is necessary to include
single-particle angular momenta up to a value of N
in the basis to obtain correctly the gross trends in

the reduced density, whereas to obtain subtle
features such as centrifugal contraction we require
single-particle angular momenta up to N+1.

The implications for calculations of real two-
electron atoms are of some interest, since our re-
sults suggest that use of a DESB-type basis '
leads to a qualitatively incorrect representation of
angular correlation in higher states of doubly excit-
ed shells. This conclusion is borne out by some
previous calculations on the "2p " 'S' state of
He**, where the "antirotor" nature of the state
found using a DESB basis changes to rotorlike
with a more accurate Hylleraas-Kinoshita wave

function (Ref. 19), compare especially Figs. 9(e)
and 10(b).

IV. NON-COULOMBIC POTENTIALS

In this section we examine energy levels and re-
duced densities for two particles on a sphere in-

teracting through non-Coulombic potentials. Com-
parison is made with the results of the previous
section.

Consider first two "electrons" on a sphere in-

teracting via a Gaussian potential of the form
shown in Fig. 7. This potential is smooth and at-
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FIG. 7. The Gaussian potential used in our calcula-
tions. Note that this potential forms a smooth well at
the linear configuration, i.e., Hi2

——~.

Xjk(2iR /W )Pk(cos8~2), (16b}

where S is a strength parameter and JY is the
width of the Gaussian. The Gaussian mimics
short-range atom-atom potentials around 8~2

——n.

but corresponds to penetrable particles around

Oi2
——0. We have found that some care is necessary

when using the expansion (16b), since is is ap-

parently asymptotic; typically we retain only the
first 8 —10 terms.

Figure 8 shows fully converged energy levels for
the states of the "N =3 shell. " Parameters for the

tractive at 8&2 ——~, and has the expansion

V(R, 8&z) =Sexp[ —2R (1+cos8~2)/lV ], (16a)

y ~ —k( )g(2k + 1 }e
—2R~/Iv

k

Gaussian potential are R =13.7 bohr, S = —0.05
a.u. , and W =30 bohr. This combination of
strength and width parameters gives a reduced
density for the lowest 'S' state almost identical
with that for the Coulomb potential (see below}.
The energy levels in Fig. 8 should be compared
with the corresponding levels for the Coulomb case
in Fig. 1. It can be seen that, although the levels

of Fig. 8 still fall into a recognizable rotation-
vibration pattern, there are marked differences be-

tween the Gaussian levels and the vibrator rotator.
Despite the strong resemblance of the main (vq ——0}
rotor series for the Gaussian potential to that for
the Coulomb case, implying a similar degree of lo-

calization of the particles, the three "u2 ——2" states
'S', P', and 'D' no longer form a well-defined ro-
tor series. Centrifugal splittings also increase rap-
idly with energy, distorting the rotation-vibration
pattern. Thus, the splitting between the U3

——3,
I =1 partner states P' and 'P' is of the same or-
der as a bending vibrational spacing.

All this implies that the molecular picture is on
the point of breaking down for the higher energy
states of the "N =3 shell" with a Gaussian poten-
tial, and this conclusion is confirmed by examina-
tion of the corresponding reduced densities shown
in Fig. 9. The v2 ——0 rotor series bending wave
functions are very similar to those for the Cou-
lomb case; indeed, as mentioned above, the particu-
lar Gaussian potential parameters used here were
chosen to make the lowest 'S' profiles as similar as
possible. Moving to the vz ——1 manifold a major
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FIG. S. Calculated energy levels for two particles on a sphere interacting via the Gaussian potential of Fig. 7, with

& =13.7, S= —0.05, and W =30. The 19 states shown correspond to the "He N =3 shell" shown in Fig. 1. Levels
are arranged to show the rotation-vibration pattern.
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FIG. 9. Reduced two-electron densities p(8l2) calculated for the states shown in Fig. 8.

difference becomes apparent. For, due to the finite
value of the Gaussian potential (16) at 8&2

——0, the
'F' and 'P' states are able to build up density at
8&2

——0, leading to qualitat&ve differences between
the wave functions for l-doublet partners. Such a
delocalization of the particles away from 8&2——m is
associated with large centrifugal splittings; witness
the gross disparities in the density profiles for the

=2", D /'D', d" =3" P'/'P ' . Th
v2 ——2'S' function is also distorted from the ideal
molecular shape; presumably centrifugal forces
serve to keep the 'D' more localized around 8i2-m
{the P' must of course have a node at Hi2 ——0 due
to the Pauli principle). Note that the "v2 ——4" 'S'
state is very nearly symmetrical about 8i2 ——~/2,
showing that the transition from collective to
single-particle dynamics is almost complete with
this state {pure angular configurations for 'S' state
are characteristically symmetric about Oiz ——n/2).

We are therefore able to observe the onset of
independent-particle shell-model behavior in a
smooth Gaussian potential of the form shown in
Fig. 7. For sufficiently high kinetic energies, the
potential can no longer confine the particles
around 8i2-n. , so that collective molecular
behavior breaks down. We have found a similar
transition between collective rotations and vibra-

tions and independent-particle dynamics in the mo-
tion of two particles moving on concentric spheres
of different radii interacting via a Coulomb poten-
tial. Increasing the ratio of the radii of the two
spheres leads smoothly from semirigid bending vi-
brations to hindered rotations of one particle
around a central core.

Finally, we consider two particles interacting via
a delta-function repulsive potential. Figure 10
shows densities p(8i2) calculated for six states on a
sphere of radius 5.6 bohr, corresponding to the
"He N =2 shell", with a delta-function repulsion
of unit strength. Figure 10 is to be compared with
Fig. 4. Our calculations show directly that the
triplet states P' and P' have pure angular config-
uration wave functions. This is expected, since,
having a node at 8~2 ——0, triplet functions cannot
feel the delta-function interaction. Densities for
the singlet 'S', 'P', and 'D' states exhibit spurious
oscillatory structure due to incomplete conver-
gence, despite the use of a relatively large (l,„
=15—20) angular basis. Although calculated en-
ergy levels by no means form a molecular
rotation-vibration pattern, there is nevertheless a
certain family resemblance between the two sets of
states in Figs. 4 and 10, illustrated by the arrange-
ment of levels into d supermultiplets. Since we
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FIG. 10. Reduced two-electron densities p(0~q) for two particles on a sphere of radius 5.6 bohr interacting via a
delta-function repulsion of unit strength. The six states shown correspond to those of the "He N =2" she11 shown in

Fig. 4.

have compared states for potentials having com-
pletely opposite characteristics (long-range Cou-
lomb versus ultra-short-range delta function), we

conclude that kinematics and symmetry constraints
are important in determining the form of the wave
function.

V. CONCLUSIONS

Several interesting results have emerged from
our analysis of the model problem of two particles
moving on the surface of a sphere of fixed radius.

First of all, for the Coulomb case, it is remark-
able the extent to which purely phenomenological
assignments of molecular quantum numbers based
on computed energy levels are confirmed by de-
tailed examination of the reduced densities p(8~2).
The dominant feature in all the states studied is a
marked angular correlation and localization of the
particles around 0»-m. . This leads to the possibil-
ity of collective moleculelike behavior with well-
defined separation of rotation and vibration. An-
tirotor character only appears as a result of an
inadequate angular basis.

For a softer Gaussian interparticle potential, lo-
calization only occurs at the lowest energies. At
higher energies we observe a transition to inde-

pendent-particle shell-model dynamics, signaled

both by gross distortions in the rotation-vibration
energy-level pattern and by pure angular configura-
tion character of corresponding wave functions.
Such a transition is also observed for the motion of
two particles on concentric spheres of different ra-
dii, as the radius of one sphere is made much
larger than the other. ' It is also appropriate to
mention here the work of Wyatt and collabora-
tors, who have studied a similar transition be-
tween semirigid bending and hindered rotor
dynamics in a different context (definition of chan-
nel functions for reactive scattering calculations).
The possibility of observing such a phenomenon in
highly excited local-mode states of small molecules
is very intriguing.

Finally, examination of wave functions for states
of the repulsive delta-function potential shows that
kinematics and symmetry requirements have a sub-
stantial part to play in shaping the wave function.

The significance of our work for the elucidation
of Kellman and Herrick's phenomenological iden-
tification of rotation-vibration patterns in calculat-
ed levels of real doubly excited atoms is clear.
Since the moleculelike character of states for parti-
cles on a sphere with Coulomb interaction is so
pronounced, it is reasonable to expect some of this
collectivity to carry over into the full three-
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dimensional dynamics. Indeed, we have already
shown that the 'S' and ' P' doubly excited states
of the He N =2 shell have significant molecular
character. However, in-out radial motions will

tend to reduce the extent of angular correlation in

a given state, while high values of the total angular
momentum will increase coupling of "vibrations"
with overall rotations. It has also been found that
there is a significant reversal in the sign of the l-

(T-) doublet splittings between the particles on a
sphere and the real atomic case. A systematic
study of the conditional probability density

p(r, 0, 2 ~

r2 ——a) for all states of a given doubly ex-

cited shell is needed to determine the full extent of
the validity of the molecular picture, and work

along these lines is in progress.

ACKNOWLEDGMENTS

G.S.E. would like to thank the UK Science
Research Council for the award of a NATO Post-

doctoral Fellowship. This work was supported in

part by a grant from the National Science Founda-

tion.

'J. W. Cooper, U. Fano, and F. Prats, Phys. Rev. Lett.
10, 518 (1963).

C. E. Wulfman, Phys. Lett. 26A, 397 (1968).
J. S. Alper and O. Sinanoglu, Phys. Rev. 177, 77 (1969).

4J. S. Alper, Phys. Rev. 177, 86 (1969).
5J. Macek, J. Phys. B 1, 831 (1968).
C. E. Wulfman, Chem. Phys. Lett. 23, 370 (1973).

70. Sinanoglu and D. R. Herrick, J. Chem. Phys. 62,
886 (1975).

C. D. Lin, Phys. Rev. A 10, 1986 (1974)~

U. Fano, Phys. Today 29:9, 32 (1976).
S. I. Nikitin and V. N. Ostrovsky, J. Phys. B 9, 3141
(1976); 11, 1681 (1978).
D. R. Herrick and M. E. Kellman, Phys. Rev. A 18,
1770 (1978).

D. R. Herrick and M. E. Kellman, Phys. Rev. A 21,
418 (1980).
D. R. Herrick, M. E. Kellman, and R. D. Poliak,
Phys. Rev. A 22, 1517 (1980).

' M. E. Kellman and D. R. Herrick, Phys. Rev. A 22,
1536 (1980).

'5M. E. Kellman and D. R. Herrick, J. Phys. B 11,
L755 (1978).
G. Herzberg, Molecular Spectra and Molecular Struc-
ture (Van Nostrand, New York, 1945), Vol. II.

' A. Bohr, Rev. Mod. Phys. 48, 365 (1976).
P. Rehmus, M. E. Kellman, and R. S. Berry, Chem.
Phys. 31, 239 (1978).
P. Rehmus and R. S. Berry, Chem. Phys. 38, 257
(1979).

H-J. Yuh, G. S. Ezra, P. Rehmus, and R. S. Berry,
Phys. Rev. Lett. 47, 497 (1981).

'G. S. Ezra and R. S. Berry (unpublished).
D. R. Herrick, Phys. Rev. A 22, 1346 (1980).
P. R. Bunker and J. M. R. Stone, J. Mol. Spectrosc.
41, 310 (1972).
D. M. Brink and G. R. Satchler, Angular Momentum

(Clarendon, Oxford, 1968).
J. O. Hirschfelder and E. P. Wigner, Proc. Natl. Acad.
Sci. USA 21, 113 (1935).
G. Breit, Phys. Rev. 35, 569 (1930).
J. W. Warner, L. S. Bartell, and S. M. Blinder, Int. J.
Quant. Chem. 18, 921 (1980).
P. R. Bunker and D. Papousek, J. Mol. Spectrosc. 32,
419 (1969).
G. Herzberg, Molecular Spectra and Structure (Van
Nostrand, New York, 1950), Vol. I ~

S. Califano, Vibrational States (Wiley, New York,
1976).

'H. Herold and H. Ruder, J. Phys. G 5, 341 (1979); G.
Wunner, H. Ruder, and M. Reinecke, ibid. 6, 1359
(1980).

A. Brickstock and J. A. Pople, Philos. Mag. 43, 1090
(1952)~

R. B. Walker and R. E. Wyatt, J. Chem. Phys. 57,
2728 (1972); S. H. Harms and R. E. Wyatt, ibid. 62,
3162, 3173 (1975); A. B. Elkowitz and R. E. Wyatt,
ibid. 62, 3683 (1975); A. B. Elkowitz and R. E.
Wyatt, ibid. 63, 702 (1975); S. H. Harms, A. B. El-
kowitz, and R. E. Wyatt, Mol. Phys. 31, 177 (1976).


