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Modification of the collision dynamics

K. Burnett, J. Cooper, and P. D. Kleiber
Joint Institute for Laboratory Astrophysics, University of Colorado and National Bureau of Standards

and Department of Physics, University of Colorado, Boulder, Colorado 80309

A. Ben-Reuven*
Department of Chemistry, Tel Aviv U-niversity, 69978 Tel Aviv-, Israel

(Received 8 September 1981)

We extend the theory of light scattering from an atom undergoing collisions to the case
of strong laser fields, where the expansion in powers of Q~, that was used formerly in a
series of papers by Burnett et al. breaks down. In particular we consider in detail the
conditions necessary to relate the observable quantities to intense-field collisional rate con-
stants in a dressed-state basis (such as those calculated by Light and Szoke). We also
show (following Rabin and Ben-Reuven) that by studying the spectrum emitted by the
atoms in the presence of a strong field one may measure the collisional rates for transfer
between the dressed states of atom plus radiation field.

I. INTRODUCTION

The study of how collision dynamics is modified
by the presence of a strong radiation field' not
only offers exciting possibilities for laser modified
energy transfer and chemical reactions but also
presents a considerable challenge to practitioners of
molecular collision theory. One method of
studying such phenomena is via the spectrum of
light emitted by colliding atoms in a strong field.
In this paper we shall consider in detail the condi-
tions necessary to relate the observed spectrum to
collision rates in the presence of a strong field. In
particular, the main purpose of this paper is to re-
late the S-matrix calculations that are being per-
formed for such collisions to the observable
emission spectra, and indicate what aspects of the
strong field plus collision problem can be observed
via the spectrum of the scattered light.

We shall consider throughout that the collisions
couple a set of excited states of an atom or mole-
cule—some of which are coupled to a lower-lying
state by a dipole-allowed transition that is driven

by the strong laser field. This problem is, of
course, closely related to the collisional broadening
of spectral lines and more particularly, to the
theory of collisional redistribution.

The weak-field case has been studied in detail in
several papers. " One of the important features

of this work is, for scattering in the line wings, the
inclusion of radiative transitions coincident with a
collisional event. Hence we have here an example
of the modification of collision dynamics by the
radiation even at weak fields (provided one is out-
side the "impact" region in the atomic basis).

The extension to strong fields has been discussed
by Rabin and Ben-Reuven' using a steady-state
Liouville-space formalism. ' These authors make a
clear distinction between what is called the medi-
um-coupling case and the strong-coupling case. In
the first case, the secular motion of the free atoms
(between collisions) is strongly modified by the ap-
plied field, and it becomes advantageous to use a
dressed-atom representation for the free-atom
states. The collision dynamics is nevertheless re-
tained field free. This is in fact the approach used
by many authors when extending their discussion
to strong fields (see, e.g., Mollow, ' Courtens and
Szoke, ' and Cohen-Tannoudji and Reynaud, ' the
last ones dealing only with radiative damping).
These works are equivalent to the impact" theory
calculation of Cooper et al. ' in which the usual
atomic rather than dressed-state basis is used.
There is, however, the strong-coupling limit in
which the collision dynamics itself becomes affect-
ed by the field, and this is the regime that coin-
cides with the works of Refs. 4—6. The only ex-
ception in which such modified collisions had been
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studied in the context of the redistribution problem
prior to Ref. 12 is the work of Light and Szoke.

Although the reference to "coupling" may allude
to the radiative coupling strength (i.e., the on-res-
onance Rabi frequency II), it is really the optical
nutation frequency 0'=(0 +5 )' (where 4 is
the detuning of the incident laser frequency off
resonance) that delineates the various coupling re-

gimes. Letting y stand for a typical linewidth

parameter, and r, be the duration of a typical
strong collision (with yr, « 1 in dilute gases)

specifies the medium-coupling regime, whereas

specifies the strong-coupling regime. The use of
II' (rather than 0) explains why the collision
dynamics can be modified in the line wings even in

weak fieldss ' (and in fact b &r, ' is the usual
"impact" criterion).

A similar distinction between the two regimes

was made more recently by Reynaud and Cohen-

Tannoudji. ' The latter authors use the names

impact and "nonimpact" for the medium- and

strong-coupling regimes, respectively. These names

were improperly chosen for, as we are going to
show below, in the secular approximation used

here (and in Ref. 17), in which the emission spec-
trum is made out of sharp isolated lines, each indi-

vidual linewidth can nevertheless be calculated in

the impact approximation, with dressed-atom

states (in contrast to atomic states) used as the

asymptotic states of the pair-collision dynamics.
We shall derive below expressions for the

strong-collision regime using a time-dependent for-
malism as established in the series of papers re-

ferred to hereafter as I—III. ' This approach
enables one to directly obtain equations of motion
for the density matrix and for the correlation func-

tion in the presence of the field. It is also particu-
larly suitable for extension to time-resolved phe-
nomena under pulsed laser fields. ' In deriving the
equation of motion we actually reduce the density
matrix to the degrees of freedom of a single "ac-
tive" atom whose dipole couples to the scattered
radiation field, using the dressed-atom basis for the
active atom in the applied radiation field. In this
manner we limit the discussion to foreign-gas
broadening phenomena, and the modified collision
dynamics —to "optical" rather than "radiative"
collisions (using the terminology of Lisitsa and
Yakovlenko'). The extension to self-broadening,

where both collision partners are "active" (before
and during the collision) was formally outlined

elsewhere.
The derivation of the equations of motion below

is simplified by using the binary-collision ' and

the secular (or isolated-line)' approximations. As
already stated, the line shapes in the latter approxi-
mation can be calculated in the impact, or Marko-

vian, approximation. This means that the line-

widths can be calculated using S-matrix scattering

theory, with dressed-atom states in the asymptotic
collision states, and the coupling to the strong radi-

ation as part of the collision Hamiltonian. In the

simple two-level model (neglecting space degenera-

cy) the present results reconfirm the results of Ref.
12 for the linewidths and produce explicit expres-

sions for the line intensities of the resonance-
fluorescence spectrum.

II. THE EQUATION OF MOTION OF THE
DENSITY MATRIX

A. The dressed frame transformation

The general theory of light scattering by atoms
undergoing collisions has been given elsewhere. In
paper I (Ref. 8) an equation of motion is derived
for the density matrix of an atomic system being
driven by a near resonant classical electromagnetic
field and at the same time undergoing collisions.
The binary-collision approximation (BCA) was
used in I—as we do here also—and also it was as-
sumed in that paper that the field was weak, i.e.,
ftr, « l. (Here 0 is the on-resonance Rabi fre-

quency, defined via Q=E.d/A where E is the elec-
tric field strength, d is the magnitude of the tran-
sition dipole moment, and v, is the duration of a
strong collision. )

This weak-field approximation can be avoided if
we make a transformation to dressed states of the
atom plus driving radiation, and this is what we
shall accomplish here, using the notation and ter-
minology of paper I. Since we want to work with
the dressed states we shall make the transformation
to dressed states before we "eliminate" the collision
partner variables by averaging over the "bath" of
perturbers.

We shall for simplicity consider the following
example (the generalization is straightforward): a
two-level atom whose excited and ground states are
(2j, +1) and (2jg+1) fold degenerate, respectively.
Following Courtens and Szoke' and Cooper
et al. ' we define the following atomic operators:
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D+= g l m, )(m, l dlms)(ms l,
m m

D„= g lm )(m, l dim, )(m, l,
m m

Iq ——g [ lm, )(m, l+ lms)(ms l ],
m~mg

S„'= g ( lm, &&m, l

—lm, &&m, l
) .

(2)

(4)

alone.
We now make the following unitary transforma-

tion on the system

I
q'.ot& = &R(r)

I q'rtaed&

where

icoL t(S&~ —1)/2
Uz ——e

m m

These are operators in the atomic subspace only;
the total space of course includes the perturber
variables. Thus we can write the above operators
for the complete space of the system, assuming for
convenience structureless perturbers, in the follow-

ing form:

D+=DA Ip,
D =Dg Ip,

etc., where

Ip g l
pl)(——pl l,

pl

and where p labels the momentum of the lth per-
turber. A general atom-perturber state may be ex-

panded in the following basis (ignoring velocity
states of the absorber):

1 Ikmk pI &
=

I Jkmk ) I PI & .

The Liouville operator, L, that determines the
evolution of the complete system, atom plus per-
turbers, may be expressed as the commutator of
the Harniltonian H,

1
LO = . [H,O], —

iR

atom +H atom-rad +g Vatom-Ith pert +H pert
l

Hg +HER +g—Vgi+Hp,
l

neglecting here cooperative effects between similar
atoms (consistent with our assumption of foreign
gas broadening). We shall assume that each per-
turber is independent. (Vlj, the interaction between

perturbers is therefore omitted from the Harnil-
tonian. ) Since in this paper we are mainly interest-
ed in collisional phenomena, we will also assume
that radiative damping is included in the Liouville
operator for the atom L& (i.e., Lz ——Lz+S, where
S is the damping operator of paper I: we will, in

fact, later ignore radiative damping during a colli-
sion). Hzz then describes the laser interaction

Then if we use the rotating wave approximation'
to the atom-radiation interaction Hamiltonian we
obtain the following time-independent interaction
Hamiltonian in the rotating frame:

Hgg = —
2 Mg6+ t R(ptp+ ter. ) —(D+ep Dep)—.

(12)

Here, %coo, is the difference in the energies of the
ground and excited states (ignoring the effects of
radiative widths). eo is the amplitude of the as-
sumed classical driving field and 6=coL —coo.

The advantage of using the rotating frame is ap-
parent, since in this frame the Harniltonian and
Liouville operators are now time independent.
Construction of the eigenvectors (i.e., the dressed
states) in this frame is now quite straightforward.
For our example this procedure is discussed in de-
tail {for the pure atomic states) by Cooper et al. '

Since (neglecting correlation between Doppler and
pressure broadening) the perturber variables com-
mute with the dipole moment, i.e., D+ and D are
diagonal in perturber labels, the procedure we need
is precisely the same. [Note that we have implicit-
ly assumed that we are using a basis in which the
dipole moment is not a function of atom-perturber
separation (see Ref. 6).] The only new step is to
transform the atom-perturber interaction to the
dressed frame. The dressed states are simply su-
perpositions of the excited and ground states that
are coupled (in pairs) by the field. For convenience
we will assume that the perturber-atom interaction
V„I [of Eq. (9)] is an effective interaction which
couples the excited states or the ground states but
does not couple ground to excited states (e.g., van
der Waals interaction). If this were not the case,
as we will see later, the Hamiltonian in the rotat-
ing frame introduced here may not be time in-
dependent. (The use of an effective interaction will
be valid for most atom-atom interactions since en-
ergies associated with transitions in the perturber
are usually large compared to fiQ. ) Even with this
assumption, in the dressed frame the collisional in-
teraction couples dressed states that are superposi-
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(13)

Here

AA 1 AA A
LDpp(t) = [HD, p—.D(t)],

iA

1
VDpD(t) = —. [VD,pD(t)],

iA

(14)

LppD —= . [Hp, pD]
if&

tions of ground and excited states and has, there-
fore, a more complex form. (For details of the
transformations involved for j,=1, jg

——0 we refer
the reader to Ref. 7.) In spite of this complexity
the average over perturber variables is straightfor-
ward, since the projection operator that projects
the full density matrix onto the factorized atom
plus perturber subspace commutes with the rotat-
ing wave transformation. Let the transformation
to dressed states, in the rotating frame, be given by
UD. Then we can write the equation of motion for
the density matrix in the dressed frame, pD(t), in

the following form:

dgpp(t) =(LD+ VD+Lp)pg)(t) .

Note that LD is diagonal in the dressed frame,
since this is, after all, the definition of the dressed

frame. The second time-independent form of VD

in Eq. (18) follows from the assumption that Vz~ is

diagonal in excited or ground states. Since the
Liouville operator is time independent we can use

the standard procedure for obtaining an equation

of motion for the reduced density matrix of the
atom. We define, as usual,

&D(t) =Tr~„[PD(t)] .

An equation of motion for &D(t) may be obtained
in precisely the same manner as was done in paper
I. We use the P, Zwanzig-Fano projection super-

operator that projects onto the factorized subspace
of the dressed atom plus perturber system and re-

call the definition here for the convenience of the
reader. P& is defined by its action on an arbitrary
operator 0, thus

(20)

]
HD ——UD(Hg+g ) Ug)

VD ——UDUs(t) QVAI UR (t)UD
l

A A
=Un gV„~ UD

1

(17)

(18)

and its complement is Q, =1 P, . We proje—ct Eq.
(13) onto the P, and Q, subspaces and solve the
equation for Q, formally using the same assump-
tion as we did in I, i.e., that the correlations im-

portant at any given time t are those that develop
in the interval [t, —Do] and not those present at
t = —0O.

Then the equation of motion for &D(t) may be written thus

B,&D(r)= LD&D(t)+Tr ~[VDp ~]&D(&)

+J dt'Tr~„[VDexpj Q, (Ln+ VD+Lp)(t —t')]Q, VDp~, „]&D(t')dt' .

Note that, since we are dealing with an effective interaction we do not assume that Tr~„[VDp~„] =0.

(21)

B. The binary-co11ision approximation

We now make the binary-collision approximation (BCA) (Ref. 23)—i.e., that strong collisions are separat-
ed in time=on Eq. (21). For a discussion of its validity see I, II, and III. The BCA to Eq. (21) enables the

Q, to be dropped and may be written thus

(22)

B,&D(t)=LD&D(t)+NTr, ~„[VDp „(1)] &(tD)

+ J dh'N Tr~ ~&[VDexp[ (LD+ VD+Lp )(t —t')] Vnp~~(1 )] g&&( )r

Here the (1's) refer to single perturber labels and N refers to the number of perturbers in the quantization
volume V (we assume, of course, that the N~ oo, V~ oo, N/V=const limit is taken when convenient). An
alternative form of Eq. (22) uses the interaction representation and may be written thus
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t), &D(t) = LD&D(t)+e N Tr, ~„[VD(t)p~„(1)]e ~&D(t)

LAt

+N Tr& „e V~(t) f dt'UD(t, t') VD(t')pp, „(l) e &a(t ), (23)

with

(LD+Lp)t i (LD+Lp)tDt=e De

and the interaction picture time development superoperator

UD(t, t') = T exp f 'VD(t")dt"

(24)

(25)

(with T the time-ordering operator). This form explicitly displays the memory kernel ~(&,&') = VD(t)

X UD(t, t') V~(t'), and consideration of the dynamics of collisions indicates it is nonzero only for times

t —t'(~, where v, is the "duration of a collision. "
t 1 t

Splitting the integral f . . . in Eq. (22) into f + o it is then obvious that for times of in-

terest greater than r„ the V'(t) f term is negligible. Further due to stationarity2

LA LAtl L~(t
Tr[e VD(t) UD(t) Un(t, t') VD(t')e . ]=Tr[e VD(t t') UD(t —t—', 0) VD(0) . ]

so that the Laplace transform of Eq. (23) may be obtained as

$&D($) —&D(t =0)=LD&D'{$)+yD(s)&D($)

where

(26)

(27)) D(s) =N f dr Tr& &„[e VD(r) UD(r, 0) V(0)+ VD(r)5(r)]e
0

Steady state of course corresponds to $ —+0. In light of the nature of the memory kernel, $~0 should be a

good approximation for times greater than rwhe unsing y~ in the equations of motion.

C. The secular approximation

Certain of the tetradic elements of ) D [of Eq.
(27)], do not produce an appreciable effect on the

equations of motion. This is because the frequen-
cies of the different elements of &D(t) are not all

degenerate. Specifically, if the off-diagonal (non-

zero) elements of LD in Eq. (26) are large com-A

pared to the corresponding elements of yD, then

the yD elements will be unimportant. This condi-

tion, namely, LD && yD, implies that the nondegen-

erate splittings, 5D (say), of the levels in the
dressed frame should be large compared to the

damping rates, i.e., the levels should be "well

separated. " This is essentially the secular approxi-
mation.

It means that, to order yD/5D, only elements of
the density matrix that have degenerate or nearly
degenerate frequencies are coupled. This has an
important consequence as the tetradic elements of
the collisional operator that couple degenerate ele-

ments of the density matrix can be expressed in

(fl +g )'~ —
~
g

~

2
=5D, (28)

whereas the coupling between states is given by the
tetradic elements of yD. We can say, therefore,
that if this coupling is much smaller than 5D the

terms of S matrices. This implies, in turn, that if
collisions only couple elements of the density ma-
trix having degenerate frequencies (i.e., the secular
approximation holds), one only has to solve Mar-
kovian equations of motion in order to obtain the
density operator for the dressed atom.

To specifically establish the region of validity of
the secular approximation we shall consider a sim-

ple case, i.e., a jg =0 to j,= l transition (see Fig.
1), in which some of the elements have degenerate
frequencies. The smallest splitting (corresponding
to off-diagonal elements of LD), apart from those

A

that are zero, is that between the frequencies of
p&&1 (or pal &) and the populations. This splitting is
equal to
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mj =I ml =-I

O. I r

j =0

FIG. 1. Atomic and dressed states for j=0~j =1
transition in the presence of linearly polarized light.
———,dressed states;, pure atomic states.

-2 -I
IO c

O. I rc
-Irc

yD(1 II, 11)= ((1«
I yD l

11))

+((1 II lS l
11)), (29)

the couplings will have a negligible effect on the

equations of motion if

y (1«, 11)~~ + (30)

Let us take the reasonable condition, say

(Q2+/2)i~
, 10') & (31)

i.e., so the condition

Q & [(20') )2+ (40yn l
6

l

)]'~i

coupling of the coherence between
l
II ) and

l
1)

to the other populations can be ignored. Actually,

up to this point, radiative damping (yN via opera-

tor S) has been included in LD, however, since Eq.
(26) is linear, we will find it more convenient from

now on to include it with yD. Thus, defining

FIG. 2. Region of validity of the secular approxima-

tion (and other related approximations). A, weak-field

Markov; B, strong-field Markov; C, weak-field non-

Markov; D„secular y, -5)(10 ~, ' (-50 Torr for
van der Waals broadening); Db, secular y, -5X10 7; '

(-500 Torr for van der Waals broadening).

D Linear polarization

When the driving field is linear, the dressed

states are still eigenfunctions of the component of
angular momentum along the driving field's direc-

tion. ' The average collisional operators then

have cylindrical symmetry, which means they can

only couple elements of the density matrix with the
same value of q=(m~ —m;), where the density-

matrix elements are labeled p . Along with the
J

secular approximation this means that for the case
of linear polarization populations are only coupled

to populations and coherences only to coher-

ences—a considerable simplification.

defines the region of validity of the secular approx-
imation in the absence of any other selection rules.
This approximate region of validity overlaps the
regions of validity of the other methods available

for the problem. This is shown in Fig. 2 for dif-
ferent values of yDr,

' [For the o.ther splittings
between density operator components the condition
on Q is always well satisfied within the region de-

fined by (31).]
The reader will see that for yd~, & 5&(10 the

secular approximation region essentially fills in all

of the [Q,h] plane that other techniques cannot

reach. For higher values of yD a gap opens up.
Figure 2 certainly shows that the secular approxi-
mation in the dressed frame is useful over a very

wide range of the [Q,h] plane and greatly simpli-

fies the equations of motion.

E. The Markov approximation

In papers I—III an issue was made of the con-

cepts of absorption and emission during collisions,
whereas here the dressed states have eliminated the
need to consider this problem separately (albeit
with much more complex collisional calculations
and more difficult physical interpretation, as out-
lined below). This does not, of course, change the
physics of "absorption during a collision" that was

discussed in I and II. To see this we recall that for
0/6 « 1 we can write the dressed states as a
power series in 0/h. This, in turn, implies that
the off-diagonal matrix elements of the potential
between dressed states will be small (-0/5). In
Sec. III D below we shall show the precise relation-

ship of the weak-field limits of our present calcula-



25 COLLISIONAL REDISTRIBUTION OF RADIATION IN STRONG. . . l351

tion to the weak-field results obtained in I. Let us
consider, for the purposes of illustration, the case
where the interatomic potential is attractive and we
detune our weak field far to the red. The dressed-
state picture would, in this limit, lead us, if we
used semiclassical wave functions, to calculate the
lowest-order Landau-Zener transition probability
for the coupling between the dressed states during
a collision: the transition being localized at the
curve crossing between the states (see also Light
and Szoke for details). We see, therefore, that our
"absorption in the middle of a collision" is still in
the calculation due, in the same limit, to equiva-
lence of Landau-Zener and quasistatic (based on
Franck-Condon) approximations. (We shall discuss
the relation of the present approach to the conven-

tional theory of far wing absorption further in Sec.
III C.) In the weak-field case, we believe that the
dressed-state approach is not as fruitful as the ap-
proach used in I—III since in I—III it was possi-
ble to obtain closed forms for scattered spectra.
Moreover, using spherical tensor methods, it was
possible, because of spherical symmetry, to reduce
the collisional calculation to one in a single simple
collision frame. If we use the dressed-state ap-
proach, since we can only have cylindrical symme-
try, we have to perform the full calculation for all
the relevant collision directions and afterwards per

form the angular averages In .the strong-field case
this is unavoidable, but it does lead to complex and
time-consuming calculations.

The Markov approximation to Eq. (23) is

B,&o(t) = Lotto(t)+N Tr, ~„[Vo(0}p~„(1)]&o(t)

+NTr, ~„ f dr Vp(r)Uo(r, O)Vo(0)p~„(1} &o(t) .1 pert (32)

For elements combining degenerate (or near-degenerate) states, this is the same as the s~0 (or s && 1/ )r
limit of Eq. (27). With times of interest at least of order (yo) ', this is true if yDr, «1, which is precise-
ly the same as the BCA.

The relevant elements of the collisional operator yz(0) can now be reduced to on-the-energy-shell T-ma-
trix elements by the standard techniques developed for Liouville-space relaxation operators by Fano and
Ben-Reuven.

If we ignore the translational dynamical variables of the atom then we find we can write yz in the follow-
ing form, in terms of dressed state eigen-functions,

( (ij
f yo f

lm » = Nisi 'gpr{ [—( ly
f
T(Et+Er+i 0)ly &

—(rn 5
)
T(E +Es+i 0)

f
m 5 & ]

Sy

X5a 5' 5sr+ 2iri 5(Et +Er E; Es ) (i 5
~

—T—(EI ~Er +i 0)
I
l y &

X(15I T«+Es+io) Imy&'l . (33)

( (ij I yo I
lm » = {~'t S+J' 5't 5' ]—(34)

where the classical path dressed-state matrix ele-
ments must be averaged (through {

. . I,„) over
impact parameter, velocity, and all directions rela-
tive to the laser field. It is in this form that the

Here p& is the distribution function for the per-
turbers where y labels their momentum and inter-
nal state—if they are structureless p& is just the
Boltzmann velocity distribution (see Ref. 13). T is
the Lippmann-Schwinger T-matrix of quantum-
mechanical scattering theory.

An alternative form of Eq. (33) is useful for
classical path calculations, namely,

calculations of Light and Szoke were performed.
Again, we stress that the resultant Eqs. (33) are
good for any near-degenerate pairs ij and 1m, in
particular also for the near-degenerate elements of
the density matrix used in Eq. (26}.

We should stress that the secular approximation
is a sufficient condition for obtaining simple rate
equations. When the secular approximation is not
valid, i.e., 5D (yD, the important elements of the
collision operator y~(s) which couple the dressed
states can still be written in terms of S -matrix
elements, since the BCA (yor& « 1) implies that

A
LDw .

5DS Q( 1 too, and therefore the term e in Eq.
(27) can be replaced by unity (noting that 5D is an
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A
eigenvalue of LD). The density-matrix equations

now have a much more complicated structure with

coupling between populations and coherences.

Fourier transformation, i.e.,

C(t, tp)=TI[pHd+(t)d (tp)], (35)

III. THE CORRELATION FUNCTION

A. Formal considerations

We shall now calculate the spectrum emitted by
the atom in the presence of driving field and colli-
sions using the equation of motion for the correla-
tion function in the dressed-state representation.
We shall see that the equation of motion for the
correlation function in the dressed frame is closed
and Markovian for timescales t && ~, after any ini-

tial condition. This implies that as long as we do
not consider the emission that a given dressed-state

component produces at detunings hcoD )v,
' from

its center then we can use this closed Markovian
form of the equation of motion. To show this we

start with the exact expression for the correlation
function from which the spectrum is derived by

where p~ is the density matrix in the Heisenberg

picture (chosen to coincide with the Schrodinger
picture at t = —oo). This may be written in the
form

C(t, t, ) =Tr[e ' (P(tp)d+)d ] . (36)

We can derive an equation of motion for C(t, to)
just as we did in III. We first transform the quan-

tity gD(~) =e 'p(to)d+ into the rotating frame and
then into the dressed frame [just as we did with
the density operator; e 'p(tp)]. For convenience
we will put to ——0 in the remainder of this section,
however, we stress that in order to derive the spec-
trum, p(to) represents the steady-state value of the
density matrix. After applying the BCA, the
resulting equation of motion for GD(~)
=Tr~„[gD(r)] is (using a derivation exactly as in

paper III)

I) GD(r) = LDGD(r)+N J dt'TrI &„[e VD(r)UD(r, t')VD(t')e p& (1)]G(t')

+N TrI ~„[VD(0)p~„(1)]GD(r)

LA
+N TrI ~„e VD(r) UD(r, O)

' J dr'UD(O, r') VD(r')e p~„(1) &D(r')dD (37)

where dD is evaluated in the dressed frame. This
equation is very similar to Eq. (23). The last term
of Eq. (37)—the "destruction term" due to a col-
lision in progress at the initial time of the radiative
process must, however, be considered in detail.

We first of all note that the observed scattered
spectrum is (as examined in more detail in Sec.
III B) obtained from G~(co), the Fourier-Laplace
transform of GD(r); [GD(tp) =G(s =ipI)] This.
transform implies that, associated with a frequency
separation hcoD of the scattered frequency co from
a dressed-atom frequency, there is a time of in-

terest 1/hcu~. The memory kernel in the last term
of Eq. (37) is zero if r & r„ thus this term is obvi-

ously unimportant for hood « ~, ' and may there-
fore be neglected in the equations of motion. This
is reasonable, since as said above the last term of
Eq. (37) represents the effect of the collision that
are in progress at time v=0 on the dipole at later
times. In fact, more detailed estimates of the de-
struction term (compare Do of paper III) show that
in this "impact" (hco~ &&r, ) limit, its contribu-

I

tion is at most of order year, ( «1). Having
shown that for Acoz « 1/~, the last (destruction)
term in Eq. (37) is unimportant, then it is apparent
that Eq. (37), can be brought to a form similar to
the equations for the density matrix [(LD —s)
& I /r, being equivalent to ht0D & I/r, ]. The con-
dition hcoD & 1/~, is sufficient to ensure that
yz(hcoD) reduces to the S-matrix (impact) limit,
and the equations can be cast in a Markovian
form. It is important to notice (as we demonstrat-
ed in Ref. 12) that Eqs. (32) and (37) involve dif-
ferent classes of elements of the supermatrix y~.
The elements in (37), that determine the shape of
the spectrum of the scattered radiation, are defined
as coherences between initial and final dressed-
atom states produced by coupling to the scattered
field (the coq-dependent terms of Ref. 12), and have
the form ( (if

~ yD ~

i'f') ), rather than the popula-
tion-decay terms of the type ( (ii

~ yD ~
jj) ) that

appear in (32), and have an important role in ob-
taining the line intensities. It is easy to see that in
the secular approximation, in which lines

~
if) )
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B. The correlation function
for the two-level atom

As we have shown above the correlation func-

tion can be calculated via the equation of motion

of pd+, since we shall restrict ourselves to the im-

pact region around dressed-state components,
Ace «~, . Here pd+, or GD, play with respect to
the scattered field the same role that a coherence
element of the density matrix plays with respect to
the incident field in weak-field absorption spectra
(whereas 0. plays the role of population elements).

Then we only need the projected part of pd+, i.e.,
&DdD which obeys a closed equation of motion

~ GD(&) —IDGE)(&)+y (0)GD(&), (38)

with initial condition G(~=0)=O.D(0)d+ (again

note v=0 corresponds to steady state).
To give a concrete example of the technique we

shall consider a two-level atom. First we note that
this closed equation of motion gives us precisely

and
I

i'f') ) are well isolated, the off-diagonal ele-

ments connecting them can be neglected (this is,
after all, what the secular approximation is all

about).
Thus, the considerations with regard to the

equation of motion for the density matrix such as

secular approximation, BCA, etc., then apply in

exactly the same way to the equation of motion for

correlation function, which as we have seen

amounts to calculating the equation of motion for

(pd+). So the same tetradic elements that we cal-

culate for the equation of motion for the density

matrix [i.e., Eq. (26)] are needed for the equation

of motion for (pd+) and the correlation function.

This result is equivalent to the well-known quan-

tum regression "theorem" which is strictly valid

for Markovian processes. In particular, apart from

different initial conditions, the same set of equa-

tions in the dressed frame are used. To reiterate,

the necessary condition (in addition to secular and

BCA approximations) is that we are only interested

in frequency separations from the dressed frequen-

cies such that hen~ && 1/~, .

GD(r) =Try~[exp(Lr)]&D(to )drr

—= UD (r)[&D(to )da ] (39)

in the rotating and dressed frames (remember that

tp =0 was used above). We need to transform this

back to the laboratory and free-atom frame since
we need the quantity

C(r) =Tr[e '(pd+)d ]

=Tr[Uq (r)Us(r)(Pd+)U„(r)Uz(r)d ]

[UD (r)(&D(to)dD )Us(r)d Us (r)]

=Tr„, [GD(r)d (r)], (40)

where d (~) is d in the rotating frame. We now

write &D(to) in terms of the basis vectors
I
I ) and

I
II ) [see, e.g. , Ref. 21]

&D(t)= y 0'~J
I

t ) &J
I

i&j=I&II
(41)

Using the transformation from atomic to dressed

states

I
I)= b2 I

1)+b—
& I

0),
I
Ir) =b,

I
1)+b, IO) .

Here
' 1/2

(42)

(43)

bi ——
0'+6
20' (44)

and

0' —6
b2 ——+

' 1/2

(45)

where —(+ ) should be used when 6 is positive

(negative). In the dressed-state basis the dipole

operator dD may be written in the following form:

bi b2 0 dip b) —b2

[dD ]= —b2 bi 0 0 b2

(46)
bib2dip b id]p

2

—b2dip —b2b]dip

[dD ]=d ~o [ I
II ) & II I

b b2 + I
II ) & I I

b —
I

I )
&& &II

I
b2

I
I ) &I

I b2b~ ]. So our initial condi-

tion is, using steady-state values of &D for tp ——0,

[&D ( 0)dD ]= d
& o [ I

II & ~rr rr (0)b i b 2 & II
I
+

I
II & rrrr rr (0)b i &I I

—
I
II & rrrr r (0)b z & I I

—
I
II &rrrrr(0)bib2 &I

I I
I &rrr rr(0)b&b2 &II

I
+ I

I&rrrrr(0)b &
&I

I

II)rrrr(0)b2&III II)rrrr(0)bib2&I I] (47)
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and in matrix form the initial condition is

b 1b2+ll II{0}

Irr rr(0)b1b rlr—Ib
L

till II (0}b1 IJII I (0}b1 b2 IIII I(0)b 2
2 2'

b 1 b 2IIII I{0 ) +b 1 +I11{0 )
(48)

Now in the steady state the off-diagonal elements of the density operator in the dressed basis all vanish
since, having no driving term, all they can do is decay. They do not couple to the populations. So our
steady-state initial condition is

2b 1 b2~II II (0) +IIII (0)b 1+[nD(0)dD ]=d1p
b 2~ (p) ~ (p)b

Equation (40) says that we require

C(r) =&1
~

UD"(r)(oD(0)dD )
~
0)dP1e

for the evaluation of the correlation function. Since

(49)

(50)

(51)GD(r) = UD (r}(crD{0}dr)),
we can express the matrix element of Gn{t} we need, i.e., & 1

~
GD(t)

~
0), in the following dressed-state form:

b1 b2 GII II{t) Grr r(t} —b, b2—
& 1

i
G, (t)

i 0) =
b2 b1 GI II(t) GI I(t) b2 b1

(52)

or a
~~ar+&ar

—~arr Gaa

=b, b2[ Grrn{t}+—Gl I(t)I+b, GIII(t) b2GI rl(t—}

Now the equation of motion for GII(t} has the following form, where all zero elements are due to the secular
approximation,

0

Gr a 0 ~~I «+&za
dt Gar 0 Grr I

(53)

GIIII +rrrr 0 0

r» «rr
~ V, ~rr—) &+y„'", (54)

fnlr=« II II ~y ~II II)+ylr

r»l =«Ir
I yD ~rr rr& &+y„"',

r»l « Ir Ir ~yD ~r——I) &+y'„",

(55)

(56)

(57)

&In=«r Ir
~ yD ~I II))+ (b1+b2+4b1bz},

Err —Er
~r a =

&
=~+2&= —~ar

PN Q +26 —20'6
fN 4 I 2 7

(58)

(59)

(60)

ylr 0 +2h +2Q'6
4 0' (61)

Here yN is the natural decay rate. These collisional rates in Eqs. (54)—(58) are the rates of coupling be-
tween states in the dressed frame as calculated, e.g., by Light and Szoke for jg

——O~j, =1. The coupled pair
of equations we have to solve is for Grr(t) and GIIII(t). The initial conditions are given by Eq. (49). The
observable quantity is proportional to
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J,
e'" '&l

I
Grr(r) I0&e ' dr=GD(i(co ro—z))

=bib2[Grr(id'} G—arr(ih')]+b, Grrr(ih') b—2Gra(ih')

(62)

b b

}
[(frr+f rrr)rJan(0) +(1 «rr+1 nr )err(0)+ih']

r r a—rr
bi4 b2crI I(0)4

+. rrrr Il(0)+lk +lAIII+~III &~III+&III

Here 6'=co —coL, and,

orr(0)=

~II I
rrrr rr(0) =

(f rrr+f rrrr)

(63)

broadening operators discussed elsewhere. In this

way we shall show how Eqs. (62} and (63) give, in

the weak-field limit (in the BCA, of course), the

exact linear response result. To show this we start

with the definition of I rr r, i.e., from Eq. (33),

This has precisely the form of the Mollow triplet

(Refs. 29 and 30}. We must emphasize that this

spectrum in the strong-field limit has been derived

without making any phenomenological assump-

tions about the form of the damping operator.

The linewidths of the three components of the

triplet are the same as derived by Rabin and Ben-

Reuven. ' The latter authors, however, have not

given explicit expressions for the line intensities.

In weaker fields (the intermediate coupling case

Qr, « 1) we get the corresponding results of Refs.

12, 21, and 17. General expressions for the evalua-

tion of these microscopica11y derived collision

operators in the dressed frame are given by [Eqs.
(33) and (34)]. The analysis used in this example

can, of course, be easily extended to the more gen-

eral jz~j, transition case—if the driving field is

linearly polarized. For the case of j~ =O~j, =1
transition interacting with perturbers via a van der

Waals potential, the collision operators in the

dressed frame have been calculated by Light and

Szoke. The explicit equations of motion for the

jz ——0~j, =1 case including a full solution for a

time-dependent field (important for the analysis of

many experiments) will be presented elsewhere. '

X 2 Sr I
&»Ps17'(Er+Er +i0)

I
Ipr& I2

PyPg

X@Er+Er Err Es)— — (64)

&IIp'I l'D IIp&=b~bz&0p'I ~g I0p& .

Here Vg is just the interaction with the perturber

in the ground state. If we denote the scattering

state formed by an incoming ground state in the

absence of the driving field by I Opr+ &, then the

D%BA gives

(65)

%e shall consider as we did in paper I that only

the lower level interacts with perturbers. In the

weak-field limit, i.e., 0/6 « 1 the part of the po-

tential that couples the two dressed levels, i.e.,

I
Ip & and

I
IIp & may be treated as a perturbation.

The full effect of the interaction of the perturber

with ground state must of course be retained. This

is precisely the situation where we can use the

distorted-wave born approximation (DWBA) (see

Ref. 27, p. 271}. The perturbation that couples

I
Ip & and

I
IIp'& is given by Eq. (18). In this

case it gives

C. Evaluation of collision operators
in the weak-field limit

P~PS

X6(EI+Ez—EII —E~)b ib2 .

It is instructive to relate the collision operators
we have defined above to the conventional )ine-

(66)

Note that in the weak limit EI—EII ——6 so that we
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can write, for 0/5 g& 1,

I I=Nb '0 g ~(Op ~Op + )~
PyPg

(67)
This is the exact BCA far wing absorption rate
that includes the effect of the ground-state poten-
tial on the perturber distribution: through the
Boltzmann factor in (67) (see paper I). In case
there is an upper-level interaction, V„ the only
modification necessary is to replace Vs in Eq. (66)

by Vg
—V, . The reduction of (66) to (67) is not

possible when we have spatial degeneracy since in

that case we cannot use the BO approximation for

the atom plus perturber wave function.
We want to emphasize that we have shown here

that the dressed state and free atomic state bases

give exactly the same results in the weak-field limit

and contain exactly the same physics of absorption

during collisions. In the weak-field limit, as em-

phasized above, the collisional calculation for the

degenerate case is considerably simplified by ex-

ploiting the spherical symmetry of the perturber

distribution. If, however, an experiment is done

using a crossed-beam arrangement rather than a

thermal cell the dressed-state approach is by and

large the most direct and suffers only from the

limits of the secular approximation.

IV. SUMMARY

We have shown how the spectrum emitted by an

atom in the presence of collisions and a driving

field may be calculated even when the driving field

significantly alters the mechanism of the collision

with the atom. In particular, the equations of mo-

tion derived here for the density matrix and the

autocorrelation functions are simple Markovian
equations in the dressed-state basis (the coefficients
of which can be directly related to single-collision
S -matrix elements calculated in the dressed
frame). The conditions necessary for obtaining
these equations are the following: (1) The binary
collision approximation should be valid (requiring

yDrc « 1); (2) the secular approximation should

be valid (requiring that the energy splittings 5D be-

tween nondegenerate components in the dressed
frame be large coinpared to yn, i.e., isolated com-
ponents); and (3) scattering frequencies of interest
must be in the impact region in the dressed frame
around each separate resonance peak (requiring fre-

quency separations AcoD && 1/w, ).
[Conditions (1) and (2) are sufficient for obtain-

ing simple decoupled Markovian equations. When
this is not valid, i.e., 5ti & yti, the important ele-

ments of the collision operator can still be written
in terms of S matrix elements, but the density-
matrix equations now have more complicated cou-

plings, as in the problem of overlapping-line band
spectra. ]

We thus reiterate the conclusions of Rabin and
Ben-Reuven that the measurement of the spectral
components emitted by the dressed states can be
used to study the detailed variation of the colli-
sions in the dressed frame as functions of the driv-

ing field strength and detuning of the laser from
the atoms natural frequency. This should prove a
powerful technique in the study of the mechanism
of laser induced processes in atomic collisions.
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