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Although the electromagnetic Casimir forces are customarily explained in terms of the vacuum radiation field, they

may also be understood in terms of radiation reaction, without explicit reference to the vacuum field. In particular,

the Casimir forces may be obtained if one recognizes that the radiation reaction field of a dipole on itself depends on

where the dipole is located, for this field is determined by the modal characteristics of the surrounding space. Only

in infinite free space does the field of radiation reaction have a spatially invariant meaning. The fact that the Casimir

forces may be understood in terms of either the vacuum electromagnetic field or the field of radiation reaction is an

example of the general fluctuation-dissipation relation between the two concepts. These ideas are illustrated with

derivations of several "vacuum-field effects, " including the Casimir-Polder attraction of an atom to a conducting

wall and the van der Waals force between two atoms.

I. INTRODUCTION

The quantum theory of radiation predicts a zero-
point energy aha per normal mode of the field.
This is a consequence of the fact that each mode
is canonically equivalent to a harmonic oscillator.
Summation over all modes leads to an infinite
zero-point field energy, a result occasionally
considered embarrassing. ' Consideration of the
zero-point electromagnetic energy may be side-
stepped, general relativity notwithstanding, on the
grounds that a constant additive term in the Ham-
iltonian has no effect on commutators and equations
of motion. At the same time, it is generally be-
lieved that there are indeed real physical effects
attributable to the zero-point field. Such effects
include the Casimir-Polder attraction of a neutra, l

polarizable particle to a conducting wall, the Casi-
mir attraction between two parallel conducting
plates, and the van der Waals interaction between
polarizable particles. '

In 1948 Weiton' showed that the (nonretativistic)
radiative level shift obtained by Bethe' could be
attributed to the effect on the atomic electron of
the zero-point field. Welton's elegant derivation
seems to have influenced many physicists to be-
lieve that the ubiquitous phenomenon of spontaneous
emission is also a consequence of the quantum-
mechanical zero-point field. ' An atom in a pure
stationary state has no dipole moment, i.e. , the
expectation value of the dipole-moment operator
vanishes, so that the process of spontaneous emis-
sion cannot be simply understood on the basis of
classical radiation theory. But a fluctuating zero-
point field, present even when there are no other
sources of radiation but the excited atom, can
perturb the electron motion and induce a transition
to a state of lower energy. The coupling of the

electron to the zero-point field thus provides an
intuitive explanation of spontaneous emission. But
this interpretation is hardly satisfying. In partic-
ular, it offers no good explanation of the fact that
atoms do not absorb energy from the zero-point
field.

In classical electrodynamics the radiation by an
accelerating charge is associated with the force
of radiation reaction. It seems that the early
workers in the quantum theory considered spontan-
eous emission to be a result of this "radiation
force."' Qf course, radiation reaction also ap-
pears in quantum electrodynamics. As in classical
theory, the radiation reaction field is just the so-
lution of the inhomogeneous Maxwell equation for
the electric field, evaluated at the source. But in
quantum theory there is also the zero-point field,
i.e. , the solution of the homogeneous Maxwell
equation, acting on the source. What does the
quantum theory of radiation have to say about
spontaneous emission, and in particular about
the radiative corrections to the energy levels?

Ackerhalt et al. ' have given a Heisenberg-pic-
ture treatment of spontaneous emission in which
the usual procedure of normal ordering is adopted.
They show that spontaneous emission, and the as-
sociated level width and (nonrelativistic) shift,
can be understood solely on the basis of radiation
reaction. As a result of normal ordering, there
are no explicit contributions from the zero-point
field. In particular, it was interesting that they
could obtain essentially the same result as Welton
for the level shift, even though Welton dealt di-
rectly with the zero-point field. The two approach-
es were tied together by Senitzky' and Milonni

et al. ,
' who performed Heisenberg-picture calcu-

lations in which operator orderings other than
normal were used. If annihilation and creation
operators were symmetrically ordered, for in-
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stance, the calculation showed that the level shift
and width could be attributed entirely to the zero-
point field, just as Welton had shown. The final
expressions for the radiative corrections are in-
dependent of the ordering chosen, since atom and
field operators commute. Only the interpretation
one is most likely to draw from the calculation
depends on the way the field operators are ordered.

Jaynes' has suggested that this apparent inter-
changeability of the effects of radiation reaction
and the zero-point field in spontaneous emission
is but one example of a general fluctuation-dissi-
pation theorem. " He suggests that the effects of
radiation reaction are the same as if a zero-point
field were acting on the atom, and that effects like
the Casimir-Polder force might also be attributed
to radiation reaction. This paper provides support
for that suggestion.

Physical consequences of the zero-point field
arise from a change in the modal structure of the
field over its vacuum form. Thus the Lamb shift"
may be viewed as the change in zero-point field
energy resulting from the presence of the atom. ""
In a similar fashion the force between two parallel
conducting plates may be obtained by calculating
the change in zero-point field energy due to the
presence of the plates. '" In this paper such ef-
fects are approached using the notion that the
radiation reaction field likewise depends upon the

modes of the field.
It does not seem to be generally appreciated

that the radiation reaction field must vary with
the environment of the emitter. A trivial exam-
ple, however, can be given to show that this must
be the case: The rate of radiation from two iden-
tical dipoles oscillating in phase, and separated
by a distance small compared with the wavelength,
is twice the sum of the single-dipole rates. The
radiation reaction field on each dipole is corre-
spondingly twice as large as that it experiences in
free space. Each dipole is acted upon by its own

free-space radiation reaction field plus the radia-
tion reaction field of the other dipole.

In Sec. II the field is quantized in terms of gen-
eral mode functions. Within this "macroscopic"
approach a modif ication of the Jor dan- Pauli com-
mutation relation is necessary. We obtain an ex-
pression for the radiation reaction fields of a free
electron and a bound electron, and use the resuLts
to obtain corresponding expressions for the energy
shifts resulting from the radiation reaction. The
results are then used in Sec. III to obtain the Casi-
mir-Polder interaction between a ground-state
atom and a perfectly conducting wall. We also
consider briefly the radiative leveL shifts in "mu-
rium. "" In Sec. IV we consider the van der Waals
interaction between two ground-state atoms.

II. QUANTIZATION OF THE FIELD
AND RADIATION REACTION

In the absence of any sources it is convenient to
use the gauge in which the scalar potential vanishes
and the vector potential is transverse. The Max-
well equations are satisfied if the vector potential
obeys the wave equation OX(x, t) =0. We assume
the existence of a complete set of transverse mode
functions. In the Fourier series

A(x, t)= +[A„F„(x)e+~"'+A~F*(x)e"&'] (2.1)

where the A. are constants, the mode functions
F (x) must satisfy the Helmholtz equation

V'F (x) + k' F(x) = 0, k' = e'/c', (2.2)

in addition to the condition of transversality,

V ' F„(x)=0. (2.2)

The (transverse) electric and magnetic field vec-
tors are given by

13
E(x, t) = =—

c ~t

and

B(x, t) =VxA

= +[A (t)VxF (x)+A*(f)VxF*(x)], (2. 5)

where A„(f)=A„exp(-i&a f). In addition to Eqs.
(2.2) and (2.3), the mode functions satisfy the ap-
propriate boundary conditions on E and B. They
are assumed to form an orthonormal set:

d'x F~ x ' Fg x =5„6. (2.6)

When the field is quantized A„(f) becomes simply
(2vkc'/e )' 'a„(t), where a„(t) is the annihilat ion
operator for mode n, i.e. , [a, ast] =5 s. Then

A(x, t) = P ~ [a (t)F„(x)+af(t)F„*(x)],
a (de

(2.7)

and E and B follow from (2.4) and (2.5). It is im-
portant to note that the particular form taken by
the mode functions has no bearing whatsoever on
the standard quantization procedure. All of the
quantum mechanics of the field are contained, as
it were, in their time dependence. The spatial
dependence of the field arises from the mode func-
tions F (x), which are computed using classical
electromagnetic theory.
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+— d'gE xt+B xg (2.8)
I

A. The Hamiltonian

The Hamiltonian for the system comprising the
electromagnetic field and a spinless, nonrelativis-
tic electron bound by some potential function V is

H = (p ——A)'+ V(r)2' C

where nl and e (= -~ e ~) are the electron mass and

charge. The energy associated with the longitu-
dinal part of the electric field arises from instan-
taneous Coulomb interactions not explicitly in-
cluded in Eq. (2.8)." In terms of the mode func-
tions F (x) and the photon annihilation and creation
operators, the Hamiitonian (2.8} takes the form

p2
H= +V(r)+phrs„ata — g ~

[a F (r) p+a F (r)'p]
2m mc

2+, 2m' & ms''g gaF r F8 r +a asF* r FB r+a a&F*r ~ Fr2' C

+a a&F„(r) Fs(r)], (2.9)

where the additive constant corresponding to the
zero-point field energy has been dropped.

B. Heisenberg equations of motion

From the Hamiltonian it follows easily that the
electron coordinate operator obeys the Lorentz-
Heaviside force law

y/d r edr
dt' =-VV(r) +eE(r)+——x B(r) .cdt (2.10)

(2.12}

where 5 is the transverse delta function. In de-
riving this result we have used the conditions

From the Heisenberg equation of motion for a~,

7Th
' 'I' ' dr=-i(d„a +—

~
F (r)' —, (2 11)

~c ~ j
together with Eqs. (2.2) and (2.7}, it follows that

V 'A,. (x, t) ——,A, (x, t) = — 5,',.( x —r )
4m'g dye

I.
tion relations. It is found, for instance, that

[A, (x, t), A,.(x', t')] = 4vikc'Imp(c 'F, (x)E„*~(x')

xe '~~&' ' ' (2.15}

In the case of "free space" we follow the familiar
approach of taking the mode functions to be plane
waves satisfying periodic boundary conditions on

a large cube:

F (x) F»(x) = L-"e-,e'"'" (2.16}

[A, (x, t)Ai(x ', t')]
4&i@c2 ~~ ~t &r~(&(,g sin(k r —(c,r),

k, k

where r = x -x ', 7 = I, —]'. In the mode continuum
limit L, -~,

(2.17)

where L, is the side of the cube and the unit vector
ek„(A. = 1, 2) specifies the polarization of the wave,
k ek„= 0. The wave vectors k= (2w/L)(n„n„, n.),
where n, =0, +1,+2, . . . . Then (2.15) becomes

and

E~] X F~) X =5;~ X —X (2.13)

x e '"' sin(pcs') . (2.18)

Im Q(d 'E„*,. (x)F„,(x') = 0. (2.14)

The first is just the assumption that the mode
functions from a complete set for vector functions
of zero divergence. The second condition may be
proved using the Helmholtz equation and (2.13).
Equations (2.10) and (2.12) are well known, of
course, and they are obviously valid regardless
of what are the mode functions F (x) that are most
conveniently employed in a given situation.

It is interesting to consider the field commuta-
1

D(r, t) = [5(r ct) —5(r+ct)), -4' (2.21}

Well-known relations such as

[A, (x, t), E,(x', t)] = -4vihc5, ', (x —x'), (2.19)

and the Jordan-Pauli commutator"

a' 82
[ (x, t(, Ex;(x', t')]= 4N (, , —

~ x,)—
xD(~r ~, r), (2.20)

where
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follow from (2.18)
However, these familiar commutation relations

hold only for plane wa-ve mode functions. It may
be seen directly from Eq. (2.15) that field commu-
tation relations depend on the form of the mode
functions. Every set of mode functions satisfies
the Helmholtz equation, but the solutions to the
Helmholtz equation that one employs for a given
physical situation are determined by the electro-
magnetic boundary conditions. In other words,
the field commutation relations are determined
not only by the commutation rules for a~ and a~~,

but also by boundary conditions. Suppose, for
instance, that we quantize the field in the half-

space bounded by a perfectly conducting plate in
the plane z = 0. In this case the x and y compon-
ents of the electric field must vanish at z = 0, so
we choose our mode functions accordingly. For
example, the» components of the F„(x) may be
written as

) lzr2

F (x) = —
) @~e'"z " sin(k, z), (2.22)

where p is the quantization volume and %z denotes
the component of k that is parallel to the plate.
Equation (2.15) now takes the following form for
the x component of the vector potential.

[A„(x,t),A, (x', t')]= Im~&u, ' I-~z e' z'"" 'sin(k, z)sin(k, z')e '"~',
k

(2.23)

where we have used the equation+~ »zf =1
—k„'/O'. From (2.23), with the quantization vol-
ume V- ~, we obtain

[A,(x, t), E,(x', t) ] = —4zzzhc[6, „(r, ) —6„(r,)], (2.24)

where r, =x —x' =(»»l)x+ (y -y')y+ (z —z')z and

r, =(x —x')x+(y —y') y+(z+z')z. Similarly,
1 8' 8'

[E,(x, t), E,(x', t') ] = —4zzi Plc —,
c 8 tet' &x&s'

(2.25)

x[D(l r, I, z) -D(I r, I, ~)]

in place of the Jordan-Pauli relation (2.20). Equa-
tions (2.24) and (2.25) reduce to their free-space
counterparts in the limiting case in which the two
points x and%' are infinitely far from the conduct-
ing plate.

It may appear surprising that such ubiquitous
commutation relations as (2.19) and (2.20) require
any modification at all. Indeed one can adduce
arguments, from a somewhat deeper level. of anal-
ysis, that these commutation relations are always
valid. A brief digression therefore seems worth-
while.

It is well known from the work of Bohr and
Rosenfeldz9 that the commutation relation (2.20}
implies the simultaneous measureability of the
electric field at two space-time points, provided
that these points cannot be connected by a light
signal [i.e. , provided that D(r, z.) = 0]. With this
in mind the modification of this relation as in Eq.
(2.25), for instance, seems quite reasonable, for
whereas

I r, I /c is the time taken by a light ray to
go directly from % to x', the time I r, I /c is that
taken to go from x to x' with the intermediate re-
flection of the light from the conductor at z = 0.
In other words, x and x' can be connected by a
light signal not only directly but also indirectly

C. Radiation reaction field. Nonrelativistic free electron

From Eq. (2.11) we obtain

z'e 2zzhc' '} '~'
a„(t)=a/0)e" ~'+-

@C (d~ j

dt F*[r(t )] ~ z ezra& z
dr(t, )

j. a
0

(2.26)

The first term on the right-hand side is the
source-free or "vacuum" term, whereas the sec-
ond is due to the electron. When the second term
is used in Eq. (2.7) it gives the vector potential
field of the point electron. In the nonrelativistic
approximation the time dependence in the mode

via the "mirror. " Thus there are basically two
ways in which two space-time points in the half-
space may be connected by a 1ight signal, and Eq.
(2.25) accounts for both possibilities. A measure-
ment of the field at (%, t) can influence a measure-
ment at (x', t') not only if I r, I

= c(t' —t), but also
I r, I

= c(t' —t}.
Qn the other hand, the use of mode functions

like (2.22) implies a macroscopic, and indeed
classically deterministic, treatment of the con-
ductor. Ideally one would begin with a multiparti-
cle generalization of the Hamiltonian (2.8), with
the field quantized in terms of "free-space" modes
for which relations such as (2.19) and (2.20) hold.
Provided the particles constituting the conductor
act collectively in an essentially classical manner,
their net effect should be equivalent to the quanti-
zation of the field in terms of the classical modes
of the right half-space. In fact this is basically
the only justification for the exPedient of quantiz-
ing the field in terms of mode functions satisfying
macroscopic boundary conditions.
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function may be ignored in Eq. (2.26). This cor-
responds to the neglect of recoil or, what is es-
sentially the same thing, the neglect of Doppler
shifts. In this approximation we obtain from Eq.
(2.7) the following source vector potential at the
position of the electron:

A»(r, f)= 2wiec pe 'F, (r ) F*(r)

4eII dr(t) 2e dr(t)
3~c Q t 3c (2.28}

where Q is a high-frequency cutoff. Thus we ob-
tain a familiar expression for the electric field
of radiation reaction for a nonrelativistic, point
electron

2e d~r (t) 5m d 'r(t)
3c' df' e d f' (2.29)

where 6m = 4e'Q/3wc' is the electromagnetic mass,
which is linearly divergent in the nonrelativistic
theory without cutoff.

The second-order, nonrelativistic result for the
electron self-energy due to the A„, p interaction,
where A„„is the vector potential associated with
the vacuum field, is

(2.30)

This result may also be regarded as the change in
the energy of the electron arising from the differ-
ence between its bare mass m, and its renormal-
ized mass, m = m, + 5m:

P' P' 5m (P'
2m 2mo m I} 2m

(2.31)

Whereas expression (2.30) is derived by consider-
ing the interaction of the electron with the vacuum
field, the identical expression (2.31}is obtained
from the point of view of radiation reaction. The
equivalence of the two interpretations of AE in
this simple example serves to prelude the main
point of this paper.

Equation (2.27) indicates that the reaction field
of the electron, and therefore its electromagnetic
mass, depends upon the fieM mode structure at
the position of the electron. The el.ectromagnetic
mass of the electron should therefore depend upon

dr'tx df, ' ' e'~«'~ "+H.c. (2.27)
0

In the case of free space the mode functions are
given by (2.16}and we obtain after some algebra
the result

4e ' d'r(t) s (sinn(f, —f lI
3wc 0

' dt Bti ( t, —t )

its location, a possibility which obviously does not
exist in free space. The modification of electro-
magnetic mass due to the presence of conducting
plates has in fact been considered both theoretical-
ly" and experimentally, "although the effect has
not been directly demonstrated. The important
point for our purposes here is that the proposed
modification of 5m may be obtained either by using
the radiation reaction field (2.27) or by calculating
the two-photon-vertex contribution of the vacuum
field to 4E. In other words, the equivalence of
the two interpretations of ~E for the case of free
space holds in the general. case as we11.

D. Radiation reaction field.
Nonrelativistic bound electron

Ã&;&(I) =i Q(2wk(g )'i'F (x)a„(0)e ' ~' (2.33)

and the negative-frequency part Eo '(t) =[E,"(t)]t.
In writing (2.33) we assume that electron excur-
sions from the nucleus are sofficiently small that
the mode functions F (r) may be evaluated at the
coordinate x of the nucleus; this coordinate x will
in effect define the position of the "atom. " Simi-

We now consider an electron bound to a nucleus.
In this case we shall be interested in radiative lev-
el shifts c.E, of the eigenstates I j) of the Hamil-
tonian p'/2m+ V(x) We re. gard such shifts as
arising from the radiation reaction field of the
electron. Although this interpretation has a more
rigorous justification in a detailed analysis, '"
a simpler, intuitive approach seems preferable
here.

In classical electromagnetism, an energy --,'d E
is associated with a polarizable particle in an
electric field, where d is the induced dipole mo-
ment. We therefore assume that the energy shift
in state

I j), arising from the interaction of the
bound electron with an electric field E(t), is

&E~ =
2&j ) F I er(t) '-E(f)

I j iF) ~ (2.32)

where r(t) and E(i) are Heisenberg-picture opera-
tors, with the electron coordinate r(f) measured
from the nucleus, and the state of the field is la-
beled by F. In fact, this result may be obtained
by a transformation on the Hamiltonian, as shown
by Craig and Power, " It is valid in the approxi-
mation that r depends linearly on E via the po-
Iarizability, so that our analysis based on (2.32)
will be valid to order e'.

Suppose there are no external fields, i.e. , fields
from other sources in the universe. Then E(t) is
simply the vacuum or source-free field E,(t) plus
the radiation reaction field E»(f} of the electron
on itself. Eo(t) is E'o"(f)+E~o &(f), where the posi-
tive-frequency part
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E'„'„'(t)= -2we Q F„(x) F *(x)

dt — er t&-

dt
(2.34)

larly we obtain from {2.26) the radiation reaction
field E&&z(t) = E&&&z'(t) + Rs &(t), where

and E&&&z&(t) =[E&„'z&(t)]t. Both E' (t) and E&z&(t) are
functions of x.

As is well known, a normal ordering of field
operators is convenient when the initial field state
is the vacuum (F=F...}, for then E',+'(x, t) ~F„„)=0.
We therefore normally order the field operators
in (2.32):

«~(x) = le-(j, F„„I[r(t) E',"(t)+E', &(t) ' r(t)+r(t) ~ E&zz&(t)+E&„-& (t) ~ r(t)] ~ j F )

le(i, F-...I {t) E"'(t)+E'„,'(t) r(t) ~j, F„„)
= -Re(j, F„„~er(t) ~ E'„'„'(t) ~j, F„„). (2.35)

This expression is equivalent to (2.32} because

[r(t), E&"(t)] =[r(t), E',"(t)+ E'z'&&(t)] = 0. (2 36)

Henceforth we shall drop the label vac, so that

~ j) will be used for ~j, F„„) Comb. ining Eqs.
(2.35) and (2.34), therefore, we have

t&,E, =2w'e Re Q. F„&&(x)F„*„(x)

t
x dt t d&N x f~a&tx-t

0

(2.3V)

where M, ti (=1, 2, 3} label the components of r and
we follow the summation convention for repeated
indices.

Denoting by U(t) the time evolution operator as-
I

I
sociated with the complete Hamiltonian, we have

j r„(t) ' j = g (j ~ Ut{t)r„(0)U{t)j i)~ ~ ~ ~

dt at, g

x (t I U (t )r„(0)U(t, ) I j),
(2.38)

where the summation is over a compl. ete set of
states. We now make the approximation that
quantities like (j ~

U (t)r„(0)U(t) ~ i) evolve in time
nearly according to their evolution in the case of
the unperturbed atom:

(j ( U (t}r„(0)U(t) (i) =—e' ~& (j (r„(0) [ i)

(2.39)

where Se&, =E& -E, . Within this approximation
Eq. (2.37) becomes

t
t&E& = 2we'gg F„&&(x)F„*„(x)&oz;r&&;&r„&& dt, sin(&» —v&;}(t,—t)

n 0

(2.40)

where we have used the relation

dt, sin( „&e- «&)(t, —t) = -a'~
iI (2.41)

0

for t»
~ &0&& ~

', so that integrals over &u arising
from (2.40) are to be understood as Cauchy princi-
pal parts. Equation (2.40) gives the level shift
arising from the coupling of the electron to its own
radiation reaction field.

Let us again consider the simplest case, that in
which the atom is in free space, for which the field
modes are given by (2.16). From Eq. (2.40) we
obtain

(2.42)

in the mode continuum limit

0
4(d (d .mme' (2.43)

The second line follows when the Thomas-Reiche-
Kuhn sum rule,

This is the level shift due to radiation reaction in
free space.

The limit of a free electron may be obtained by
taking the transition frequencies +&, between elec-
tron bound states to be small compared with photon
frequencies «& in (2.42):

2 0
s Z«& g&l r&&l

(e 2
37Tc 0
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ii ji (2.44)
Bethe' computed as the observable radiative level
shift.

is employed. Now AEz" is just the A. ' contribution
to the free-electron self-energy:

III. CASIMIR-POLDER ATTRACTION OF AN ATOM
BY A PERFECTLY CONDUCTING WALL

(2.45}

We have obtained this well-known result, however,
using the notion of radiation reaction, without in-
voking the vacuum field.

bEO' as given by (2.45) is obviously independent
of the electron state

~ j). We may therefore re
gard the difference between AE& and AE& ' as the
true level shift of state

~ j), i.e. ,

aE) =DE~ —AE(A'}

As our first example of a position-dependent
radiation reaction field level shift, we consider
a ground-state atom near a per f ectly conducting
wall at z = 0. The level shift is given by Eq. (2.40),
where in the present example the mode functions
F„(x}are those for the half-space z & 0 bounded
at z= 0 by a plane on which the tangential compo-
nents of F„(x) must vanish. Consider a plane
wave with wave vector k = k, g+ k, y + k, z = k}}+ k, z.
»om this wave and the reflected wave with wave
vector k =k„—k,z we can form a mode function(r)

, +ra,*,. (r„.(~'f . (2.46(
F»(%) =~

—
} (k,(x z) sin(k, z)e'"(( ", (3.1)

This is just the familiar contribution to the radia-
tive level shift from the A p interaction in sec-
ond-order perturbation theory, prior to mass re-
normalization. 4 This must be the case because we
are dealing directly with the coupling between the
electron and the (radiation reaction) electric field,
which includes both A p and A. ' interactions, and
in (2.46) we have subtracted away the A' contribu-
tion. If we again consider a free-electron limit
by ignoring (d, , in the integrand of Eq. (2.46), we

obtain, therefore, the free-electron energy due

to the A p interaction

2 2 0

& j I « I j) =—

(2.47)

which, of course, is equivalent to (2.31). The dif-
ference between b, E~ and (j ~

aE( j) gives what

F «,(x) cc (k((xz)x ke'"'"

+ (k x z) xk'"'e'"'"'"
Il

which when normalized becomes

]
F»(x) = — —

i [k((z cos(k, z)
A,—k, k((f sin(k, z)]e "(('".

From Eq. (2.40), therefore, we obtain

(3.2)

~E, =-2ze'QQQ "
~ F„-,(x) ~ r„~', (3.3)

i k s12 +0 ji
where (d«2 = (k,', +k,')c'. In the mode continuum limit

which is normalized in the sense of (2.6). p is
once again a quantization volume, and the carets
denote unit vectors. Similarly we can form a mode

r;i 'sin'k3z+ 2 z r, 'cos'k3z

+k (r ('k(() sin k z (3.4)

If we average over the orientation of the matrix elements r&, of the spherically symmetric system, we

have

2 ((0 2 oo

n.E; (z) =«, ——g ~ r, , (' dk, k,'ln k, — cos(2k, z)+—g ~ r&, (' dk, k', ink, cos(2k, z), (3.5)

where AE& is the z-independent, free-space level
shift (2.42). The complete level shift is obtained
by adding to (3.5) the electrostatic shift p& arising

I
from the instantaneous Coulomb interaction be-
tween the dipole at z and its electrostatic image
at -z. V& is associated with the longitudinal elec-
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V&(e) = -3»Ec/8vx

where

(3.6)

2g 2

&» =-
3E Z I r»» I f»d»»

tric field, which has not been included explicitly
in the Coulomb-gauge formulation of the Hamilton-
ian (2.8)."

Barton has shown how physically meaningful re-
sults may be extracted from integrals like those
appearing in (3.5).'4 He shows that the last term
in (3.5) is in fact just -V&, so that the complete
z-dependent l.evel shift is given by the second
term. ' " For large separations, i.e., forz large
compared with the wavelengths of transitions to
the ground state

I j), Barton'4 shows that this term
may be evaluated to give precisely the Casimir-
Polder potential, '

5E, (%}= t».E,(%) + V, (x)

2»»e' g p»»»„ I rq, ['
I

-
(

a +a

E(%,t) =i+ [8 (x)a (t) —g„*(x)a„(t)] (3.9)

for the electric field operator. For essentially
long-range interactions we may suppose that only
low-frequency contributions are important in
(3.8}, and therefore that »»»„may effectively be
neglected compared with &&j in the denominator.
Thence

I b ( )I', (3 8)

where the»»» (x) are defined by the expression

is the zero-frequency polarizability, which is
positive for the ground state.

=-2»x» Q I & (x)l' (3.10}

A. Connection with approaches based on the zero-point
electromagnetic field

Derivations of the Casimir-Polder potential
based on standard second-order perturbation the-
ory (cf. Refs. 24 and 26) rely formally on nonvan-
ishing interaction matrix elements between the
vacuum state and one-photon states. Other deriv-
ations invoke the zero-point electromagnetic field
in a more explicit manner, such that the change in
the zero-point field energy due to the presence of
the atom may be regarded as the physical origin
of the Casimir-Polder effect.""We can now
show how it is that these derivations give exactly
the same result as our radiation-reaction deriva-
tion.

For this purpose we return to Eq. (2.40) and
write it as

(3.7)

where a& is again the static polarizability. This
expression simply relates the energy shift to the
work done by the field to induce the dipole moment
in the atom. It is, in essence, the starting point
of derivations of 5E~ based on zero-point electro-
magnetic energy. '2' Within approximation (2.39),
one could equally well begin not with (2.35} but
with the expression'

(3.11)

where E,(x, t) is again the source-free electric
field operator. This shows that the Casimir-Pol-
der interaction depends only on the modal proper-
ties af the field. It may therefore be derived using
a zero-point field having an energy —,'kz per nor-
mal mode and satisfying the appropriate boundary
conditions. We obtain the same result when we
account for the fact that the radiation reaction
fieM, like the zero-point field, must also depend
on the modal characteristics of the space sur-
rounding the atom.

where for simplicity we again assume spherical
symmetry. Now the z-dependent part of the sec-
ond term may be shown to correspond to the last
term of (3.5), i.e. , it is cancelled by the electro-
static shift V&. The z-independent part contributes
to the Lamb shift, which is not of interest here.
Thus we drop the second term of (3.7) entirely and
write the level shift as

B. Necessity of both radiation reaction
and zero-point field

It is worth emphasizing that, although the inter-
pretation of the Lamb shift and the Casimir-Polder
force can be given exclusively in terms of either
radiation reaction or the zero-point field, both
fields are in fact necessary for the formal consis
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tency of the theory. Perhaps the simplest way to
demonstrate this is to consider the Heisenberg
equation of motion for a nonrelativistic electron
in free space

d'x(t) d'x(t) e
dt' dt' m

(3.12)

where y = 2e'/3m c', m being the renormalized
mass, and E„(t) is the x component of the free
electric field operator. Equation (3.12) can be
used to determine the electron coordinate x and
linear momentum p„, and therefore the commuta-
tor [x,p,]. It is easily shown that"

3m, (u'(I+y'&u')

(3.13)

where po(u&) =k~'/2w'c' is the spectral energy den-
sity of the vacuum field. This shows that both ra-
diation reaction and the free field are necessary
for the preservation of the canonical commutation
relation for the electron. The relation between
the dissipation force myd'x/dt' and the spectral
density of the fluctuation force e@0 may in fact
be inferred from the general theorem of Callen
and Welton" for linearly dissipative systems.

C. Explicit form of radiation reaction field

The radiation reaction field E» for an atom at
a distance z from the conducting plane is easily
obtained from Eq. (2.34}. For the z component,
for example, we obtain

2e d'r, (t) 4Q d'r, (t)
3c' dt' 3«c' dt'

dt c j 4z'c

-2er, t —— (3.14}

E» is in fact the free-space (z-~) result (2.29)
plus the retarded dipole field from the "image"
dipole at -z.

The formal identification of the operator equa-
tion (3.14) with the classical result permits a
simple, intuitive understanding of the Casimir-
Polder force. The positive-frequency part of the
field (3.14) may be obtained from Eq. (2.34)

2e d, /1 cosex sioux
&c' ), 3 e'x' au'x

t
dt * &~&&& " (3 15)

0

where x=2z/c. From Eq. (2.35), therefore, the
z-dependent portion of b. E& is

0

where the ellipsis represents terms involving

(3.16)

In approximation (2.39},

r, (t)- * j = i~(v~&(rg«~'e -'"'&"' "(
dr, (t,)

so that

(3.17)

1 k'(g"
t&E)(z) aEg = Q dk-

g 0 27T) kc —
Q)gg

,e""
4k', ')"' '" (3.18)

where the ellipsis represent terms involving
~r,&&(' and (r„&&)'. This is precisely the expres-
sion obtained by Casimir and Polder, "who evaluated
(3.18) by including a factor exp(-yk) in the inte-
grand and then taking the limit y 0+ at the end of
the calculation.

After presenting the derivation of their result,
Casimir and Polder noted the appearance of quan-
tities that have the same form as the electric field
of the image dipole (at -z} evaluated at z. They
stated, however, that ".. . we have not been able

(o find a general consideration, based on the cor-
respondence idea, by means of which at least the
form of [Eq. (3.18)] could be foretold. "" The dif-
fi«lty they encountered in attempting to give a
more classical interpretation of the (Casimir-
Polder) force on the atom stems from the profound
difference between the roles of positive- and nega-
tive-frequency parts of the field in the quantum
theory of radiation. There would appear to be no
simple correspondence principle applicable to
cases where this difference is crucial. In classi-
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cal theory, on the other hand, the positive- and
negative-frequency components of the field are on
the same footing, and are introduced only for
mathematical convenience. " Thus the Casimir-
Polder interaction can be understood, as we have
seen, on the basis of the classically familiar con-
cept of radiation reaction. Ho&eever, the radiation
reaction must be treated according to the quantum
theory, cohere the positive- and negative freq-uency
parts of the radiation reaction field must be care
fully distinguished

D. Radiative level shifts in murium

In a recent interesting paper, Shakeshaft and
Spruch" have considered the radiative level shifts
of the system they call "murium, " an electron
bound to a wall by its image charge. The radiative
level shift in this system is due predominantly to
the A' term in the Hamiltonian. ' They interpret
the level shifts in terms of the electron acquiring,
"through vacuum fluctuations, a, zero-point kinetic
energy whose magnitude depends on the distance of
the electron from the wall. "" However, their lev-
el shifts may also be obtained from our Eq. (2.40}
in the free-electron limit of neglecting the transi-
tion frequencies ~&,. in the denominator. We have
already shown in Sec. II [Eq. (2.43)] how the A'
contribution to the level shift results from this
limit in the case of free space. The extension to
the half-space bounded by a conducting wall is
easily made, and we obtain the level shifts of
Shakeshaft and Spruch. In our approach, however,
the shifts are due entirely to radiation reaction
rather than vacuum-field fluctuations.

IV. VAN DER WAALS INTERACTION
BETWEEN TWO ATOMS

The van der Waals interaction between two
ground-state atoms may be derived using standard
fourth-order perturbation theory. London's deriv-
ation" of the g ' interaction was considered an
important accomplishment of the quantum theory.
Casimir and Polder" included retardation and
showed that, for separations large compared with
wavelengths of transitions connected to the ground
state, the interaction potential actually goes as

The van der Waals interaction is frequently
interpreted physically using the notion of a zero-
point radiation. ""Indeed, the van der Waals
force is often cited as evidence of the physical.
reality of the vacuum field. We now show that this
interaction may also be understood physically from
radiation reaction, with no expl. icit reference to
any vacuum field.

Whereas in the preceding section we were con-
cerned with the modification of free-space plane-

wave modes by a conducting wall, we are now in-
terested in the effect of a single atom B. The
effect of atom B on the modes of the field will in
turn effect a change in the radiation reaction field
of atom A from its free-space form, and therefore
a change in radiative level shifts of atom A from
their free-space values. The g-dependent portion
of the modified radiative level shift of the ground
state will be shown to be the van der Waals poten-
tial.

elK x fK'x + ( }k3 fk xeefkr

kk ~ k2r2 k3r~

1 3i 3
k k' ' k' 'r r r (4.1)

A. Effect of a single atom on the field modes

We remarked in Sec. II that in the standard field
quantization procedure the mode functions may be
determined using classical electromagnetic theory.
Field quantization for free space provides an ob-
vious example; another is the quantization in the
half-space of Sec. III. We may also approach the
quantization of the field in dielectric media in this
way. For exa,mple, field quantization in the pres-
ence of a dielectric interface has been considered
by Carniglia and Mandel. ' What is implied by
such treatments, of course, is that the medium
is passive and characterized, for instance, by a
simple dielectric constant. The quantum-mechan-
ica& state of the medium is assumed to be essen-
tially unchanging. Characterization of a medium

by a dielectric constant e(u&) in order to determine
field mode functions assumes that the molecules
of the medium remain, to a good approximation,
in a single state, usually the ground state. With
each molecule is associated the polarizabil. ity of
that state. Obviously this polarizability must be
determined quantum mechanically, e.g. , by the
Kramer s-Heisenberg disper sion formula.

The modes of the field in the presence of a
single ground-state atom B may be determined
from the "refractive index" of the medium con-
sisting of the vacuum plus the atom, i.e. , from
the scattering of each plane wave by the atom.
The basic idea here is no different from the case
of a dielectric medium, where the scattering from
individual molecules is responsible for the re-
fractive index. The modes of the field in the case
of a single ground-state atom B are the plane-wave
modes of free space plus the dipole field produced
by the single scatterer. In other words, the free-
space mode functions (2.16) are altered according
to the formula
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( )
2 Qe ~rmk ~ (k)mt

38 ~ Q)~ —Q)

is the potarizability of the ground state Ig) .

(4.2)

where x~ specifies the location of the atom, r=x
-xa =rr", and

Using the mode functions (4.1), we can calculate
the radiation reaction field of atom A in the pres-
ence of atom B, and therefore the radiation level
shifts of atom A. This leads us, of course, to
Eq. (2.40), in which we require the mode functions
evaluated at x„:

P+

„Fk,(%„)=-k''I „8-„, '"'""~ (~) V"'" s"" (, k-„,) k +(k ),
—

(k ),)kR

1 3i 3
kR ()R)' (kR)') (4 3)

where R=x„—x~ =RA. The correction to the free-space modes due to the presence of atom B is a small
one, so that we shall retain only corrections linear in ot~ in our calculations. Thus we take

Ir»» F-„~(x 4)I'=L '
Ir»» &+I'+2/I, 'Re(c(e(cok)k'e»R e [(r»'»e& ))'A*(kR)

—(8),q' r,»)(e),k. R)(r'»» R)&'(kR)l] ) (4.4)

where

A(x) = —+—,——,,
1 i 1
x x' x"

and

1 3i 3
B(x) = —+—,——,.

x x' x'

It is convenient to again write the level shift in
the form (3.7). The second term, when added to
the electrostatic dipole-dipole interaction, gives
a contribution which, except for Lamb-shift calcu-
lations, may be omitted for our purposes. " As
in the preceding section, therefore, we need only
consider the first term of (3.7). We will make use

of this simplification at the outset and write the
level shift in the ground state of atom A as
E'ER»4'(x„)

=-2we'ZZ '
I r„F),),(x4)I',~&+~

g
(4.5}

with the understanding that for the "Lamb shift"—
the position-independent part aE'4) of (4.5)—the
contribution of the term 2»»fd'xp (x)' must be
included. "'

The evaluation of (4.5) using (4.4) is straight-
forward but tedious. As usual we replace the
n1ode summation with an integration in k space.
We incur some messy but easily evaluated inte-
grals over solid angles, with the result that

2 2

n. E~ (R) —AE' '(mk) = — g I r», I'
k

c»»»(kc}G(kR), (4.6)

where

sin2x 2 cos2x 5 sin2xGx = +x' x' x4

6 cos2x 3 sin2x
+x' x'

Using (4.2), therefore, we have

1 2e ~~ »4) R (s» u, )
" dkk G(kR)8) ( ) 3 m~ I r», I'I r» 'I'k;

(k k4 )[(k»»)))R k ]

(4.7}

(4.8)

where k&"' and 8, ) are the wave numbers for transitions to the ground states of atoms A and B, respective-
ly, and zr', ~&, er~& & are the associated dipole matrix elements. By a simple deformation of the path of inte-
gration we may write

l dk k 8~ 2l k R du ~ Tt ~
(k+ k „)(k„' —k') (u —ik»»)(u'+ k„')

and this allows us to write (4.8) in the form

(4 9)



1326 P. W. MILONNI

U(g} —
~@&A&(R) ~~(A&(~)

(4.10)

where qI" '= (e'/3)( rP ~'~'. Equation (4.10}is
precisely the result obtained by Casimir and Pol-
der" using fourth-order perturbation theory. For
g - 0 the integration gives the London result U(R}
a: R ', whereas for largeR,

(4.11)

with a„,a~ the static polarizabilities of the
ground-state atoms.

V. REMARKS

The Casimir-Polder and van der Waals inter-
actions have been derived by considering the radi-
ation reaction field of a bound electron. This ra-
diation reaction field in general varies with the
position of the electron. In free space the interac-
tion of the bound electron with its radiation reac-
tion field gives rise to the "Lamb shift, " whereas
near a conductor or another atom, for instance,
the position dependence of the reaction field leads,
respectively, to the Casimir-Polder and van der
Waals potentials.

Unlike other derivations of these effects, ours
does not invoke the vacuum-field fluctuations.
Exactly as in the case of the "Lamb shift, " these
effects may be explained physically using either
the zero-point electromagnetic field or the field
of radiation reaction. These fields are connected
by a fluctuation-dissipation relation, and both are

I
necessary for the internal consistency of the
quantum theory of radiation. We cannot point to
the zero-point field as the agent responsible for
these van der Waals effects, any more than we
can say that they are due exclusively to radiation
reaction. The two explanations "are merely two
sides of the same quantum-mechanical coin, "'
exactly as in the theory of spontaneous emission. '

Other well-known Casimir-type effects include
forces on macroscopic objects. These may be
considered to the manifestations of the van der
Waals forces between individual particles, and
therefore of the position-dependent reaction fields
of the particles. For these macroscopic forces it
is more convenient to determine the spatial. de-
pendence of the reaction field by solving macro-
scopic Maxwell equations subject to appropriate
boundary conditions. This approach has been car-
ried out by Schwinger, DeRaad, and Mil. ton within
the context of Schwinger's source theory, "where
the vacuum is regarded as truly a state with all
physical properties equal to zero.""
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