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Semiclassical perturbation theory for the hydrogen atom in a uniform magnetic fields
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We study a perturbative semiclassical expansion for the energy levels of the hydrogen atom in a magnetic field. A

recursion relation is derived for the calculation of the ground-state energy in each azimuthal subspace. Four terms of
the series have been obtained analytically and higher-order corrections have been computed by numerical iteration

of the recursion relation. The semiclassical series yields accurate results for field strengths up to the intermediate

region, and a simple Shanks extrapolation extends its applicability into the region of very strong fields. A similar

calculation for the Stark Hamiltonian is also outlined.

I. INTRODUCTION

The study of perturbations of atomic spectra
due to external magnetic fields has been a prob-
lem of long-standing interest. " The anticipated
observation of strongly perturbed spectra from
astrophysical sources has stimulated a large
amount of theoretical work. In the absence of
an exact solution, even for the simplest case of
a hydrogen atom in a uniform magnetic field,
numerical solution of the Schrodinger equation
could, in principle, resolve this issue. In fact,
numerical ealeulations have already been per-
formed for the hydrogen atom, for various re-
gions of magnetic field intensities. Nevertheless,
reasons of economy as well as theoretical curi-
osity have motivated the development of approxi-
mation techniques. The ordinar y perturbation
expansion in powers of the magnetic field was
recently carried out to large order, using an

algebraic method based on the SO(4, 2) group that

suppresses contributions from the continuous
spectrum, and its asymptotic large-order be-
havior was studied. " A semiclassical method
in the spirit of the 1/N expansion was also sug-
gested. ' The purpose of the present work is to
extend the calculation of Ref. 5 to higher orders,
to examine the domain of validity of the semi-
classical expansion, and to propose a simple
extrapolation that extends its applicability well

into the region of strong fields.
The physical basis of the semiclassical expan-

sion is reminiscent of a WKB calculation. The
leading approximation to the ground-state en-
ergy in each angular momentum sector is given

by the energy of an electron on a circular clas-

sical trajectory, whereas quantum corrections,
as well as radial excitations, are treated as
perturbations. The resulting series is organized
in inverse powers of the "pseudospin" param-
eter k-

~
m

~

+ 1, where m is the azimuthal an-

gular momentum. A few terms of the 1/k series
were calculated' by an algebraic method based
on the SO(2, 1) algebra associated with one-par-
ticle Hamiltonians. In the present work, the
ground-state energy in each azimuthal subspace
is calculated from a recursion relation of the type
employed earlier for large-order coupling-con-
stant and 1/N expansions for the anharmonic
oscillator. "

In Sec. II, we explain the origin of the semi-
classical expansion and present analytic expres-
sions for the first four terms of the 1/t series.
The more technical aspects of the calculation,
such as the derivation of the recursion formula,
are relegated to an appendix. Higher-order
corrections are computed in Sec. III by a num-
erical iteration of the recursion formula, and the
domain of validity of the 1/0 expansion is dis-
cussed in detail. We find that the semiclassical
series is directly useful for field strengths up
to the intermediate region (B-10"G), but ex-
trapolation becomes necessary for stronger fields.
A simple extrapolation (Shanks transformation)
improves the series in the intermediate region
and continues to work well for fields as strong
as 10" G. Section IV outlines application of the
semiclassical method to the study of the Stark
Hamiltonian. Only the leading approximation to
the ground-state energy is examined, but, if
desired, higher-order calculations may be per-
formed using the methods of the present work.
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This article emphasizes the derivation of ex-
plicit results that may be useful in practice,
whereas some more rigorous considerations con-
cerning the large-order behavior of semiclas-
sical expansions are reserved for a future pub-
lication.

II. ANALYTIC RESULTS

m' Z
2

(
2 2)1/2 (2.2)

where m=0, +1, +2, ... is the azimuthal angular
momentum. Substituting

The nonrelativistic Hamiltonian for a hydrogen-
like atom in a uniform magnetic field is given by

X =H + ~B(L,+ 2S,),
(2.1)

2 (~J pa 4 p } I 2 2)1/2
Lp +z

where I-, and S, are the components of the angular
momentum and spin in the direction of the mag-
netic field p'=x'+y', and g,'=p„'+p'. Units have
been chosen such that the energy is given in
atomic units, whereas the magnetic field will be
measured in the standard unit B= 1=2.35 & 10' G.
The nuclear charge Z is left arbitrary, but it
will eventually be chosen to be an integer Z=
1,2, . . . , corresponding to a. neutral hydrogen
atom, an He ion. . . .

The second term in the Hamiltonian X of (2.1)
is trivially diagonal in each azimuthal eigen-
space. Our concern will be the diagonalization
of the operator H, which leads to the Schrodinger
equation

] 82 1 8
+8 B'p

Bp p Bp ez

the ground-state energy, and calculating higher-
order corrections as fluctuations around the
minimum, organized in inverse powers of k.

A convenient way to exhibit explicitly the large-
k limit is to define rescaled variables Z and u.'

Z = Z k'" =uk'"p —u (2.5)

(1 —1/k) (1 —3/k)
V(u, z;k)=

8Q

1B2 2 Z('.:/k)'"

(2.6)

In introducing the rescaled variables (2.5), we
anticipated that the minimum of the potential
occurs at z = 0. In general (see Sec. IV}, z must
also be rescaled.

The large-k effective potential is given by

V, (u ) —= V(u, z; k = ~ )=, + —', B' u'—

(2.7)

Its minimum occurs at u =u, &0, the solution to the
algebraic equation V, (u =u, ) =0, namely,

8 uo+ 4ZQO 1 (2.8)

which possesses a unique positive root that is a
minimum of V, (u). The value of the potential at
the minimum is identified with the leading ap-
proximation for 8/k.

Convenient parametrization is achieved by in-
troducing a dimensionless parameter q:

and stipulate that Z be treated as k independent
in all intermediate stages of the calculation.
Equation (2.4) then reads

] 82 Q2

+k, + V(u, z; k) P = 8/k P,eu' ez'

4 = p'"0
into Eq. (2.2) leads to

1 s s (k —1)(k —3)
8p' Bz' 8p'

(2.3)

g4+zg=1,
4Z 4Z

B&I 2

Bl / 2

so that Eq. (2.8) becomes

(2.8)

(2.10)

Z+, & p —
r' 2 2ig/2
(p +z )

(2.4)

k=2(t m[ + I).
Notice that our present conventions differ from
those of Ref. 5.

For sufficiently large k, the effective potential
in (2.4) exhibits a minimum at z = 0 and p = po 4 0,
which corresponds roughly to circular classical
electron motion with angular momentum I ',
= —,

' k'(= —,
' K'k'). The semiclassical expansion

amounts to identifying the minimum of the ef-
fective potential with a leading approximation to

A. is an effective coupling constant that depends
on the nuclear charge and the magnetic field, as
well as the particular sector considered. The
unique real positive root of (2.10} lies in the
interval

(2.11)0& q&1.

Z6=1——= 1—
4 B k

(2.12)

For large magnetic fields g approaches unity,
while it vanishes for vanishing B. Its asymp-
totic behavior is given by
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and

4Z
(2.13}

respectively.
All intermediate expressions may be para-

metrized in terms of 8 and g; contact with the
original variables can be made through the
algebraic equation (2.10), in the end of the cal-
culation. For instance, the value of the poten-
tial V, (u) at its minimum is given by

V, (u =u, )=, B,3$
(2.14)

and the leading approximation to the ground-state
energy reads

The Gaussian approximation (2.16} is thus found

to correctly interpolate between the Coulomb and

the Landau limit. This is, of course, an asymp-
totic property that should not be taken to imply
that (2.16) is exact throughout the region of mag-
netic field intensities. Rather, it is an encour-
aging sign for the success of the semiclassical
expansion, after higher-order corrections have

been included. Such corrections have been cal-
culated using the recursion formula of the Ap-

pendix. We have succeeded in obtaining analytic
expressions for two additional corrections to
(2.16), with algebraic manipulation using the

MACSYMA program at M. I.T. In order to ex-
press the results in a relatively concise form,
we write the (asymptotic) series representation
for 8 as

6 = kV, (u, )=, [ —', (Sq' —1)k]. (2.15)

Higher-order corrections to the ground-state
energy are calculated using the recursion formula
derived in the Appendix. We now give a detailed
description of the actual results. Including Gaus-
sian fluctuations around the classical minimum,
Eq. (2.15}becomes

(2.20)

and also introduce the notation

f = (1+37}')'", g = —,'(1 —n')'" (2.21)

Notice that f and g are constrained by the identity

b= 2 f —', (Sq —1)k+ —,
' [(1+Sr/ )' '+(1 —q )' —2]}) f'+ 3g' = 1. (2.22)

k=2(~ m~ +1). (2.16)

(2.17}

The Coulomb limit of Eq. (2.16}, B= 0, is ob-
tained from Eq. (2.13}:

E.= -.' (f+g 1}. - (2.23)

E, may be written in the form

The terms E, and Z, in Eq. (2.20) are already
contained in Eq. (2.16). In the present notation

they read

Z2

2(hami +n, +n, +1)' ' (2,.18)

It coincides with the exact ground-state energy
in each azimuthal eigenspace, as is explicitly
verified by writing the exact Coulomb spectrum
in parabolic quantum numbers,

E
& (g)+faB(g)
32(1 —7g')f' '

where A and B are rational polynomials in g.
Explicitly, one finds

A = 736'' —504g' —218g

(2.24)

and setting the quantum numbers n, and n, equal
to zero. '

The B —~ limit of (2.16) is obtained from Eq.
(2.12):

+ 240g —41g —24g + 9,

B= -144g'+ 168g'+ 42/ —24g —6.
(2.25)

S = —', Bk = -,'B ([ [ + 1),

and coincides with the exact Landau spectrum
for the ground-state energy in each sector.
[Note: In order to compare (2.19) with the stan-
dard expression for the Landau spectrum, one
should also include the contribution coming from
the second term of the Hamiltonian (2.1).]

c(g)+ygD(g)
512g(1 —7g ')' f ' (2.26)

where

Taking into account our notational conventions,
the present results for E

y &p and E, agree
with those of Ref. 5. We have further obtained
an analytic expression for E„presented here
for the first time:
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C = 8 026 560g' —13 926 528g" —3 895 812@' + 19 135 584g" —3 900 219@"-9855 776@"+ 3 758 132g"

+2 215456g —1 190 083g —126144g + 151068g' —33 376@'—113g + 5984g' —1676g' —288g+ 111,

D = -2 720352g + 6 314 112g"—2 718492g" —6 665 760g + 5 358 953g' + 2 860 560g' —2 901427g

-668 352g + 790 305g + 95 904g
' —123 557@ -8352g'+ 10 930@'+ 336@—432 . (2.27)

Still higher-order corrections have been com-
puted numerically and are discussed in Sec. III.
In the remainder of this section, we analyze
various features of the preceding explicit results.
Notice that the functions f and g take values in
the intervals

0 ~c g ~( ~(f ~( 12 (2.28)

as is evident from their definition (2.21) and Eq.
(2.11). The Coulomb limit (q=0) corresponds to

f=g = —,'. Inserting these values in Eqs. (2.24)-
(2.27), one finds E, =E, =O. In fact, all but the
leading term in the series (2.20) vanish in that
limit, which is equivalent to our earlier remark
that the Coulomb limit of the leading term, Eq.
(2.17), gives the exact answer for the ground-
state energy.

One would expect a similar result for the Lan-
dau limit (rj = 1, g=0, f= 1}, because the leading
term, Eq. (2.19), yields the exact answer. How-
ever, simple inspection of Eqs. (2.24)-(2.27)
reveals that this is not the case. Thus,

111E-—— E-
512g

111A

512&"' ', (2.29)

where we have used the asymptotic formula
(2.12). The origin of this anomaly is easy to
trace. It is a typical example of secular behavior

due to the appearance of small denominators in
the perturbation expansion: g is the frequency of
fluctuations in the z direction, which are sup-

pressed in the large-B limit. One may further
observe that the dependence on B of individual
terms of the I/O series is algebraic, in contrast
to the logarithmic dependence of the exact so-
lution in the B -~ limit, as was already mentioned
in Ref. 5, where references to work addressing
the large-B limit may be found. It should be
noted, however, that the large-field behavior
of individual terms in the present expansion is
milder than that of the ordinary perturbation
series While (.2.29) suggests that the semi-
classical expansion cannot be directly useful
for very strong fields, it also indicates that the
domain of its validity is wider than ordinary
perturbation theory. In fact, a Shanks extra-
polation will be used later in the text that extends
the applicability of the present expansion well
into the region of strong fields.

The pole at@'= —,
' occurring in Eqs. (2.24} and

(2.26) is artificial; the numerators vanish at the
same value of g, and f= (1 —3g')'~'=( —', )'~'. In
fact, the result may be written in a form that
makes the pole disappear at the cost of lengthier
expressions. Hence, we find it preferable to
maintain relatively simple expressions, and to

1

stipulate that our formulas be applied with care
for field values that give g'= —', . We should also

TABLE I. Detailed results for field strengths in the intermediate region.

Order of
partial
sums jmj=o

B=0.1
j m) =0

B=1

-1
0
1
2
3

5
6

Numerical
(Ref. 8)

-0.498 753 101 8
-0.497 513 1187
-0.497 523 464 6
-0.497 526 723 9
-0.497 526 508 8
-0.497 526 472 2
-0.497 526 480 2
-0.497 526 480 7
-0.497 52(5)

-0.107 259 699 5
-0.100 143 657 1
-0.100 926 064 9
-0.100 837 722 2
-0.100 845 924 0
-0.100 845 834 2
-0.100 845 639 6
-0.100 845 649 6
-0.100 84(5)

-0.394 304 64
-0.315 188 04
-0.335 698 39
-0.329 786 49
-0.331 665 83
-0.330 867 30
-0.331 525 74
-0.330 616 86
-0.331 16(5)

0.464 31140
0.564 439 07
0.537 900 21
0.544 550 51
0.543 508 05
0.542 930 46
0.543 968 39
0.542 882 65
0.543 41
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mention that, while large coefficients are in-
volved in Eq. (2.27), cancellations occur for a
wide range of values of f and g which make the
final result very small.

Actual application of Eqs. (2.20)-(2.27) is
straightforward. The required input is an explicit
value for p, which is the unique positive root of
the quartic equation (2.10) and depends on specific
values for B, Z, and k = 2(~ m

~
+ 1). Explicit

results and the domain of validity of the above
approximation will be discussed in Sec. III.

III. NUMERICAL RESULTS AND DISCUSSION

We have calculated energies for several values
of the magnetic field and angular momentum, and
have compared our results with representative
numerical results for intermediate' as well as for
strong fields. ' All computations in the following
concern the hydrogen atom (Z = 1}. Using the
recursion formula derived in the Appendix, we
compute partial sums for the energy, defined by

B g E,k', n=-1, 0, 1, . . .
s=-1

(3.1)

which is a truncated form of Eq. (2.20).
Table I contains eight partial sums for field

strengths in the intermediate region and angular
momenta ~m~ =0, 1. It is evident that the semi-
classical series converges very well in the region
B(1, where the accuracy of the current cal-
culation appears to exceed that of the numerical
calculation of Praddaude. ' In fact, Table I sug-
gests that for B(1 accurate results are obtained

by maintaining only four terms of the series, for
which analytic expressions were given in Sec.
II. Similar conclusions hold for states with higher
angular momenta.

However, the above picture gradually changes
for field intensities above the intermediate
region. Already at B= 1, the 1/k series does not

provide directly more than two significant figures,
for it oscillates around the correct value and
eventually becomes divergent after yet higher-
order corrections have been included. This sit-

uation becomes clear at B= 100 (see Table III),
where a direct estimate is not possible because
the amplitude of oscillations is very large.
Larger oscillations occur for very strong fields,
as is illustrated by the examples shown in Tables
IV and V.

It is thus evident that the semiclassical expan-
sion may be useful for very strong fields only
through a suitable extrapolation. Indeed, we have
found that a Shanks transformation extends the
applicability of the 1/k series well into the region
of strong fields. As is usual with extrapolation
schemes, we cannot provide a rigorous justifi-
cation for the use of this particular extrapolation,
but we present detailed empirical evidence for
its suitability. A description of the Shanks trans-
formation may be found in Ref. 10, where it is
explained why this transformation eliminates
oscillating transients and where further examples
and some stipulations concerning round-off errors
are discussed.

In practice, application of the Shanks extra-
polation is straightforward. Given the sequence
of partial sums h„,n= —1, 0, 1, 2, . . . of Eq. (3.1},
a sequence of first-order Shanks extrapolants
S„,n=0, 1, 2, . . . is defined by

S =
n

S„„g„,—8'„
g g 2$, n0 12, . . . .

n+1+ n 1 n

(3.2)

Similarly, one defines a sequence of second-order
extrapolants,

CV n

2
a+1 ff 1 n

n+]. + n-]. ff

(3.3)

third-order extrapolants S„,n=2, 3, . . . , and so
on.

We have tested the above procedure for B = 1 and

m =0, for which the original series directly pro-
vides between two and three significant figures.
'The detailed results of the extrapolation are shown

in Table II. It is evident that the Shanks trans-
formation accelerates the convergence of the
series, and prOvides two or three adCktional

significant figures, so that Praddaude's num-

TABLE II. Shanks extrapolation for the absolute ground state at B=2.35 x 10 G.

I3 =1, m = 0; numerical value (Ref. 8): -0.331 16(5)
S„ Sn

Sll
n

-0.394 304 646 894
-0.315188 048 702
-0.335 698 394 804
-0.329 786 496 239
-0.331 665 832 340
—0.330 867 309 579
—0.331 525 742 687

-0.331475 899 572
-0.331 109 265 939
-0.331 212 514 691
-0.331 105 424 667
-0.331 228 181061

-0.331 189 827 514
—0.331 159947 535
-0.331 162 619316

-0.331 162 4
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TABLE III. Results for B=2.35 x 10 G and Shanks
extrapolation.

TABLE V. Results for B= 4.7 x10 G and Shanks ex-
trapolation.

B=100, m=0; numerical value (Ref. 9): 46.210(7)
Sn S„'

B= 20 000, m = 0; numerical value (Ref. 9): 9983.293 (5)

gn Sn Sn

42.799 352
49.907 291
41.876 441
51.828 362
39.007 705

46.136660
46.320 828
46.225 564

46.258 041

9 899.874 68
10 364.093 24

7 970.764 63
23 844.293 50

-122 685.309 20

9 975.288 61
10 050.518 68

9 522.267 46
9984.666 80

erical result is reached using seven terms of the
semiclassical series.

The effect of the extrapolation becomes much
more evident for very strong fields, for which

the original series fails to provide any direct
information. Various examples are presented
in Tables III, IV, and V, and the results are
compared with the numerical calculation of Simola
and Virtamo. ' Five terms of the original series
yield answers for the energy 5 that are accurate
to within a few parts in 10000, uniformly through-
out a wide range of magnetic field intensities.
Of course, it should be kept in mind that this
uniformity in the error is somewhat deceptive;
the quantity of practical interest is the binding

energy, rather than the energy 8, for which the

error increases with increasing B. Including
higher-order corrections should further improve
the above estimates.

In order to gain some insight into the details
of the Shanks extrapolation, as applied to the
present problem, we examine the very first
extrapolant

(3.4)

TABLE IV. Results for B=4.7 x 10 G and Shanks ex-
trapolation.

B=2000 m = 0 numerical value (Ref. 9). 990.695(3)
g„ Sn S„

968.251 22
1046.209 78
833.704 49

1545.114 16
-1530.468 61

989.174 78
997.332 45
967.347 14

990.91947

Expressing the partial sums 8 „8„andb, in
terms of the coefficients E

y Eo and E, entering
the series (3.1}, namely,

h
(kE, + E,),

(3.6)
B 1

g, = 2 kE, +ED+ —E,

the extrapolant S, reads

E +E2 E E (3.6)

Explicit expressions for E
y Ep and E, can

be found in Eqs. (2.23) and (2.24); therefore,
S, can be easily calculated for any desired value
of the magnetic field and the angular momentum,
providing approximate results for the energy
8. Table VI presents explicit values for Sp and
compares them with accurate numerical results.
It is again observed that the relative error is
small over a very wide range of magnetic field
str engths.

In order to understand the success of the semi-
empirical formula (3.6), we examine its as-
ymptotic behavior in the Coulomb and Landau
limits. Using the results of Sec. II, we find that
(3.6) interpolates between the exact Coulomb
value (at B=0, r) = 0) and the exact Landau value
(at B-~, q -1). It was pointed out in Sec. II
that the Gaussian approximation (2.16} possesses
a similar behavior, which, nonetheless, is
spoiled as soon as the first higher-order cor-
rection is included, because of the secular be-
havior of E, shown in Eq. (2.29). Although E,
is also important for the construction of the
Shanks extrapolant (3.6), its secular behavior
does not affect the extreme Landau limit of So.

To summarize, Eq. (3.6) provides a valuable
tool for quick and reasonably accurate estimates
of the energy, for weak as well as for strong
fields. The explicit results of Table VI may be
used as a guide for the accuracy of the above
approximation; as was noted earlier, the error
for the binding energy increases with increasing
B Howeve. r, (3.6) provides binding-energy esti-
mates to within a few percent in the region 100
~B~ 200, and more accurate results for weaker
fields. Of course, higher-order extrapolants
may be used for more accurate calculations. It
should also be noted that Eq. (3.6) may be used
for arbitrary values of the angular momentum,
as is demonstrated in Table VII.

We conclude this section with some comments
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TABLE VI. Predictions of the first Shanks extrapolant for the absolute ground state (m =0) .

0.1 100 200 2000

~o
Numerical

(Refs. 8 and 9)

-0.497 523
-0.497 52 (5)

-0.33147
-0.33116

46.137
46.210

95.101
95.273

989.175
990.695

IV. THE STARK HAMILTONIAN

We briefly describe the application of the semi-
classical expansion to the Stark effect for hydro-
gen. Although the Stark Hamiltonian is to some
extent similar to the Zeeman Hamiltonian an-
alyzed in this paper, its semiclassical limit is
qualitatively different.

The analog of Eq. (2.4} for the hydrogen atom
in a uniform electric field reads

82

ep2
+ ez' + 8p'

1
, ,), +Fz /=st,(p+z) (4.1)

where we have suppressed terms that are un-
important for the semiclassical limit, since we
will only discuss the leading approximation. In-
troducing rescaled coordinates u and v, from
p = k'u and z = k v, Eq (4.1) is w. ritten as

on an important omission of this paper, namely,
the calculation of excited states in each azimuthal
eigenspace. We do not know whether a recursion
relation can be derived for that case, but, at any
rate, the algebraic method of Ref. 5 may be used
for such purposes. As was shown in that ref-
erence, the semiclassical method provides states
that are parametrized in a way that naturally
interpolates between the parabolic quantum num-
bers of the pure Coulomb case and the standard
Landau quantum numbers in the B -~ limit. It
should be noted, however, that the accuracy of
the semiclassical series diminishes for excited
states, and more elaborate extrapolation might
become necessar y.

with

12, +, +V(u, v) $=(8k )Q,eu' Bv'
(4.2)

1 1
V(u, v)-, —,»„&,+Fv,

8u ju +vj
(4.3)

In the course of the semiclassical expansion, the
effective electric field F is treated as a k-in-
dependent constant; its true value given by Eq.
(4.3) is restored at the end of the calculation.

The large-k limit of (4.2) leads to an approxi-
mation where the kinetic energy is suppressed
and the leading contribution to the. ground-state
energy is determined by the minimum of the ef-
fective potential (4.3). Stationary points of V
= V(u, v) are roots of the algebraic equations
BV/su=0= BV/Bv. Explicitly, one finds that

v= 4F8, -4Q= (1+ 16F'9 )'I (4.4)

For a sufficiently weak electric field, the second
equation in (4.4) possesses two distinct positive
roots u uy and u =u„ordered such that up

&u, . v is accordingly determined by the first
equation in (4.4). Only the smaller root u, is a
local minimum of the potential (4.3), so the semi-
classical expansion is performed around u =u,
and v=v, =-4Eu', . uy and u, approach each other,
with increasing values of the electric field, and

eventually become equal at some F Fo that cor-
responds to classical quenching of the atom. For
F &F, the (real} local minimum disappears. A

similar discussion within a more conventional
approach may be found in Ref. 11.

It is not difficult to explicitly calculate F,. One
finds that

TABLE VII. Predictions of the first Shanks extra-
polant for various angular momenta, and comparison
with numerical results of Praddaude (P) (Ref. 8).

F.= 2"/3'.
In terms of the original'electric field F=F„
related to F =F, by (4.3}, Eq. (4.5) yields

(4.5)

B=1
So

3' k' 3'(~ m
~

+ 1}'

In ordinary units, the last equation reads

(4.6)

-0.33147
0.543 46
1.146 87
1.699 85

-0.331 16
0.543 41
1.146 94

0.334 84
2.296 09
3.941 94
5.520 34

0.33547
2.296 48
3.942 75

1.07 x 10
(I ml +»' (4.V)

in units of V/cm. This is a semiclassical ap-
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proximation for the quenching value of the electric
field for an atom in its ground state in a given
azimuthal subspace. As expected, the electric
field required for ionization of the atom is smaller
for high-angular-momentum states.

Although the finer details of Eq. (4.7) are not
to be taken too seriously because quantum fluc-
tuations and barrier penetration have been neg-
lected, the preceding discussion suggests that
a semiclassical expansion is possible for F &F,.
This entails expanding the potential around its
minimum at u=u, and v =v„and proceeding
essentially as in our previous calculation. There
are some differences, however: The Gaussian
fluctuations are not automatically diagonal in the
present example, a situation that occurred pre-
viously in the study of the helium atom. ' After
diagonalizing the quadratic terms with an elemen-
tary Bogoliubov rotation, the calculation proceeds
along the lines of the Appendix of this paper. It
would be interesting to follow the above discus-
sion to higher orders and examine the behavior
of the resulting series. Just as in the magnetic
field problem, the obtained recursion relation
leads to a finite algorithm, in which contributions
from continuum eigenstates are not manifestly
present. The algebraic method of Ref. 5 is also
applicable to the above problem, with suitable
modifications to account for the detailed nature
of the minimum of the semiclassical Hamiltonian.
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APPENDIX: THE RECURSION FORMULA

1 —g
4

Z=
4

B=g, (A1)

which are Eqs. (2.8} and (2.9) for u, = l. Ac-
cordingly, Eq. (2.20) reads

g q
6 (A2)

where E„s=-1,0, . . . , are functions of g alone.
For notational simplicity, we will continue using
the functions f=f (ri) and g =g(q) defined in (2.21),
so that (Al} may also be written a.s

Z =g', B= (1 —4g')'~ (A3)

To account for small fluctuations around the
minimum of the potential, we shall further shift
the variable u of Eq. (2.6) according to

v v
uQ+ yl/ z 1 + y/2

Putting everything together, Eq. (2.6) may be
written as

(A4)

+ W (v, z; k} P = (e —kE, )$,
2 ~v ~z

(A6)

where

The results presented in the main text were
obtained with a recursion formula for the co-
efficients E„s= -1,0, 1, . . . , appearing in the
series representation of the ground-state energy
(2.20). To derive the recursion relation, we first
simplify the notation of Sec. II using dimensional
arguments. The position of the minimum (u =uo)
is chosen to be the independent scale parameter,
and q is taken as the independent dimensionless
coupling constant. We also set u, = 1 in inter-
mediate stages and include a dimensional factor
1/uo=B/p in the energy, at the end of the cal-
culation. All quantities may then be expressed
in terms of g. For instance,

k 1 3W=-2 ———+ (1+vk '~') '+ —(—,'-g )(1+vk ' ')' —kg'[(I+vk ' ') +z k '] ' ' —kE,

kE, =k(-', —2g').
In obtaining (A5}, the leading approximation to the energy has been subtracted from both sides of
(2 6)

We finally introduce the function 0:
Q=e

and rewrite Eq. (A5) in the form

(A6)

(A7)
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0„„+G,'+ 0„+,'+ 8'= —2 E,k', (A8)

where we have also inserted the series (A2). Representing Wby its Taylor series

~l fM 8 p
E/2

OBV Z
E, fM, BW

the ground-state solution of (A8) is sought in the form

(A9)

l+1

fl(v 2}= Q Q Q (D v2a a% y t-C) v2~x 828 ~ t x-/a-}

l~p r& at+8~
a, g~p

(Alo)

By convention, all Greek indices in the following take non-negative integer values.
A recursion formula is derived by inserting (A9) and (A10) into Eq. (A8) and equating coefficients. The

final recursion relation for D ~, C „andE, reads

a+a' = l
a, a'&l

i +X' =Q +1
g+Q m8

4ZX D,' „D,", „,

a, a ~ &l
}I+)t~ =ai

V+V ++1

%+X' = 0I-1
v+v =B~1

~ ~)))) E 4~& ~',.Di'. ~ E 4~~ ) l,.&l'...)a+ al ~l a+a' =l-1

+ Q (2X+ 1)(2% + l)C„'~ C„,~, + 4(n+P —I —1)
a+6" =E-1
4+)i~ =e
v+p =8

X [2(a+ 1)(2o) + 1)D' „qy 2(P+ 1)(2P ~ 1)D' 8„] (Alla)

and

—[(8m+ 4)D, o+ 8PDO, ] C'
~

——W,"",, ,q + Q 4(2A, + 1)1. C„' D~", + 86 (P, ) Q ij, p C„' D,",
a +a' ~E

a&l
)i +)i ~ ~ +1
gag& sg

a+a' =l
a&l

)I+ g' aalu

P+Q ' ~8+1

a,nd

+ 6 (o)+ p —I —1)[2(n+1)(2a+8}C'„8+2(p+ 1)(2p+ 1)C' „], (A lib)

E 1

E, = —-'

a+a' =s-1
p000].001200

(A 11c)

In the preceding formulas we have used some notational abbreviations: First, 4(a) is defined as

A(u) =1 —5, (A12)

so that &(0}=0and 4(n}=1, ax0. Second, we have introduced auxilliary coefficients C'
~ and D'

~ with
o+P&I+1, even though the expansion (A10} requires only coefficients with n+P- I+1. Hence, the
recursion relation (All) should be supplemented with the stipulation that the C and D coefficients vanish
if n+P&l+1.

The lowest-order terms in (All) are defined as follows: Terms of the form D,' 0 are clearly irrelevant,
for they merely contribute to the normalization of the wave function. The coefficients D1 p and Dp
appearing in the left side of (All) are determined by examining the Gaussian fluctuations around the min-
imum of the potential; namely, terms that are quadratic in v and z. Linear terms do not appear, be-
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cause we are expanding around a minimum. This leads to the identifications
2

(D', ,)'= 4

where f and g are the functions of rt defined in Eq. (2.21}. Taking the square roots, we write

D, 0= —f/2, Do, = -g/2)

(A13)

where the choice of the sign has been dictated by the requirement that the wave function vanish at infinity.
All higher coefficients are determined by (All) using a finite number of operations once the Taylor

coefficients for the potential W are computed. They are obtained by writing the potential (A6} in the form
(A9). Explicitly, one finds for the nonvanishing W' 8's:

W', , = (-1)'(l+ 1), 1 ~ 0

W',„,= —,
' (-1)"(l+ 3)+ 2g'Q.',

W', 2 0= f(-1)"(l—1), l~ 2

W',„,„,,„=2g'Q„',n=1, 2, . . . , L(l), l~ 0

(A15}

where

and

l+2
l even

f (1)=&

!!I
l+

E.

z(i )
(l+ 2 —m)!(2l+ 3 —2m)!!

n t(m -n)! (l i 2 —2m) I (2l + 4 —2m) I t
'

(A16)

(A17)

The recursion formula given by Eqs. (All)-(A17) was solved using the MACSYMA program at M. LT. to
obtain the results described in the text. 'The reader who is interested in calculations that go beyond the
explicit results of Sec. II, or the numerical examples of Sec. III, may directly use the above recursion
or contact the authors for further details. The actual program is very concise, taking less than half of a
printed page.

This work is based in part on results to be submitted
in a thesis by L. Mlodinow in partial fulfillment of the
requirements for the degree of Doctor of Philosophy
at the University of California at Berkeley.
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