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This paper constructs a general method for obtaining series expansions of the logarithm

of the configuration function F. For an N-body quantum system with Hamiltonian H

and inverse temperature P, the configuration function is the ratio of the exact to the free

coordinate-space heat kernels: F = & x
I
e a

I
x ') /& x

I
e

I
x '). Expansion of lnF in

Planck's constant h leads to the semiclassical expansion of Wigner and Kirkwood,

whereas the series in the variable P provides the high-temperature expansion. By the in-

troduction of an appropriate linked-graph method, it is shown how to obtain explicit for-

mulas for the coefficient functions that enter either of these two series. Further, it is es-

tablished that the same results can be derived by using the Feynman-Kac path-integral

description of the partition function.

I. INTRODUCTION

An N-body quantum system is defined by the

Hamiltonian pair (H, Hp). The first Hamiltonian

H is the sum of the kinetic-energy operator, all

inter-particle potentials and external interactions.

The second Hamiltonian Hp is the free kinetic en-

ergy. A basic description of the statistical me-

chanics of this system is provided by the configu-

ration function, F. Take x to be a 3N-dimensional

vector variable that gives the position of the N par-

ticles and P to be the inverse temperature of the

system, then the configuration function is defined

by

Hp ———qh„. (1.3)

The N-body interaction operator V is given by

multiplication with the potential field u(x). In the

simplest cases, v(x) is the sum of local pair in-

teractions, but may also include three- and four-

body interactions, etc., as well as external forces.

Our detailed calculations require that v(x) be a
smooth (infinitely differentiable) and a bounded

function of x. The full Hamiltonian is then

where fi is the rationalized value of Planck's con-

stant and m is the particle mass. If h„denotes the

Laplacian associated with x, then

&x Ie '"I x') =F(x,x', II)&x Ie H =Hp+V. (1.4)

q=
2m

(1.2)

This configuration function contains all informa-

tion about the statistical system when it is in

equilibrium. Since &x Ie I
x') is given by a

simple formula, F determines the coordinate-space

matrix elements of e ~ . From the matrix ele-

ments of e ~ the canonical ensemble average of
every quantum-mechanical observable may be

found. This paper studies the asymptotic expan-

sions of the function F and finds explicit expres-

sions for the coefficient functions that arise in

these expansions.
Let q be the quantum-scale factor

An important asymptotic expansion is the high-

temperature expansion around P=O,

F(x, x ',P,q)- g P„(x,x ',q) .
n!

(1.5)

This expansion was examined in a previous paper'

which we shall refer to as I. Briefly, Perelomov

showed it is possible to use the Bloch (or heat)

equation implied by e ~ to find a recursion rela-

tion for the functions P„. In I, we have extended
Perelomov's results and the genera1 formula for P„
for all n was obtain&. The coefficient function P„
turns out to be an nth-order polynomial in the in-

teraction v (x) and an (n —1)th-order polynomial

in the quantum-scale parameter q. Thus, P„gen-
erates a natural semiclassical expansion. In fact, in
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asymptotic expansions related to the pair (H,HO),
the functions P„are ubiquitous. For example, let z
be the complex energy appearing in Green's func-
tion G(z)=(H —z) '. Then the P„may be used
to expand &x

I
«z)

I
x'& in the»mit Iz I

~~ ~

In this context, the functions P„are encountered in
the one-dimensional problem treated by Gelfand
and Dikii and in the three-dimensional problem
studied by Buslaev. Furthermore, in the one-
dimensional case the x integral of the diagonal
value (x = x ') of P„constructs the constants of
motion of the Korteweg —de Vries equation.

The semiclassical and high-temperature expan-
sion Eq. (1.5) is not suitable in all situations. Since
P„ is an nth-order polynomial in U, expansion (1.5)
is a perturbation expansion in powers of U. If U is

large, then even when F(x,x ';P, q) is dominated by
classical N-particle behavior, the series (1.5) will

converge very slowly, if at all. This diHiculty is
removed by summing to all orders the classical
terms in the series. This is efficiently done by
looking at the exponential forms of (1.5). The two
important physical parameters of the system are P
and q, so we examine the two series

lnF(x, x ',P,q)- g q"S„(x,x ';P),
n=0

1nF(x, x',P,q)- g, 8'„(x,x';q) .
n!

The first of these expansions is essentially the
%igner-Kirkwood ' semiclassical expansion. The
second series, (1.7), provides one with generating
functions for the P„expansion.

The specific objective of this paper is to find ex-
plicit forms of the coefficient functions S„and
O'„. This problem turns out to be more difficult
than the construction of the functions P„. The
greater difficulty is easily seen in the nature of the
recursion relations for these functions. P„has a
linear recursion relation whereas both S„and 8'„
satisfy nonlinear recursion relations. Nevertheless,
it will be possible to find the explicit forms of S„
and W„. The basic idea behind the solution given
here is to use perturbation theory in the coupling
constant. Take a to be the coupling constant and

If I' is the configuration function for the pair
(H,Ho), then we define

lnF (x,x';P,q)- g a"L„(x,x',P,q) . (1.9)

Setting a=1, of course, recovers the original prob-
lem (H,Ho). %e shaH show it is possible to use s
linked-graph method to construct I.„. Then, given
the series (1.9), one may rearrange it to obtain
either (1.6) or (1.7). In the process, one obtains the
functions S„and 8'„.

In Sec. II, we derive two different formal repre-
sentations of I. The first is due to Goldberger and
Adams. A formula extracted from the Gold-
berger-Adams representation wiH be the point of
departure for the construction of the linked-graph
form of the functions I.„. The second representa-
tion is based on a parametric form of the Hamil-
tonian and is particularly useful in obtaining the
nonlinear recursion relations obeyed by S„and 8'„.
Section III constructs the linked-graph solution for
series (1.9). In Sec. IV, the functions L„are res-
tructured so as to obtain formulas for S„and 8'„.
Section IV also gives the recursion relations for S„
and 8'„. Section V contains an iHustration of the
theory when it is applied to the n-dimensional har-
monic oscillator. The harmonic-oscillator problem
is interesting because it has an exact solution for
the function F. Thus, S„and 8'„may be obtained
directly from their definitions and the formulas
compared with predictions of our linked-graph
Inethod. Conclusions are found in Sec. VI. The
Appendix contains a discussion of our results that
is based on a path-integral approach. In particu-
lar, we clarify the relationship between the
Goldberger-Adams representation and the
functional-integral form of I'. %e show it is a
simple matter to pass from the Goldberger-Adams
representation of I" to that of a path-integral form
given in terms of the conditional %iener measure.
It is then shown that the fundamental formula of
Sec. II can be obtained from the functional-integral
representation of E by purely path-integral tech-
niques.

Most of the mathematical derivations that fol-
low are of an heuristic nature. For example, it is
assumed throughout that the expansions (1.5)—
(1.9) have meaning and are at least asymptotically
convergent series. Further, in a number of places,
we assume that integration and summation may be
interchanged. The basic purpose of this paper is to
find explicit formulas for the coefficient functions
8'„and S„,and in the process to expose the rather
elaborate algebraic and combinational structure
present in these functions. A rigorous treatment of
these unresolved mathematical aspects of the prob-
lems raised here is possible, but would involve dif-
ferent language and techniques than are employed
in this paper.
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II. REPRESENTATIONS OF THE
CONFIGURATION FUNCTION

This section derives two useful representations of
the configuration function F. The first representa-
tion follows from the form of the time-ordered
solution of the Schrodinger equation expressed in
coordinate space. This solution, first obtained by
Goldberger and Adams, is rearranged to find an
ordered exponential differential operator form of F.
This form provides a convenient starting point for
the linked-graph analysis in Sec. III. Our second
representation is also an ordered exponential series.
It, however, is based on a linear-path parametric
form of the Hamiltonian. —(i/l)Hot .

In the N-body Hilbert space e is the
free-particle time-evolution operator. We shall

consistently work in the interaction picture. The
potential-energy operator in this picture has the de-

finition

V ( ) Vt( )
+(ilh)HotV -(ilh)Hot

(2.1)

Here, the dagger denotes the adjoint of an opera-
tor. The equation of motion for the exact time-
evolution operator X(t) is

(2.2)

and the well-known time-ordered solution is

+['/A)H~ " " 0'X(tj=e e

t=exp &
—f dt' Vl ( t') (2.3)

The symbol exp& denotes the ordered exponential
defined by

n
l ' 1 i

exp — dt'Vt(t') —1= g —— . . dt, dt„[Vt(t()Vt(tq). . . Vt(t„)]
n=1

'
n

00

d"t Vt(t() Vg(t2) Vt(t„) .
n=]

(2.4)

The bracket [ ]& notation means that the operator
argument of [ ] & is a t-ordered product with in-
creasing arguments —the largest t factor appearing

t
on- the'right. The integral symbol specifies a
similar convention

dnt =— ~ ~ ~ dt ~ ~ ~

0+1' & ' (t„&l ] n

(2.5)

The decreasing t-ordered product and its related
exponential are represented by [ ]& and exp&.

The first step is to transform (2.4) to its p
equivalent form realized in coordinate space. Let
t'=gt and set t =ihip. Equation (2.3) assumes the
form

=exp& — dge 'U(x)e

x(
/

'i '). (2.7)

The configuration function F is the ratio of
(x ~e ~

~

x') to (x ~e '~ x'). Thus, Eq.
(2.7) is not suitable as it stands to express F To.
remedy this, move the expression (x

~

e
~

x ')
through all the operators in exp&. Assume g to be
any analytic function of x, which admits a Taylor
series expansion about 0. According to the rela-
tionship

PH ~ s @Ho PfHo PHDp ag e

(2.6)

st X
—st

X

we get

sh„—sd,„e xg(x)e "=g(x+2s V„),

(2.S)

(2.9)

We introduce the following new parameters y= pq
and U—=pV. Take the coordinate-space Dirac ma-
trix elements of Eq. (2.6) with respect to ( x

~

and

~

x '). This gives us the kernel form of Eq. (2.6), (2.10)

for any scalar s. With this differential operator
notation, Eq. (2.7) reads

]
(x

~

e ~
~

x ') =exp& —f dg U(x+2ygV )

x(xfe
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(2.11)

Using

[( x —x ') /4yj rV —( x —x ') /4y rV

2y'

it is a simple matter to verify that

U(x+2 gV }
—(x —x ')i/4y

(2.12)

Examine, for the moment, the explicit form of
(x

~

e '
~

x '). Let 25 be the dimension of x.
The function ( x

~

e '
~

x ') is the free-particle
solution of the heat equation

(2.14), is the function of x with constant value l.
Although the Goldberger-Adams relation (2.14)

gives an explicit and exact representation of
F(x, x ';y), its limitations are apparent. The series

in exp& is complicated by the ordering process.
Further, the integrand U(/+2' V' } is difficult to
work with because of the V„ in the argument. We
now alter Eq. (2.14) in order to make its algebraic
structure more transparent. Note first that since

(x~e ~ ~x') and (x~e ~x') areleftin-
variant by the the interchange x~x ', then
F(x, x ';y) =F(x ', x;y). This symmetry implies
Eq. (2.14) can be written

F(x, x ', y)=exp& —I dfU(g'+2''V„) 1 .

(2.16)

[—(x —x ')i/4y]U(~+p~~ ~)+2

(2.13}

Here g represents the path which is the transpose
of g,

Identity (2.13},when combined with (2.10), gives
us the Goldberger-Adams representation

g=x'+g(x —x'), (E[0,1] . (2.17)

Change the variables g,' in Eq. (2.16) by the substi-

tution

F(x, x ';y) =exp& —I dg U(g+2g'V„} 1 .

(2.14)

In Eq. (2.14), we employ the linear-path notation

g =1—g„+); (i =1 n) . -
In particular, note that

g =x '+g(x —x '}

(2.18)

g=—x+((x' —x), gE[0, 1] . (2.15) = x '+(1—g„)(x—x ') =g„. (2.19}

For (=0, the initial point of the path is x. The
final point for g= 1 is at x '. This type of linear
path will appear again and again in our analysis.
The 1, which occurs to the right of exp& in Eq.

Further, this change of variables (2.18) preserves
the ordering process, i.e., 0 & g & g2 & g'„& I

becomes 0&() &gq . &g„&1. Thus, the nth

term in the exp& expansion of (2.16) becomes

( —I)"I d"gU(g„+2)'(I —g„)V ) . . U(g)+2)(I —g))V„)l . (2.20)

Equation (2.9) permits us to write the integrand of (2.20) as

exp[r(1——K. C. '~ ]U(4. }e"p[—'Y(1 —(.C. '~']

Xexp[y(1 —g„))g„)h„]U(g„ i). . . exp[)(1 —g))g) '6 ]U(g)) . (2.21)

In order to simplify the gradient and Laplacian structure here, define V; by

V;U(gj. )—:5;J(VU)(gj) . (2.22)

The right-hand side of (2.22) is to be interpreted as letting V„act on U(x), after that putting x =g/. Gra-
dient V; acts on only the factor U having arguinent g;. An advantage of V; is that the commutator

[V;, VJ ]=0 for all i, j. In terms of V;, we can write
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l l

&„gU(g;)= yg;V; g U(g;) (1=1-ii).
i=1 i=1 i=1

The integrand J is now expressed by
'2

n —1

J=exp y(1 —g„)(„' g g;V; U(g„)exp —y(l —g„g'„g g;V;

(2.23)

n —1

Xexp y(1 —g„ i)g„ i g g;V;
i=1

L

'2

i) ' ' ' exp[y(1 —kiCi '(ki Vi)')U(ki) . (2.24)

The potential functions U(g;) may be moved to the right. Because of the commutivity properties of the V;,
the operator arguments of the exponentials can be combined, giving

J =exp Pq g g P(gt, g;)Vi V; U(gi) U(g„),
1=1i=1

(2.25)

where the function P is defined in terms of g
—=minj g,P I and g

—=maxI g, g'
I by

0(k f ) =k((1 k) ) .—

Finally we obtain, after putting U =pV, the representation

n

F(x,x';Pq)= g ( —P)"I d"/exp Pq g ((i(gi, g;)Vi V; u(gi). u(g„) .
n=0 l, i=1

(2.26)

(2.27)

Formula (2.27) is the principal result of this sec-
tion. It is from here that the: derivation of the
linked-graph representation begins. One immediate
application of Eq. (2.27) is to construct the formu-
la for the coefficient functions Pn(x, x ',q) which
enter the P expansion of F, Eq. (1.5). By expand-

ing the exponential of Eq. (2.27) in a series with
respect to the variable P we can identify the total
coefficient of p and in this way find P (x, x ', q).
This yields the expressions for P (x, x ',q), found
in I.'

We will now turn our attention to a second rep-
resentation of F. In the following, x ' and q are
taken as fixed constants, so we suppress their ap-
pearance in F, i.e., F(x;P)=F(x,x ';P, q) The.
heat equation for (x ~e ~

~

x') is

+—(x —x') V, —qb,„+u(x) F(x;P)=0.a

Now introduce the linear path in x space
parametrized by a constant Pp & 0,

(2.30)

+—(x —x') V,— g(x;P) .
a

(2.32)

x(x,PPp ')=x'+PPp '(x —x'), 0&P&Pp. (2.31)

This path has extreme points x(x,0)= x ', x( x, 1)
= x. Take g =g(x;P) to be any function of (x,P).
Then the total derivative with respect to P is

g(x(x, ppp ');p)

a
+H (x(e ~ [x')=0. (2.28)

H«e ( x
~
e ~H

~

x ') denotes the solution of Eq.
(2.28) that satisfies the boundary condition

Note that in writing the second factor in the
large parentheses we have used the identity
(x —x ')P ' = ( x —x ')Pp . We omit the argu-
ments of path x whenever there is no ambiguity in

the notation. Consider the effect of H on a path-
dependent function g(x(x, PPp ');P). Set

lim (x
~

e ~
~

x ') =5(x —x ') .
P—+O

(2.29)

then

H(x) = —q4„-+U(x), (2.33)

The partial differential equation satisfied by F is
obtained by substituting definition (1.1) into Eq.
(2.28):

(Hg)(x)=H(x)g(x;P) .

With identities (2.32) and (2.34), we see that

(2.34)
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d
d

+H(x) F(x;p)=0, (2.35)

P
F(x,p}=1—f dp'H(x(x, p'pp ))

&&F(x(x,P'Pp ');P') . (2.37)

is equivalent to

a
ap p

+—(x —x ') V„qb—,„+v-(x) F(x;P)=0 .

(2.36)

In this fashion the partial differential Eq. (2.30) is
reduced to a forin, (2.35), that permits integration
with respect to P.

It is evident that F(x,p) satisfies the integral

equation

This integral equation incorporates the boundary

condition corresponding to Eq. (2.29), namely,

F(x;0)=1. Changing variables to (=PPp and

gi P'Pp——', then letting Pp~P and g= 1 gives us
1

F(x;P)=1—P f dg, H(x(x, gi)}

(2.38)XF(x(x,g, );g,P} .

To clarify the content of the parameteric in-
tegral equation, it suffices to examine its behavior
under iteration. Replace x ~x( x,gi) and P~giP
in Eq. (2.38), then

1

F{x(x,gi);pip)=1 —(ip f dg,H(x(x(x, g, ),gq))F(x(x(x, gi), (2);pi(2p)

Now the algebraic structure of (2.31) for x implies the composition rule

X(x( x,gi), (2}=x( x,gi(2) .

The combination of (2.38) and (2.39) gives us the first iterated integral equation
1

F(x;P)=1—P f d(~H(x(x, g, ))1
1 1

+p f /id/i f d(2H(x(x, (, )}H(x(x,A/2))F(x(x, gi(2);(i/2p} .

Finally, change the variables gi, (2 by the substitution f, =(i and g2 ——gi(2, then (2.41) becomes

F(x;P)=1—P f dgH(x(x, g))1+P f dg f dg2H(x(x, g))H(x(x, g2))F(x(x, gz);gzP) .

(2.39)

(2.40)

(2.41}

(2.42)

In this fashion, it is seen that the general iteration sums to give the ordered exponential

1

F(x, x ',P,q)=exp —P f dgH{x(x, g)) 1 . (2.43)

One measure of the utility of representation (2.43) is the ease with which it can be used to obtain recur-
sion relations. Consider expansion (1.5) of F in powers of P. Clearly,

1

P„(x,x ';q)=n. d"(H{x(x,g, )} H(x(x, g„))1 . (2.44)

If the change of the parameters g; is made to restore their range of variation to [0,1], then an immediate
consequence of (2.44) is

P„(x,x ',q)=n f d(P 'H(x(x, g))P„ i(x(x,g), x ';q) . (2.45)

This is Perelomov's recursion relation for P„(x,x ';q) [Eq. (2.19) of I]. What Eq. (2.43) shows us is that by
introducing the linear parametric path, Eq. (2.31), we have been able to obtain the exponentiation of the re-
cursion relations (2.45).

III. LINKED-GRAPH EXPANSION
OF 1nF

This section analyzes the consequences of repre-
sentation (2.27). By finding the appropriate sym-
metry in the parameters g;, we show how the g or-

I

dering may be removed. Then a set of operator
definitions is found that allows one to write the
series (2.27) in such a way that its nth term has the
same combinational structure as possessed by the
linked-cluster expansion in classical statistical
mechanics. The graphical description of the terms
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in Eq. (2.27) will permit us to explicitly exponen-

tiate the series and thus arrive at the expansion of
lnF in the coupling-constant parameter.

Each v in expansion (2.27) carries one power of
a. So the F defined by the Hamiltonian pair

(H, Hp ) can be expressed as

where Z„(x,x ',P,q) is defined as follows: Let

r=(ki k2 . . . k. ) and

fk( x, x ';p, (k )

= —P—t exp[Pq(1 —gk /krak] IU(4» (3.2)

00 n

F (x, x';P,q)= g Z„(x,x';P, q),n (3.1)

n~.(b—= II fk(x x ~ kk) .
k=1

With this notation Zn is given by

(3.3)

n j—1

Z„(x,x',P,q)=n! f d"/exp 213q g g g;(I —g~)V;. VJ a„(g) .
j=2i =1

(3.4)

a;,(g)= '

exp[2Pqg&(1 —g& }V; VJ ]—1, i'
(3.5)

This form of Z„emerges because all the diagonal

terms of the exponential argument of Eq. (2.27)—
those where l =i and which lead to a Laplacian

V I.V I
——h~—are incorporated in the definition of

the fi(x, x ',P,gi). The remaining portion of the

exponential argument consists of the off-diagonal

scalar products V;.VJ, i Qj, that couple two dif-

ferent fk to each other.
Consider a symmetrization of the integrand of

Z„ that permits us to eliminate the g-ordering re-

striction in (3.4). For any pair of integers i and j
let g&

——min(g;, gq) and g&
——max(g;, (J.). Define

the operator a,j(g) by

I

define a square root by

exp[Pq(& (1—(& ) V; VJ ], i Qj
[a)(g}+I]'~ —= 'I . . (3.10)

L

Keeping in mind the commutivity [ V; V. ,

Vk'Vi]=0, we see that Jr„(g) can be expressed

j=li =1
(3.11)

The right-hand side of (3.11) is obviously invariant

under any permutation of 1,2, . . . , n. The defini-

tion (3.3) of a „(g) implies the a „(g) also shares

this permutation invariance. So the complete in-

tegrand of Z„, Jr„(g}a„(g), is invariant. Thus

we have

0, i=j.
For all g belonging to the unit n-dimensional cube

Q—:[0,1]", these operators have the following obvi-

ous properties:

n! f d"(Jr„(()~„(g)
= f f dg, dg„K„(g)&„(g)

(3.12)

a;, (g)=a,;(g),
Ia J(0}akim(5 }]=0.

(3.6)

(3.7)

(3.8)

In particular, if i &j and g; & gj then

a&(g) =exp[2Pqg;(I —gj ) V; VJ]—1 .

Let Jr„(g) denote the exponential operator occur-

ring in the integrand of Z„. With the a,J( f ) this

may be written

(3.13)

Then Z„reads
n

Z„(x,x ';P, q)= f f II[1+a;i(g)]

Having removed the g-ordered aspect of Z„, it is

possible to see the way in which the graphical

enumeration problem arises in Zn. Introduce the

somewhat artificial notation

f df;= f dg f (x, x',P,g;) .

n j—1

~,(g)= II II [I+a,j(g)] .
j=2i =1

(3.9) Xdf, . df„

Consider the symmetry of W„(gi,g2, . . . , g„)
under an arbitrary permutation of the labels

1,2, . . . , n The form .(3.8) of a,j(g) permits us to

(3.14)

It is apparent that the integral (3.14) has precisely

the same combinatorial structure as one encounters
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in the fugacity expansion of the classical grand
canonical partition function. The variable in the
problem here corresponding to the fugacity is the
coupling constant ct. Thus lt ls lcasonablc to ex-
pect that we can achieve an exponentiation of the
series (3.1) that is analogous to the exponentiation
of the fugacity expansion of the grand partition
function via the linked-cluster expansion.

Consider the graphical description of the term
Z„. Expanding the product P, gives

, n —(n —1) separate integrals whose sum is Z„.
Each integral is associated with an n-vertex graph.
An n-vertex graph consists of n separate vertices
(or sites) —each vertex identified uniquely by one of
the labels i = 1 -n. A vertex with label i repre-
sents the function f;(x, x ',P, g;). A 1ink between
vertices i and j denotes the presence of the operator
a;J.( g ) in the integral. Between each pair of ver-
tices there is at most one link.

For example, one integral, G~o, in the sum that
defines Z)o ls

vertex. The factorization property of G„ is that
each graph is characterized by a product of linked
graphs. Let mi be the recurrence frequency of the
I-vertex linked graphs in G„. So G„defines the set

{ m7 } where { m7 } is subject to the constraint

(3.17)

Next decompose the Z„sum of graphs G„ into
two stages. First, let

Z„(x,x ',P q) = g S{m1 }
I m( )

(3.18)

Finally, define a cluster integral I.~ to be the sum
of all possible distinct I-vertex linked graphs times
I! '. For example, the first three I.I are given by

where

S{m1 }=g all G„consistent with { m1 } . (3.19)

Glo= f f o12u3917671 esa6, 10 78df1 df10 .

(3.15)
L1(x,x ', P q) =f df, , (3.20)

This integral is represented by the graph of Fig. 1.
Integrals like G~o simplify because they factor,
VlZ. ,

L2(x, x ';p, q) = —,f f a13df1df2, (3.21)

61o= f df4 f dfs

X f f df3df

f f u»df1df3
L3(x, ';p, q)= —' f f f (a»a, 3+a12a23

+Q ]3Q23 +Q 'J2Q ]3Q23 )

Xdf1 df2df 3 (3.22)

X f ' ' ' f o67~6sue, 10a7sdfedf7dfsdf10

Note this factorization is only possible because we
have removed the g-ordering structure in the origi-
nal form of Z„. Define an I-vertex linked graph as
a graph in which the links form at least one unbro-
ken pathway connecting each vertex to every other

The graph enumeration problem encountered here
is identical with that which occurs in representa-
tion of the classical partition function for a system
whose total potential energy is a sum of pairwise
local potentials. The well-known' solution of this
graph counting problem is

g 'l

S{m1}=
m)!m2! . . mi!

X(L )) '(L2) '(1-3) ' . . (l.I) '.

0 0
FIG. 1. The graPh Glo.

(3.23)

Substituting Eqs. (3.23), (3.19), and (3.18) into (3.1)
glVCS US
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0 n
I I

mi!m2! . . mI
I

m&
——Om& ——0

(aL&) ' (aL2)

o m1.I I

I
m2.

(a'LI) '

mI!
(3.24)

Thus we arrive at

F (x, x',Pq)=exp gaL~(x, x',Pq}
1=1

(3.25)

which is equivalent to Eq. (1.9). The linked-cluster

expansion (3.25) embodies a major restructuring of
the differential forms appearing in Eq. (2.27).
Since f; is formed by an exponential of a Lapla-

cian acting on u( f), the series (3.25) involves a

twofold exponentiation of 6;.
Our final task is to work out how the series

(3.25) implies the functional form of the expan-

sions of lnF in powers of either P or q. We intro-

duce several new operators that will assist in ex-

posing the P,q dependence. Set

X=X X+X X+X, r,
3 12 ]3 112 & 1 I23 & 1 113) 1 I23 )

+X X X.
1,2 &11)3&1123&1

(3.32)

I

c„, and the function v; into the form of the general
l-vertex linked graph that enters the definition of
L„. The operators c„come from the product of
the arguments Pq(1 (k)g—krak in the exponential
formula (3.2) for fk. The summation convention
in (3.31) is such that m always goes from 0 to ao.

The graphical structure of an arbitrary l cluster
is absorbed in the definition of the summation con-
vention denoted by 9„. Consider first the case
n =3. The allowed 1'3 are (1~2,1~3,123 I. Then the
I'j part of the sum in (3.31) is

bj(g)= (&(1——g)) V; VJ, (3.26)

5

c„(g)= g(1 —(;)g;';, (3.27)

u;=—u(g;). (3.28)

In terms of the b,J, we can write a,J as the series

I,J

'J'
(3.29)

Consider the linked cluster L„. It has a maximum
1

of —,n(n —1}links. Let s be the sum of all possi-

ble —,n (n —1) values of l,J, i.e.,

n

s=gl;, .
l)J

(3.30)

(3.31)

This is a consequence of inserting the operators bj,

Using this notation L„assumes its final form

(x xi.pq) $ pn+m+sqm+s( 1)1l2$

n.m.t t

n

I..
n bij

)& fd"gg, ", e„v,v . v„.
i &j iJ!

where it is understood for the first term on the

right-hand side, one sets l23
——0 inside the in-

tegrand of (3.31). Likewise, for the second and

third terms l » ——0 and I12
——0, respectively. The

summation convention for 8„ is the obvious gen-

eralization of the n =3 case. Setting aside the m

summation which is always present, the S„sum
has as many distinct sums over the 1,J as there are

distinct connected graphs in L„. The distinct sums

are constructed by the following procedure. Start
first with the maximally connected n-vertex graph

having —,n (n —1) links. The sum for this graph

has all I,J ) 1. Next consider all graphs formed

from the first one by removing one link. If the

link between i and j is removed, then set l;J
——0. In

this way, one forms all possible —,n (n —1) linked

graphs having exactly —,n (n —1)—1 links. Next

remove two links and set the corresponding values

of l;j ——0. If this process is continued, sub]ect to
the constraint that the graphs formed this way

remain connected, one forms all possible graphs in

L„. Note that the minimum number of links con-

sistent with a connected graph is n —1. Thus
s & n —1. In the S4 vertex case, the six links

j l~2, 1,3 1'j4 133 124 134 I have one graph with six

links, six graphs with five links, fifteen graphs
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with four links, and sixteen graphs with three
links. This gives a total of 38 connected graphs.
As n increases this graph structure becomes for-
midably complex. The number" of connected
graphs with n =5, 6, and 7 are, respectively, 728,
26704, and 1 866256.

Equation (3.31) provides us with an explicit con-
struction of the linked-graph function L„. This
formula and its companion Eq. (3.25) are the
basic results of this paper. Since the P and q
dependence are manifest in Eq. (3.31), it is a sim-

ple matter to construct the P and q power-series
expansions of lnF.

IV. COEFFICIENT FUNCTIONS
S„AND 8'„

In this section, we transform the linked-cluster
expansion of lnF into a practical computational
method for obtaining the functions S„(x,x ';P) and

W„(x,x ',q). Formulas for both on- and off-
diagonal values of the functions S„and W„are de-
rived. This section illustrates the fact that the
linked-graph expansion, Eqs. (3.25) and (3.31), con-
tains all other expansions of lnF. At the end of
this section we obtain the recursion relations satis-
fied by S„and W„.

Consider the behavior of the first three linked-

cluster terms L1, Lq, and L3. Equation (3.31) for
n =1,2, 3 assumes the form

Ll= —g p q f dglcl vl (4.1)

2$
p2+m +s m +s

2!m!
1 1

X f f dg, d(2 bi'3'ci vlvi,
0 0 l12!

(4.2)

2$
p3+m+s m+s

3 3!m!

112 I
i 3 123

1 1 1 b12b13b2
X J f J dgldg, dg3 C3 Ulvgv3,0 0 0 12! 13!l23!

(4.3)

where the argument of L„ is ( x, x ';p, q) and g
has the S„summation convention. Observe that
the lowest power of P in L„ is 2n —1 and that the
lowest power of q is n —1. So if we have con-
structed I L l,L2,L3 j, we can obtain the functional
forms of I Wl, W2, W3 W4 W5 W6 j and

I Sll,Sl,S2 j. In this way the L„become efficient
generators of the functions W„and S„.

Let us examine the Wigner-Kirkwood expansion
in detail. The series (1.6) is equivalent to

F=expS0exp(qS1+q S2+q S3+q S4+ . . ) (4.4)

=expSll[1+qSl+q (S2+ —,Si)+q (S3+S,S2+ —,Sl)+q (S4+SlS3+ —,S2+ —,S2Si+—„Sl)+ ] .

(4.5)

In Eq. (4.5), we have used the cummulant formulas' to expand the second exponential as a series in the
quantum-scale parameter q. The form (4.5) is the expansion appearing in the work of Wigner and Kirk-
wood. The term So is the sum of all terms in the exponential of (3.25) that have power q . Because the
minimum power of q in L„ is n —1, the only linked cluster with q is Ll. From (4.1), we see that the q
component of L1 is just

1

Sll(x, x';P)= —P f dgivi . (4.6)

(4.7)

With S2, the L1 contribution is m =2, the Lz contribution is m =0, 112——2 and m =1,112——1 and finally L3
contributes with m =0, l12 ——l» ——1, etc. Thus S2 is

1 1 1

S,(x, x;p)= ——,'p'f dg, c', v, +p'f f dgidg, (bi2C2+b»)vlv2
1 1 1——,p dg, dg2d/3(b, 2b, 3+ b,2b23+b, 3b23)v, v2U3 . (4.8)

Turning to S1, we see that the m =1 component of L1 has q power equal to one and so also does the m =0,
l12 ——1 portion of L2. No other L„contributes, so

1 1 1

Sl(x, x';p, q)= —p f dg, c,v, +p' J J dg, dg2b»viv2 .
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Continuing this process constructs all S„. One of
the reasons why the linked-cluster series for lnF is

a practical method of constructing S„ is that al-

though the L„are very complicated functions, the
coefficient functions S„and W„use only a few of
the infinite number of terms defining the L„. The
formulas (4.6)—(4.8) still involve one parametric

integration of the linear paths f; Wi.thout special

assumption on v these integrals cannot be simpli-

fied further.
Expansion (4.5) and the formula for S„(x, x ',P)

generalize the original Wigner-Kirkwood analysis

in that we have kept the full off-diagonal form of
the matrix elements. Thus, one can incorporate
the exchange effects that are a consequence of fer-

mion or boson statistics. In the classical limit

q~0, the x=x ' region of the matrix element

( x
~

e ~
~

x ') dominates, so let us consider the

behavior of the diagonal values of S„. Here x = x '

implies

v;=v(g;)=u(x) . (4.9)

This means there is no ( dependence in the poten-

tial arguments in formula for the S„. So the v;

may be taken out of the integrations in Eqs.
(4.6) —(4.8). The S0 is trivial:

S,(x, x;P)= —Pu(x) . (4.10)

The SI is typical of the diagonal evaluation of S„.
For x=x', Eq. (4.7) can be written

2
1

Si= p(~&—) f, d(I(1 —4iCi

+p (V, Vp)u)ug f f dg, dip(((1 —g)) .

(4.11)

The g,. integrals are always polynomials of g; and

can be explicitly carried out. Here one finds

S&(x,x;P)= ——,P hv(x)+ —„P [Vu(x)] . (4.12)

In a similar fashion the value of Sz is found to be

S&(x,x;p)= —~ p (»)+p [»(Vhu)'Vu+ ~(VI Vz) v&uz] —~ p (V, .Vz)(V, .V3)v, v~u3 (4.13)

These expressions are consistent with known'

forms of the diagonal values of S„. The V; gra-

dient notation may be eliminated if desired by use

of the identities

]
(Vi Vp)(VI V3)v~vzv3 —

p
Vv V(Vv)

I

cummulant identities'

P] ——WI, Pp ——Wp+ W],2

P, = W3+3W, W, + W3, , (4.16)

P4 ——W4+4W3 W]+3WP+6WP W] + W],

(Vi.Vq) vivq ———Vv V(hv)+ —,5(Vv)

(4.14)

(4.15)

P5 ——W5+5W4 W]+10W3 WP+10W3 W]

+15WpW) +10WpWi+ W] .

Turn now to the computation of the functions

W„. The method is the same as that just used to
determine the S„. Specifically for a given value of
P", one collects from the relevant L~ the terms

with p-power dependence equal to n Formulas.
(1.5) and (1.7) mean W„and P„are related by the

Thus„given the values of W&, Wz, . . . , W„, we can

construct the P„. In this way, we can view the W„
as generating functions for P„. This is a useful

point of view since the W„ turn out to be much

simpler functions than the corresponding P„.
The off-diagonal values of the first five W„are

]
Wi ——f dg&v), (4.17)

1

2!
—Wq ———q dg~c~ v&, (4.18)

—W3=q f dg~ c&vi —q f f—dgid fzb~qu~vq, (4.19)

1 3
I 1 3 P

] I
2

4! 0 3t
—W4 ———q d(& —c&u]+q

0 0
dg)dip(b )p+b)pcg)v)ug, (4.20)
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3 2 & 2—W, =q dg, —c iui —q dg, dg, ( , b „—+b„c,+ —,bizc&)v, v,

1 1 1+q'f f f d(idt243 (b12b13+b12b23+b13b23)ulv2u3 (4.21)

Note that the maximum number of potentials v in the product of the integrands for W„ is [(n + I)/2],
where [ ] is the largest integer less than or equal to the argument of [ ]. The maximum power of q in W„ is
n —1, and the least power of q is n —[(n + 1)I2].

The diagonal values of the W„result from Eqs. (4.17)—(4.21) by setting x = x '. The remaining g; in-
tegrations are all simple polynomials whose form is given by the definitions (3.26) and (3.27) of b;3 and c„.
In this way, one determines that

Wi(x, x;q)=v(x),

W2(x, x', g) = —g —,kv,

W3 (x, x;q) = —q —,( Vu)'+q —„4'v,
W4(x, x;q)=q [—„(Vi V3) viv3+ —,(Vhv) V'v] —q

—„63v,

W3(x, x;q}=q 2(Vi V3)(Vi V3)viu3v3 —q I —,(Vi Vz) uiu3+ —,(V'i V3) (Avi)u3

+ —Vu V(h u)+ —„[V(hv)] ]+q +6 u .

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

The formulas quoted above should be compared to
those for P„given in I. For example, P4 has eight
terms whereas W4 has only three. This is illustra-
tive of the greater simplicity of W„relative to P„.

An additional perspective on the functions S„
and W„ is found from the recursion relations these
functions satisfy. Define W=—lnF, then Eq. (2.35)
reads

qPb, „W—(x, x ',-gP) qP[ V„-W—(x, x ';gP)]

+Pu (x }=0 . (4.28)

The coefficients W„provide the power-series ex-

pansion of W via Eq. (1.7). Inserting series (1.7)
into (4.28) and equating the total coefficient of the
common power of P gives us

d
+H(x(x, PPO ')) expW(x(x, PPO '), x ';P)

=0 . (4.27)

Let g=PPO '. Then set PO~P. Thus the linear
path becomes x =x( x,g) = x '+g(x —x '), and Eq.
(4.27) is transformed into

d
W, (x, x ', q) =u(x),

1
W3(», x';q)= —qh„-W, (x, x ';q) .

(4.29)

(4.30)

For n) 3 then

5 —2 t

W„(x,x',q)= nqh„W„—i(x, -x';q) —q g '
V„-W„ i (x, x';q) V„-W (x,x', q) . (4.31)

, m!(n —1 —m)!

(4.32)

The identities (4.29) through (4.31) provide us with the recursion relations for W„. These relations are non-
linear and indicate in part why determining the W„was a more difficult task than finding values for P„.

If exp W is expanded by powers of q instead of P, then substituting Eq. (1.6) into (4.28) provides us with
the recursion relation for the Wigner-Kirkwood functions S„,

So(x, x 'gP)= —Pv(x) .

For n)1 then
n —1

S„(x,x 'gP)=PE„-S„,(x,x ';gP)+P g V'„-S„ i (x, x ';gP). V„S (x, x ';gP) .
rn =0

(4.33)
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Although one can construct Sn and 8'n from these
nonlinear recursion relations, the role of these re-
cursion relations assumes a diminished importance
since we have found an explicit algebraic method
to form the functions Sn and 8'n.

V. THE HARMONIC OSCILLATOR

The basic results of this paper are the formulas
given in Secs. III and IV, which construct the coef-
ficient functions for 1nF(x, x ',P,q). The expres-
sions found are quite general and valid for any
smooth potential. Nevertheless, it is useful to ex-
amine a problem possessing an exact solution in
which it is possible to find closed expressions for
the coefficient functions L„,Sn, and 8'„. The
3N-dimensional harmonic oscillator provides us
with just such an exactly solvable example. The
closed algebraic formulas for L„,S„,and 8'n,
which arise from the harmonic-oscillator problem,
can be compared with the predictions of the gen-
eral theory in Secs. III and IV and so give us an
independent check on the validity of our linked-
graph solutions.

The Hamiltonian for the 3N-dimensional har-
monic oscillator with common mass I and fre-
quency co can be written as the sum

where

2

= —q 2+Q&mCOX
BX

(5.2)

Here x, denotes one of the 3N Cartesian com-
ponents of the vector x and a is a parameter for
the potential strength. The one-dimensional prob-
lem has the following well-known' exact solution.
Set y=pq, O=ficop, and y =a'~ 8. With this nota-
tion, the one-dimensional heat kernel is

(x„/ e "/ x'„)=
4my sinhy

' 1/2

X exp [(x„+x„' )y cothy
4y

—2x~„'y cschy]

(5.3)

Because the individual component Hamiltonians h „
all commute with each other, the solution to the
3N-dimensional heat kernel is the product of the
individual component solutions

3N —Ph„(x ~e ~H( x')=g (x„~e "~x'„) . (5.4)

3N

H =gh„,
v=1

(5.1)

v=1

Thus the exact solution for F is

F~(x, x ',P,q)=
sinhy

' 3N/2

exp [(x +x' )(ycothy —1)—2x x'(ycschy —1)]
4y

(5.5)

where the scalar product x x ' is the sum over
v=1-3N of x~„'. Taking the logarithm of Eq.
(5.5) gives us

W (x, x ';P, q) = [(x + x '
)(y cothy —1)Q 0 9 0 4

—2x x '(ycschy —1)]

I

Furthermore, the boundary condition
W (x, x', O, q)=0 is obeyed.

Let us obtain the coupling-constant expansion of
8' in powers of a. The three hyperbolic func-
tions appearing in Eq. (5.6) have the following con-
vergent series expansions' for ~y ~

&n. Let Bq„
denote the Bernoulli numbers given by the conven-
tion

sinhy
(5.6) ( ])n —12(2 )1 ao

8~„—: "' g f ron&1,
(2')2 k=1 k2n

A short calculation allows one to verify that Eq.
(5.6) is a solution to the nonlinear equation satis-
fied by 8, namely,

+ —(x —x ') V„—qh„W (x, x ';p, q)

and Bo——1, then

00 22n
y cothy —1= g 8&„,y'",

(5.8)

(5.9)

—q[V„W~(x, x ',p, q)] +a —,mco~x =0. (5.7) 22n —1

ycschy —1=—2 g Bz„y", (5.10)
(2n)!



SIGNER-KIRXWOOD EXPANSIONS

y „, "n(2n)! (S.l I)
Zlf —1

W2„(x, x ';q) = —82n3X (2nr)"co2"qn .2'
Inserting these series into Eq. (5.6) gives us the ex-
act series development of 8'~,

W (x, x ',P,q) =g a'Li(x, x ',P,q),
l=1

where LI is

Lr(x, x ',P,q)

~2l
22I i( ++~ lr)2

2/2l}!

—2xx +
I

(5.13}

Because the hyperbolic functions (5.9)—(5.11)
have convergent series for

~ y i & rr, it follows that
the coupling-constant series is uniformly conver-
gent for all bounded x,x' if a'~ &rr/RcoP So if.
the temperature is sufficiently high, then the
coupling-constant series is always convergent for
any value of a.

The harmonic-oscillator problem is exceptional
in that it is possible to find a closed form for the
1th-order cluster integral LI. Let us compare brief-
ly the structure of Eq. (5.13) and the general form
of Lr given by the cluster integral Eqs. (3.20)—
(3.22). The function fk, defined by Eq. (3.2), nor-
mally is a series in P from P' to P". However,
since U(x) is quadratic in x, only the terms P' and
P are nonvanishing. Thus, fk is quadratic in the
path variable g„. The linked graphs in Li all have
fi(gi)f2($2) . . fr(gr) as part of their integrands.
This product factor is a polynomial of order 2I in
the variable x. However, the minimum number of
links in an 1-vertex connected graph is (I —1) and
each has two differentials in the variable x. Thus
after the derivatives in the a;J act on the product
fi(gi) . fr(gr), one recovers the quadratic x
dependence shown in formula (5.13).

Consider the functional forms taken on by 8'„
and S„. Identifying the P" power in Eqs. (5.12)
and (5.13) gives

8"2„1(x,x ',q)

(2m)"=82„6)
8n

X[(x +x' )2 "+4x.x'(2" ' —1)],

(5.15)
The first formula here provides the value of 8'„
for odd values of its index; the second formula
gives the even index values. Observe that these
formulas for 8 „only have the terms with the
lowest possible power of q. Similarly, examining
the coefficient of the q" power in series (5.12) leads
to S„,
S„(x,x ',P)

1
}n+ 1~2n +2p2n + i

4(2n +2)!

X[2 '"+"(x +x' }+4(2"+'—1)x' x]

22m —1

3Q (2~)n2np2n
2n (2n)f

where the last term on the right-hand side is absent
when n =0. Note that because of the very simple
variable dependence on the factor 8 in Eq. (5.13)
for L„, it turns out that the series for L„, 8'„, and
S„are essentially the same series and have a com-
mon radius of convergence. This special situation
will not characterize the general problem.

The formulas (5.14}, (5.15), and (5.16) may be
compared with their diagonal (x = x ') counterparts
in Sec. IV. Complete agreement is found. This
check is satisfactory, since our linked-graph
method provides the correct result for the first
several coefficient functions. Nevertheless, it is of
greater interest to show how the general result
(5.13) for LI emerges from the solution of Sec. IV.

Consider the value of LI implied by its linked-
graph form. The values of L1 and L2 are elemen-
tary and follow directly from their definition in
formulas (4.1) and (4.2) after the substitution
v(x)= —,mm x . So take I &3. The general form
of Lg is

1 1

Li(x, x ',P,q)= —f . f dpi . . der

XF(a)f, f, , (5.17)

where f; are defined by Eq. (3.2). F(o} is a poly-
nomial of the a,z that appear in Eq. (3.5). The
structure of the polynomial is determined by the
definition of the sum of all distinct /-vertex linked
graphs that can enter LI. The a;~ contains powers
of the derivatives of V; and VJ. Since v(x) is
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quadratic in x, so is f;. Thus each vertex i can

have at most two links attached to it. A three-link

vertex ~ould have third-order derivatives of a qua-

dratic form in x and thus be zero. The only non-

vanishing linked graphs in L» are those formed of
two- and one-linked vertices. Within this re-

striction, there are only two topologically distinct

graph structures. Type I is that formed of l —1

links. It has two vertices with one link with all

other vertices having two links. Type II has l

links; here every vertex has two links. If the ver-

tices are arranged to be equally spaced along the

perimeter of a circle, then type-II graphs appear as

an /-sided polygon. On the other hand, type-I

graphs appear as an /-sided polygon with one side

missing. The type-II graphs are the ring graphs

discussed by Montroll and %ard. '

The two distinct topological graphs types let us

decompose L» as

L (I)+L (II) (5.18)

( P)' I!—
fO "k(/)2(223 ' '

XV1'''Vl s

(5.19)

The f; that enter Ll can be replaced by —pu;,
since the higher powers of P in f; all lead to zero.

Keeping in mind that the permutation of the labels

1,2, . . . , / lead to I f/2 distinct graphs of type I
and (I —1)!/2 distinct graphs of type II, we can

write

L(n) ( —/()'}
(2 )/

mco» 2

21 2

1 1

X f 41 fo dk@I,/$1, /( VI 7 /)~1, /~

where

@I,/ 412023'$34 '6 —1, / ~ (5.23)

J1»=2 X1'x», (5.26)

(V I VI }J)/=3N2/.

Upon using the identity

x) x/ I-„(——(1—g)}(1—k)x +g)kx'

(5.27)

+(g(+k —2g)k)x x ', (5.2S)

we see that the L»
' and L»

' may be written

L"'=(—//3)' —(2y)' '(mco )

X [(x + x' )I(+ x x '(2I2 —2II )],
(5.29)

0, =0(k k, }=(&(1 0)»— (5.24)

JI,/=( ~ I'&2)( r)/'2'~3} ' ' ' ('(('/ I r)//—}x'I ' '

(5.25)

From the definition of J1», a little algebra shows

that

L(u) ( P)' (I —1)'—
»

1 1

x f dg( f dku)2 ~/ I, /(2), /UI
' '—

Ll '
( —P) —(2y) ——(men ) 3XIO .

2l

The three integrals I; are
1 1

f0= fo d4) fo dk/@l/4'I, / ~,
1 1

~I = f, dk) f, dk()k~'I, /

1 1

f2= f, dk ' f, dkk)@I, / ~

(5.30)

(5.31)

Substituting the harmonic-oscillator form of the
potential gives

L(1) ( P} (2 )I —1

» 2

2 ~ 2

1 1

X fo d k( f, d k@I/J I/I -., =g, , ,

Comparing (5.29) and (5.30) with (5.13), it is ap-

parent that the general form of L» is correctly
determined.

The last step is to understand how the Bernoulli

numbers emerge from I;, i =0, 1,2. In order to
carry out the I; integrals explicitly, recall that

P( f,g') =g& (1 —g& ) is the Green's function for the

one-dimensional eigenvalue problem

(5.21)
d

2 t((y) =A,f(y),
dg

(5.32)
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with boundary condition p(0)=1((1)=0. The solu-
tion has eigenvalues A,„=(nn) (n =1,2, . . .) and
associated eigenfunctions

|(t„(y)=v 2sinnmy . (5.33)

2

sinners

sinnng'

(m.n)
(5.34)

Thus, by Mercer's theorem, ' the Green's function
has the representation

'p„(g) p, (g')

n=1

are computed from a sum of linked graphs. Reex-
panding the linked graphs in the variables q and

P give one explicit formulas for the functions
S„(x,x ';P) and W„(x,x ';q). The solution de-
scribed here is of a rather general character. It
succeeds for any number of particles and gives
coefficient functions valid on (x '= x) and off
(x '+x) diagonal. The Appendix shows how the
solution described above results if one employs
path-integral techniques in place of the Gold-
berger-Adams representation.

Now, if expansion (5.34) is used for all the P,J in

Io, the mutual orthogonality of all the eigenfunc-
tions %„(g;)permits one to find

1 221 —1

Io ——g t
——( —1)' ' 82t,

(2&)!

where the right-hand side equality uses the Ber-
noulli number definition (5.8). Similarly, one finds

1Ii ——2Io, I2 ——4—
( Io . (5.36)

Inserting these values of I; into (5.29) and (5.30)
leads exactly to Eq. (5.13) for Lt. So we have
demonstrated that the linked-graph method leads
to a construction of the known closed-form solu-
tion for L~ in the harmonic-oscillator problem.

VI. CONCLUSIONS

The signer-Kirkwood semiclassical expansion
of the quantum-partition function is one of the
oldest semiclassical expansions in the literature.
Although the first few terms of this type of expan-
sion of F( x, x ', P,q) have been derived in a number
of different mays, no systematic method for obtain-
ing the explicit functional form of an arbitrary
coefficient S„(x,x ';P) has been available. The
problem of determining the coefficient functions
for the P- and q-power-series expansions of
lnF(x, x ',P,q) is solved in Secs. II—IV. By using
the Goldberger-Adams representation of
F( x, x ';P, q), we showed that the series expansion
of F in the coupling constant a may be given in a
form that has the same combinatorial structure as
one finds for the grand canonical partition func-
tion in classical statistical mechanics. Thus, it is
possible to exponentiate the coupling-constant ex-
pansion for F. In this fashion, the a-series expan-
sion for lnF is given by coefficient functions which

APPENDIX: PATH-INTEGRAL
REPRESENTATIONS

OF THE PARTITION FUNCTION

This appendix extends our analysis of
F( x, x ';P,q) by incorporating the path-integral
description of the partition function. By starting
from the Goldberger-Adams representation, it will

be shown that it is a simple matter to derive the
functional-integral form F(x,x ',P,q). This
functional-integral form provides us with a
Feynman-Kac-type path-integral representation of
F. Further, assuming the path-integral representa-
tion of F as given, me shorn how it is possible to
derive the basic identity of Sec. II, Eq. (2.27). The
results of this appendix are of interest because they
provide an additional perspective on the representa-
tions given in Sec. II. Also, we believe, the func-
tional-integral forms are most likely to be the sim-

plest way to enlarge the physical framework of this
theory in order to include the effects of spin, rela-
tivity, and symmetrization of identical particles.

The Goldberger-Adams formula for
F(x,x ';P, q), Eq. (2.16), reads, after an obvious
change of variables,

P I

Xexp& —f dP'U x '+ —(x —x ')

+ 2qP'V„' 1.

(A1)

Consider the form of Eq. (Al) when the value of P
is small. For a well-behaved potential (for exam-

ple, one which is smooth and uniformly bounded
with respect to any order of derivatives), then (A1)
implies
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dp
(x ~e i'H~ x') =(x ie

~

x')exp —f dp'v x'+ (x —x') +0{(hp) ) (A2)

for bp-0. Discretize the description here, by dividing the finite interval (O,p) into n equal segments for an

arbitrary n; i)p=pn ' and p; =imp(i =0-n). Then using the semigroup property of e ~, we get

')=&x ~{e-"ai')"
~

x )

=f dx, f dx (x[e ~/ )(x ie i'ix ) { i
i'i ')

Xexp —g dpu x;+ (x;+~ —x;) +0(n(i)p) }
ll —l QP p 2

i=0
(A3)

Introduce the broken line path defined by

x„(P)=x;+ i ( x;—+,—x; ) for P; & P &P, +, , (A4)

where i =0-n —1. The end points are xv= x ' and x„—:x. With this notation, the sum of integrals in the

exponential of (A3) is written as — d p u [x„(p)]. On the other hand, by Eq. (2.11), we see that the prod-
0

uct of the n free heat kernels is

& —& (x. ] —x. )
( mqhp) " exp

i=0

Recall that 5 is the dimension of x divided by 2. In this way, (A3) can be represented by

(xi+& —x& )2

(x ie ~
~

x')=(4rrqbP) " f dxi . f dx„ iexp
i=0

(A5)

Xexp —f dP v [x„(P)]+0{n(hP} ) (A6)

Letting n ~ oo recovers the path-integral expression for the heat kernel,

n —i (X,+i 7, )

(x ~e i
x')= liin (4mqhP} " f dxi . f dx„ iexp

n~ao i=0

Xexp —f dp v [x„(p)] (A7)

"i x')—={x~e '( x') f, , d*(0-„,.&-„,xexp —f dpv[x(p)] (A8)

In Eq. (A8), the integral notation indicates the con-
ditional Wiener measure. The space of all continu-
ous paths x(p) satisfying the condition x(0)= x '

and x(P) = x is denoted by C(O, x ';P, x). The con-
ditional Wiener measure has the normalization

(A9)c[o, x ';p, V)
d* -,. -x=1.

For a detailed discussion of these Wiener measures,
see papers of Yaglom' and Gelfand and Yaglom. '

Equation (A8) is a variant' of the one that Kac
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x;~y;=x; —f(P;) (i =0-n)

where

(A10)

ri(p) =x '+ —(x —x ') =—x+ 1 ——x ' .
p p p

(A11)

showed is the solution of the heat equation (2.28)

that satisfies the delta-function boundary condition

(2.29). It is interesting to note that recent work by

Truman ' shows that the limit (A7) exists for a

very wide class of potentials even when the Wiener

measure is replaced by the more intractable "Feyn-

man measure. "
Consider next a change of variables that will

further simplify the functional integral (A8). De-

fine a new broken line path by

Clearly the y-variable end points are yo ——y„=0.
A short calculation shows that

x„(p)=y„(p)+ g(p), (A12)

where y„(p) is Eq. (A4) with x;~y; on the right-

hand side. One also finds

If we substitute (A12) and (A13) into (A6) and

then let n~oo, we get, after replacing y with x,

n —1 n —1

g (x;+,—x;) = Q (y;+; —y;)'+ —(x —x ')
i=0 i=0 n

(A13)

(x;,—x; 2

F(x, ';P,q)= lim (4mPq} (4rrqhP) "s f dx& . f dx„&exp
n~oo 4qb,

x exp —f d p v [ri(p)+x„(p)]

= f d„'~@o~xexp —f d pu[ r()p) +x( p)] (A14)

(A15)

where xo= x„=0. The measure notation in (A14) denotes the conditional measure defined by C(P, O)

—:C(0,0;P,O) and d'~~o~x=dl~uo@o~x.
The remainder of this appendix is devoted to obtaining a path-integral derivation of the key identity, Eq.

(2.27). Begin with (A14) and the Taylor expansion

u[f(P)+x(P)]=e "' "u[f(P)],
where V acts on v. Assuming the interchangeability of the sum and integrals (A14) becomes

F=f d'(po)x g, f dpv[f(p)+x(p)]
l=o

p l

f dP| f dPI f d'IitoIx exp g x(P&).f'„v[ r(iP, )] . . v[g(Pi)] . (A16)

We will prove subsequently, for any arbitrary 25-dimensional vectors a~, . . . ,al and 0(p, & . &pI (p,
that

f
l

d'&@0) x exp g x(Pq). a„
LM, =1

I

=exp q g G(P&,P„)a& a„
p, , v= 1

(A17)

where P( ——minI P,P' ],P) =max[ P,P' ] and G is defined as

G(P,P') = (A18)

Utilizing identity (A17) in Eq. (A16) lets us write

p l

F= g f dP, . f dPIexp q g G(PP)V'„f„v[f(P)] u. [f(P~)] .

l =0 p, v=1
(A19)
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Equation (A19) is essentially Eq. (2.27). To see this, employ the invariance of F under x+ x ' and make the

replacement P;~g; by P; =Pg;.
According to the pseudomeasure approach developed by DeWitt-Morette, the Feynman integral, Eq.

(A17), is a special value of the Fourier transform of the Wiener measure which has both end points fixed.

However, we can establish Eq. (A17) in a straightforward manner starting from the simple definition of
Wiener measure given in Eq. (A14). We sketch the proof here for completeness. The technique we use is

the one already employed in I in order to study the Born series.

First consider a prototype of the integral in (A17). Take K to be any well-behaved function of x, then de-

fine

& —l (x;+l —x;)I„:(4lr—pq)s(4lrqhp) " f dx, . f dx„ lexp —g It [x„(p)],
4q~p

(A20)

where xo ——x„=O. Use the formula

i=0 i=1 i

p p;—
i

p p
I —l

2

(A21)

where p;=imp(i =0-n) with bp=p/n and xo——x„=0. Now make the variable change

y'. =x. ' x. (i =1-n —1) .i I
p p

I —l

The inverse of (A22) is found to be

(A22)

x;=g '
y,'

j=l j
(i =1-n —1) . (A23)

This transformation causes the broken path to be represented by

P P; l-
p p;—y,' (i =1 n —1) .-

I

x.(p)=(p —p) g y,'+ '
y,'+l,

j=1 j
for p; & p & p;+l. Finally, a scale change is introduced by

1/2

(A24)

(A25)

dxl . dx„,=(4qP) s(4qbP)" dyl dy„

and so I„ is rewritten as

n —1 I

I„= g n. f dydee
" I('. .v4q (P P) g—1 1

p p, p p, -—
The combined change of variables (A22) and (A25) has a Jacobian given by

(A26)

1 1
+(p pi) gp p p

1/2

y +l for P &P&P+l''(A27)

In Eq. (A27), it is understood that the requirement p; & p &p;+l selects the value of i In this way. , i is to be

interpreted as a function of P; where i = [P/hP] with [.] being the integer part.
Let's generalize It [x„(P)] to the form occurring in (A17),

I
It [x„(p,), . . . ,x„(p, )]=exp g x„(p„) a„

p, =1
(A28)

In the case of the function K in (A28) with I different path arguments (P„Pz, . . . ,Pi) each value of P& will
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select a value of i for example, (i„) so that p; &p„&p; +1 (itt=l-l). Thus the right-hand side of (A2&)

becomes, when it is placed in (A27),

1/2
1 1j+(p -p. ) ~p- p p

1 1
exp g v4q (p —p„) g

@=1 p p, —p pj —i—
' 1/2

yg +1 arM

where the vector Aj is

n —1

=exp v4q g Aj yj
j=l

(A29)

1

p p, —
L

g 8(i„j)(P—P„)a—„+g 5,, ;j—i p, =1

1/2

(p„—p; )a„ (A30)

forj =1-n —1. Here 8 is the Heaviside function, 8(x)=1 if x)0 and otherwise is zero. The purpose of
the elaborate variable changes in (A22) and (A25) is to reduce the integral I„ into a product of simple
Gaussian integrals, each of which is trivial to compute. Using (A29) gives us this desired form

n —1 n —1 n —1

I„=g m. I 1yjexp( yj+v—4q Aj. yj) = II exp(qAj~)=exp q g Aj
j=1 j=1

Calculating the value of the argument of the last exponential gives us

(A31)

n —1 I

g A,'= g a„.a„
p, , v=1

(p p„)(p p—)p;„h; — (p p„)(p p—i„)—" +28(i„i„1—)—

(pi, —p;„)(p.—p;„)(p—p;„+i)
~p(p —p;„)

(A32)

(A33)

Thus only the first term of ( ) in (A32) survives and gives G(p„,p„) as defined in (A18). Thus, alto-
gether, we get

where i& Ai„denotes the least value of i„and i . The last step of our calculation is to let n ~ oo. Recalling
the definition of i„we have that

P;„,P „+i P„(jt1 -I)

I

limI„=exp q g G(P„,P„)az a„
p, v=1

This completes the proof of identity (A17).
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