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It is well known that including the coordinate rl2 in the wave function is essential in

obtaining highly accurate results for the low-lying bound states of two-electron systems.

In this work we calculate the energy, wave function, oscillator strength, radial expectation

values, and mass-polarization effect for helium bound states by using simple configura-

tion-interaction basis functions. Our results show that the advantage of the rl2 coordi-

nate is lost quickly in going from S to D states. In most cases, the results of this work

give substantial improvement over previous calculations where rl2 is not included. For' D states the results presented here are among the best in the literature.

INTRODUCTION

The energy and oscillator strengths of the helium
bound states have been studied extensively in the
literature. Most of the highly accurate results are
obtained by the use of perimetric coordinates, ' or
Hylleraas coordinates, where r&z is explicitly em-

ployed in the basis functions. This enables the
wave function to satisfy the cusp condition. The
r,j coordinates for three- and four-electron systems
have been used in a more restrictive manner for the
calculation of some lower-bound states of lithium
and beryllium. However, for multielectron prob-
lems, including r&2 explicitly in the basis functions
becomes impractical. For these problems the
configuration-interaction basis functions are used
instead. It is therefore important to find out the
limitations of the simpler basis functions by apply-
ing them to a two-electron system where accurate
results are available for comparison. This has also
been done in the literature, notably by Green et al.
and more recently by Froese Fisher. However, the
results thus obtained are significantly inferior to
those of Ref. 1, not only in energy, but in oscillator
strengths, radial expectation values, etc.

In this work, we use simple configuration-
interaction basis functions with a very limited
number of nonlinear parameters to calculate the
energy, wave function, oscillator strength, radial
expectation integrals, and mass-polarization effect
of the 1s 1s'S, 1s 2s 'S, 1s 2p 'P, and 1s 3d 'D
states of helium. The linear parameters are limited
to be from 60 to 110. The results we obtain are

substantially better than earlier work with similar

types of basis functions in most cases. In the case
of the 1s 3d 'D states, the present results are
among the best in the literature.

The method of computation, results, and discus-
sion will be given in the following sections. Sec-
tion I presents the wave function and calculational
procedure used. Section II gives the nonrelativistic
energy eigenvalues and some expectation values of
various radial operators. Section III gives the re-
sults for the mass-polarization effect, and Sec. IV
presents the oscillator strengths. Finally, Sec. V is
a brief summary. In this work we shall only corn-
pare our results with a few representative works
from the literature. A more complete compilation
of references can be found in Godefroid and
Verhaegen.

I. WAVE FUNCTION

The radial and angular basis functions used take
the form

P(m, n, a;,P;
~
rt, r2)
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The subscript i on the nonlinear parameters a and

P in the radial part expresses the fact that different

nonlinear parameters are used for each angular

partial wave, the angular part being the eigenfunc-
tion of total angular momentum L and z com-

ponent M formed from coupling the two angular
momenta, li and 12, with the Clebsch-Gordan coef-
ficients. The trial wave function is then written:

m, n;l), l~

X Y X(12)

where A is the antisymmetrization operator and

g(1,2) is the spin function of either singlet or trip-
let.

Equation (3) is used in performing a Raleigh-

Ritz variational calculation, with the nonrelativis-

tic Hamiltonian

1 1 1H= ——7 ——V' ————+1 2 2
r1 r2 r12

(4)

II. ENERGY EIGENVALUES AND
RADIAL INTEGRALS

In Table I we show the convergence of the ener-

gy by tabulating the energy contribution obtained

from each angular partial wave along with the
number of linear parameters employed. For each

partial wave a different optimized pair of nonlinear

The angular correlation is accounted for by the in-

clusion of an appropriate number of angular partial
waves in the trial function. Usually a large
number of linear parameters is needed to obtain

good convergence for the energy. To keep the
number of terms in the wave function down, an ef-

ficient radial term selection process has been in-

cluded in the computer code. It works as follows.

First, a large radial basis is chosen for a given an-

gular partial wave, then the energy and wave func-

tion are calculated. The terms in this wave func-

tion are then ordered according to the magnitudes

of the coefficients of the normalized basis func-

tions. The computer code then accesses each
term's contribution to the energy in order to decide
whether that term should be kept or omitted from

the final wave function. Hence, a smaller wave

function is obtained which will generate essentially

the same energy as the larger one. With this wave

function, the energy and expectation values are ta-

bulated.

parameters was used. In Table II, the present ener-

gies are compared with the most accurate energies

available from various calculational methods. In
column 1 the highly accurate energies of Pekeris
and co-workers' are given. The wave functions

were expanded with 560—1078 terms, where the

basis functions employed perimetric coordinates.
In column 2 are the results of Weiss who used

Hylleraas-type basis functions, with expansions of
52 —54 terms. Column 3 gives the results of
Green's configuration-interaction (CI) expansion in

terms of Slater orbitals, where he used expansions

of 42 —50 terms. Froese Fisher's multiconfigura-

tion Hartree-Fock (MCHF) results are given in

column 4. In column 5 are Divine and Stewart's

results. These were obtained by a perturbation-

theory expansion through fourth order in the ener-

gy and through second order in the wave functions,

where the zero-order wave functions were generat-

ed by the frozen core Hartree-Fock approximation.

Finally, the present results are given in the last
column.

For the ground state the need of the coordinate

r12 to account for the electron correlation is clearly

seen. The present result of —2.903 535 a.u. , how-

ever, is a significant improvement in the ground-

state energy over Refs. 5, 6, and 8. The 2'S result

shows continued need for r12 in this low-lying 'S
state. For this state the Green et al. result is

slightly better than the present calculation in ener-

gy but their oscillator strength is poorer (see Table

V). For the 2 S, 2'P, and 2 P states our results

agree much better with those of Ref. 1, especially

for the triplet states. The present calculations for

these states are lower than other calculations in

which r12 is not explicitly used. Finally, for the
3'D and 3 D states the energies of the present work

are the same to all digits quoted by Weiss who

used Hylleraas coordinates. Blanchard and Drake

have also calculated these D states with 50-term

Hylleraas wave functions. They obtained
—2.055 6201 and —2.055 6360 a.u. for the 'D

and D energies, respectively. The oscillator
strengths are not calculated in this reference. The
present work shows a slight improvement over

these results in the last digit as compared with the
experimental results of —2.055 6209 and
—2.0556364 a.u. as quoted in Ref. 9.

In Table III a comparison of the expectation
1 1

values of —,(1/r1+1/r2), —,(r1+r2), and
1

—,(r 1 +r2) is given. These values give some indica-

tion of the accuracy of the wave functions at
small, intermediate, and large values of the radial
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coordinates, respectively. (r~) also relates to the
scattering cross section and diamagnetic suscepti-
bility of the atomic system. The results obtained
in this work compare extremely well with those of
Pekeris and co-workers, ' and give order of magni-
tude improvement over those of Froese Fisher,
and Divine and Stewart.

III. MASS POLARIZATION

In the usual nonrelativistic Hamiltonian, Eq. (4),
the coordinates rz and r2 are relative coordinates,
i.e., the position vectors of the electrons relative to
the nucleus. In the derivation of the nonrelativistic
Hamiltonian' the motion of the nucleus manifests
itself in two ways. One effect is to change the
atomic unit of energy me4/R =27.211652 eV,
where m is the mass of the electron, to pe /R
= 27.207952 eV, where p is the reduced mass of
the electron in helium. This effect is the same for
all levels, raising their energy by the factor JM/m
= 0.999 86403. The other effect is an extra term
in the nonrelativistic Hamiltonian, P& P2/m„(m„
is the nuclear mass in atomic units), that has been
neglected in Eq. (4). This mass-polarization effect
depends on how the two electron's momenta are
correlated, and therefore is different for different
levels. For excited two-electron bound states it will
be largest for 'P' states. '

The shift in energy due to the mass-polarization
effect can be obtained bj evaluating the expectation
value of —(1/m„) V~ V2. The results of this cal-
culation are given in Table IV along with other re-
sults from the literature except for the D states for
which no previous results are available. The
present results are in good agreement with Pekeris
and the other accurate calculations. "'

IV. OSCILLATOR STRENGTHS

The oscillator strength of helium is defined in
the dipole-length formula as

fi= 2(E/ —E;)

X
I
&gf(L' M')

I
ri+r21& «M)& I'

O O O O O

oo ~
O O

O O

or in the dipole-velocity formula as

= 2
1

(Ef Ei )

O
O

X [ (fjkj(L', M')
~
V)+V2 ( tp;(L, M) &

(6)

In the case, where ff and P; have many magnetic
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TABLE II. Nonrelativistic energy eigenvalues of helium ( —E in a.u.).

State
Perimetric

(Ref. 1)
Hylleraas
(Ref. 2)

CI
(Ref. 5)

MCHF
(Ref. 6)

Perturbation
(Ref. 8) Present

i's
2'S
23S
2'P
2P
3'D
3D

2.903 724
2.145 974
2.175 229
2.123 843
2.133 164

2.903 72
2.145 97
2.175 23
2.123 84
2.133 16
2.055 62
2.055 64

2.903 383
2.145 938
2.175 214
2.123 782
2.133 128
2.055 615
2.055 630

2.903 033
2.145 873
2.175 218
2.123 748'
2.133086
2.055 618
2.055 635

2.903433
2.145 909
2.175 225
2.123 801
2.133 153
2.055 617
2.055 633

2.903 535
2.145 935
2.175 227
2.123 826
2.133 157
2.055 620
2.055 636

'Quoted in M. Godefroid and G. Verhaegan (see Ref. 7).

substates, the experimental result usually corre-
sponds to the average of all possible transitions,
that is, a sum over the final states and an average
over the initial states. This result can be obtained

by applying the Wigner-Eckart theorem to the ma-

trix element of a single transition. For example,
for the case where the initial and final angular mo-
menta L and L' are different we can use the transi-
tion matrix element of z that connects the M =M'
=0 magnetic substates, Eqs. (5) and (6) become

TABLE III. Radial expectation values for bound states of helium (in a.u.).

State
Perimetric

(Ref. 1)
MCHF
(Ref. 6)

Perturbation
(Ref. 8) Present

i's
&1/r )
(r)
&r')

1.688 317
0.929472
1.193483

1.688 17
0.929 57
1.19376

1.168 85
0.929 5
1.192 5

1.688 271
0.929452
1.193 196

2'S
(1/r )
(r)
(r')

2.973 061
16.089 24

1.135 38
2.97465

16.10847

1.135 5

2.974
16.10

1.135 386
2.973 276

16.087 96

23S
1.154664
2.550463

11.464 32

1.154657
2.550 59

11.465 6

1.1545
2.5505

11.465

1.154663
2.550479

11.46441

2'P
(1/r &

(r&
(r')

1 ~ 123 178
2.910684

15.765 65

1.12309
2.912 87

15.7900

1.123
2.912

15.775

1.123 160
2.911076

15.769 58

2P
(1/r )
(r)
&r')

1.133242
2.673 962

13.211 74

1.133 17
2.675 63

13.229 9

1.1335

2.674
13.21

1.133239
2.673 975

13.21065

3'D
1.055 630
5.615 658

63.16367

3D
(1/r )
(r)
&r')

1.055 639
5.612 972

63.10906
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TABLE IV. Mass-polarization effect for helium (in cm ').'

State
Pekeris et al.

(Ref. i)
Araki et al.

(Ref. 11)
Machacek et al.

(Ref. 12) Present

i's
2'S
2~S
2'P
2P
3'D
3D

4.785
0.2859
0.2239
1.3852

—1.9426
1.3875

—1.9445
1.383b

—1.942

4.7960
0.2833
0.2233
1.3828

—1.9424
—0.7599 X10

0.8027 y10-'

'(2trt /M)R = 30.083 87 for He is used to convert the present values of ( p ~.pz) to
(l/m„)(pt. p2) in cm '. See SchiÃ et al. , Ref. l.
As quoted in Schiff et al. , Ref. 1.

'2
L 1L'

+ ~~(L ()
3 (2L+1)

'2
L 1 L'

0 0 0

TABLE V. The oscillator strengths between the lower-bound states of helium (ft from

dipole-length formula, and f„ from dipole-velocity formula).

Perimetric Hylleraas C.I. MCHF Perturbation

Transition (Ref. 14) (Ref. 2) (Ref. 15) (Ref. 6) expansion
(Ref. 16)

Present

1'S—+2'P

2'S~2'P

2S~2P

2'P 3'D

2P~3 D

0.2762

0.2762

0.3764

0.3764

0.5391

0.5391

0.2759 0.275 4

0.2761 0.275 9

0.3764 0.377 3

0.3774 0.3950

0.5391

0.5401

0.539 8

0.548 7

0.2753

0.2744

0.3771

0.3774

0.5394

0.5400

0.6084

0.6121

0.6105

0.626 9

0.6115

0.6099

0.7064 0.71059 0.7111

0.7148 0.709 49 0.7105

0.2760

0.2749

0.3764

0.3745

0.5392

0.5394

0.7105

0.7060

0.6103

0.6081

0.272 1

0.275 8

0.376 1

0.3763

0.539 2

0.5394

0.709 87

0.709 78

0.608 96

0.610 14
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L1L'
where

p p p
is a 3j symbol. '

I

These two formulas for the oscillator strength

would give identical results if exact wave functions

were used. The use of approximate wave functions

can produce differences in the two results. The
agreement between the two formulas is a necessary

condition for the accuracy of the two wave func-

tions, but is not in itself sufficient to claim the ac-

curacy of the wave functions.
The present results for the oscillator strengths

from Eqs. (7) and (8) are given in Table V along

with the results from Refs. 2 and 6, and those of
Schiff et al. ,

' Green et al. , ' and Divine and

Stewart. ' It is seen that the present results for the

length and velocity formulas agree very well in

most cases, the largest discrepancy being for the
1'S~2'P transition, where the disagreement is

about l%%uo which is probably an indication that our

ground-state wave function is comparatively poor-
er. For the 2'S~2'P and 2 S~2 P transitions the

present results compare very favorably with those

of Ref. 1, in comparison with the other calcula-

tions. It has been remarked in Ref. 14 that for

triplet transitions the length formula does a better

job, whereas for singlet transitions, even in the case

where the transition is between two states with a

small energy difference, the velocity formula does a

better job. ' Our results clearly support this argu-
ment. The agreement of the length and velocity
formulas for the transitions 2'P~3'D and

2 P~3 D in the present work is significantly better
than those of the other calculations.

SUMMARY

We have calculated the energies, radial expecta-

tion values, oscillator strengths, and mass-

polarization effect of helium with configuration-

interaction basis functions. These results are com-

pared with other highly accurate results, where the

coordinate r&2 is explicitly used. We show more

convincingly than before that while r &2 is very im-

portant in obtaining a highly accurate result for

the ground state, it is comparatively less important

for excited states, especially for higher angular

momentum states. For the 1s 3d 'D states our re-

sults from the simpler basis functions give the

same energy as the Hylleraas wave function, but

our consistency between the oscillator strengths

from the dipole-length and dipole-velocity formu-

las is much better. One would expect that the ex-

cited states of a many-electron system can be accu-

rately calculated by these basis functions as well.
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Carolina Board of Science and Technology.
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