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Hydrogen molecular ion in a magnetic field
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The energy of the ground electronic state of Hq+ is studied as a function of the inter-

nuclear separation R iq, the angle, 8, between the molecular axis and the magnetic field,

and the field strength B. For small B the molecular diamagnetism reaches its maximum

value when 8=m/2 and Ri&-—5 Bohr radii. This maximum value is about 50% greater

than the diamagnetism of an isolated H atom. At large B the molecule shrinks due to
magnetic compression of the electron wave function, and the molecular vibration frequen-

cies increase substantially. A strong diamagnetic torque appears which tends to align the

molecular axis along the field. This gives rise to a zero-point rotational oscillation about
8=0 whose energy can substantially exceed that of the zero-point vibrational oscillation.

The calculations presented indicate that even if the protons had infinite mass, the mole-

cule would become unstable to dissociation at 0=~/2 in fields ) 1.6X 10" G.

I. INTRODUCTION

Since the pioneering work of Schiff and Snyder, '

numerous papers have appeared on the problem of
the H atom in a magnetic field. At present the en-

ergies and wave functions of the low-lying states
are accurately known for arbitrary field strength,
and progress is being made in understanding the
more highly excited bound states.

By contrast, relatively little attention has been

paid to the corresponding problem of the hydrogen
molecular ion, Hz+, in a magnetic field. This
problem has fundamental interest since H&+ is the
simplest of all the molecules; an understanding of
its behavior in magnetic fields should offer insights
into the effect of strong magnetic fields on co-
valent bonds in general and, in particular, on co-
valently bonded diatomic molecules. Systems more
or less analogous to Hq+ have been observed in the

spectroscopy of impurities in semiconductors. For
example, photoluminescence experiments in a num-

ber of semiconductors give evidence for bound

states consisting of a relatively massive hole, a
light electron, and a donor ion. The magnetic pro-
perties of such a system may be quite similar in

important respects to that of the Hz+. In addition,
recent experiments on the diamagnetism of donors
in Ge show anomalies at the higher concentrations
which may be attributable to the sharing of an
electron by two donor ions. In fact, the present
study of Hq+ was motivated by these latter experi-

mental results.
Not a great deal is known about the behavior of

Hz+ in magnetic fields. Variational calculations of
the electronic ground state of Hz+ have been car-
ried out in the low-field ' and high-field regions
but only for the magnetic field parallel to the
molecular axis. Moreover, none of these calcula-
tions appear to be highly accurate over any range
of fields, as we shall see.

Previous authors have implicitly presumed that
the axis of the Hz+ molecule will tend to align

along the direction of an applied magnetic field.
However, this presumption cannot be checked un-

less one considers the situation in which field
makes nonzero angles, 0, with the molecular axis.
We shall describe calculations which yield, at each
magnetic field strength, the energy as a function of
0, V(0). With V(0) in hand, the low-lying rota-
tional levels can be calculated, and, because V(0) is
found to have its minimum at 0=0, the molecule
in its ground rotational state can indeed be expect-
ed to align along the field. At sufficiently large
magnetic fields we find that V(8i becomes so steep
that the zero-point rotational oscillations around
0=0 have higher energy than the zero-point vibra-

tional energy evaluated at the same field; the rota-
tiona1 energy under these circumstances can
represent a significant fraction of the dissociation
energy of the molecule. Further, for 0 approach-
ing m/2 our calculations indicate that the bond be-
comes unstable at high fields.
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In the first part of this paper we shall describe

calculations of the electronic energy of H2+ in the
limit of weak magnetic field for arbitrary field
direction and arbitrary internuclear separation.
Next we shall present results for the energy and

equilibrium separation of the protons for arbitrary
field strength but with the field aligned along the
molecular axis. The energies obtained will be corn-

pared to the best previously published results. In
the third section we discuss the electronic energy
as a function of 8, deriving V(8). Finally, we shall

calculate the lowest-lying rotation-vibration levels

of H2+ in a magnetic field.
The nonrelativistic spinless Hamiltonian for the

H2+ ion in a uniform static magnetic field is

H~+H2 given by
2 '2
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where the subscripts 1 and 2 attached to quantities
on the right-hand side of Eqs. (1) and (2) refer to
the protons; p, m, A, and r are the momentum
operator, mass, vector potential, and position of
the electron respectively; Mp is the proton mass,
and A& 2 ———,BX R~ 2, where B is the magnetic
field. We may rewrite H~ by going to the center-
of-mass system of the protons
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where P=p~+pz, R= —,(R, +Rz), P,~= —,(p~
—pq), R~q ——R~ —Rz, p=M&/2m =918, and
M =2M'.

Although the kinetic energy of the center-of-
mass motion of the H2+ ion cannot be zero in the
presence of a magnetic field, we shall neglect it
compared to vibrational or rotational energies by
setting H~~ equal to zero. In addition, we neglect
field-dependent terms in H&z, leaving

H) =H]g =~]2/2P~ ~

2 (3)

In making these approximations we are neglecting
the cyclotron energy of the ion as well as effects of
motional electric fields. Clearly for ions with

large center-of-mass kinetic energy, these approxi-
mations will be poor.

We seek first variational estimates of the ground
state of H2 with Ri and R2 regarded as fixed
parameters. The ground-state eigenvalue will turn
out to be a function of

I R~z I
and 0, the angle be-

tween B and R&2. Invoking the Born-Oppenheimer
approximation, we then use this function as an ef-
fective potential for the rotational-vibrational mo-
tion. Wave functions and energy levels associated
with this motion are, in turn, calculated by the
variational method.

We begin by considering the ground-state di-
amagnetism of the H2+ ion for arbitrary R ~2 and
magnetic field direction in the limit B~O. There
are, to my knowledge, no accurate calculations
available even in this relatively simple limit.
Moreover, the results will illuminate the behavior
of the ion at higher fields.

II. WEAK-FIELD DIAMAGNETISM

We address here the problem of finding the
lowest-order correction to the zero-field ground-
state eigenvalues of H2 in the presence of an arbi-
trarily weak magnetic field. In our earlier discus-

]
sions we employed the symmetric gauge A= —,B
X r. However, it is advantageous at this point to
introduce a more general gauge. Let us assume in
all our calculations of electronic energy that the
molecule axis lies along the z direction and that the
magnetic field has only components B,=Bcos0
and B& ——B sin8 along z and y axes, respectively.
We introduce the gauge

A =[ $»8»z —(,8,y, ( 1 —g, )8,x,
—(1—g»)8»x],

where g» and g, are constants which are to be
determined variationally. It is easy to verify that,
independent of the choice of g» and g„V XA
=(O,B~,B,) hence that A properly describes the
magnetic field. Taking henceforth energy and
length in units of the hydrogen Rydberg, A', and
Bohr radius, ao, respectively, Eq. (2) becomes

2 2
i a

+g»y»z —g, y,y + —. +(1—g, )y,x + —.——(1—g»)y»x 2/Rz 2/Ra+1/z—o, —& a i a
l Bz

(5)
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———(1—
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Taking the trial function e ' we find that the en-

ergy is

Minimizing this energy with respect to g» gives

(» =0.5, leading to the well-known diamagnetic en-

ergy of 0.5y„. Suppose now that the atom is cen-
tered at x =y =0, z =zo. Then 2/r in—(6)
changes to —2/Rz. If we employ simply the trial

—RA
function e and repeat the variational calcula-
tion, we obtain an energy

where y» =ysin8, y, =ycos8, and y=(freB/
mc)/298; Rq ——[x +y +(z —zo) ]'»~ and

Rs ——[x +y +(z+zo) ]' corresponding to pro-
tons fixed on the z axis at +zo and
—zo (zo ———,R &2). The dimensionless parameter y
measures the strength of the magnetic field. In va-

cuum @=1 when B =2.35&10 G. (Notice, how-

ever, in many semiconductors y=1 for 8 (10 G
because the effective Rydberg and effective elec-
tron mass are much smaller than in vacuum. )

We shall attempt to find the energy to order y
by a variational approach. To motivate a choice of
trial wave function we consider the problem of a
single hydrogen atom centered at x =y =z =0 in a
weak magnetic field along the y direction. The ap-
propriate Hamiltonian is

2
1 a a'
l x Qy

+4 )'

2

which yields an optimum g» of 1/(2+zo) and a
diamagnetic energy, (1+zo)y„/(2+zo), which is

clearly higher than the correct value, 0.5'. To
cure this problem we can apply a gauge tranforma-

tion, e ""', to e " which will "center" the

gauge at z =zo instead of at z =0. Thus the trial

function e '~"e ", where q=g»y»zo, will again

give the correct diamagnetic energy.
For large R &2 the H2+ wave function approaches—RA —RB

e +e . To obtain the correct diamagnetism
in this limit, it is clear that we should use the trial
function

—R ~ —R
e

—iqxe A +eiqxe B

For general R i2 an excellent zero-field trial
function is the Guillemin-Zener (GZ) function

—aRA —pRB —aRB pRA
1('oz=e +e

where a and P are determined variationally as a

function of R&2. Comparison of energies at vari-

ous values of zo obtained from the GZ function,

EGz, and the more nearly exact energies of Ref. 9
is given in Table I.

To calculate the diamagnetism of H2+ we have

employed the trial function

—iq gx
—aRA —PRB iqgx

—aRB PRA

where g is an additional variational parameter
which permits the gauge to be centered at an arbi-
trary point on the z axis. For g= 1 the gauge is
centered on the protons; for (=0, midway between
them. The calculation is carried out in two steps.
First, the field is set equal to zero and a and j3 are
varied for lowest energy at the value of zo of in-

TABLE I. Zero-field energies, EGz and E, and diamagnetic coefficients, D, and D~, for
computing the ground-state energy of Hq+ in a weak magnetic field from Eq. (9). zp is half
of the interproton separation in units of ap. EGz, calculated using the trial function of Eq.
(7), is a variational estimate of the "exact" Hz+ energy, E, taken from Ref. 9.

Zp D,

0.2
0.4
1.0
1.6
2.0
2.5
3.0
4.0
6.0

—3.6011
—3.1083
—2.2049
—1.7662
—1.5918
—1.4483
—1.3567
—1.2549
—1.1670

—3.6016
—3.1090
—2.2053
—1.7665
—1.5922
—1.4488
—1.3573
—1.2551

0.152
0.194
0.326
0.436
0.482
0.512
0.517
0.508
0.500

0.155
0.207
0.405
0.609
0.706
0.756
0.727
0.604
0.509
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terest. Then g„and g are varied to produce the
smallest coefficient of y» possible in the diamag-

netic energy. (g, is always best chosen to be 0.5
because the zero-field wave function is cylindrical-

ly symmetric. }

The energy of H2+ in the limit y~O can be
written

E(y, 8)=E(0)+y [D,(zc) cos28+D»(zc) sin'8]

=E(0}+y'D, (zc )

+y [D»(zc) —D, (z&&)] sinz8 . (9)

III. FIELD ALONG MOLECULAR AXIS

Calculations of the ground-state energy of H2+

in magnetic fields of arbitrary strength directed
along the line connecting the two protons have

been carried out previously. Here we introduce a
new ansatz which yields energies, E&~~, apparently
superior to previous energies at all fields. ' The
trial function chosen is

Our variational estimates of D, and Dz are tabu-

lated in Table I and plotted in Fig. 1. Over most
of the zc range 0.45 & g„&0.52 and 0.8 & g & 1.

From Fig. l. and Eq. (9) we observe that weak

magnetic fields contribute an effective potential
which, at least for zo & 2.5, tends to push the two

protons together. This effect becomes more pro-
nounced as the axis of the H2+ is rotated out of
alignment with the magnetic field. As we shall see
the behavior just described persists, qualitatively,
even at high magnetic field.

0.8—
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O
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FIG. 1. Variation with internuclear separation, R ~2,

of coefficients D~ and D, determining the energy shift
of the ground state of Hq+ due to application of a suffi-

ciently weak magnetic field [see Eq. (9)]. R ~i is in units

of aQ ~

1( =exp( Dz y'p—/4)g—oz, (10)

where D and y' as well as a and P in l(toz are vari-

ational parameters. In Table II we compare the
electronic binding energies (including interproton
repulsion) obtained from H2 and Eq. (10) at equili-
brium separation to those of other authors. It is
implicitly assumed in these calculations that the
protons are infinitely massive. The energies quoted
for each ansatz are obtained at the optimimum

proton separation for that ansatz. By "binding en-

ergy" we mean the least energy required to pro-
duce, in the presence of the field, a free electron

TABLE II. Comparison of various variational lower bounds to the binding energy of H2+
at equilibrium interproton separation for magnetic field parallel to the line connecting the
two protons. E»~~, EsNw, and EM»aM are from the present calculation [trial function of Eq.
(10)] and from Refs. 4 and 5, respectively. EMnpaM is calculated from the trial function—Cgf'g

e "+e taken from Ref. 3 (a slightly better trial function is also discussed in this
reference). zQ is half of the equilibrium interproton separation in units of aQ determined
from the present calculation and has a numerical uncertainty of about +0.002. All energies
are evaluated at the equilibrium zQ for their respective trial functions and are in units of 9P.

(e)
ZQ Es

I I
EMDFMB EBPPv EMFBM

0
1

3
10

100
1000

1.000
0.876
0.688
0.479
0.224
0.111

1.2049
1.9498
2.7903
4.3500

10.270
22.67

1.1730
1.8817
2.5137

1.1109
1.8612
2.7064
4.2592 4.0777

10.033
22.22
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and two protons, all infinitely far from each other.
This energy is always greater than the "dissocia-

tion energy,
"which is the least energy required to

remove one of the protons to infinity, leaving an H
atom in its ground state in the magnetic field.

Parameters maximizing the H2+ binding at
@=100are y'=92. 7, D=1.33, a=1.58, and
P= —0.078. As is true for any wave function
which is cylindrically symmetric about the z axis,

(,=0.5 in Eq. (5).
We believe that Ez~~ becomes progressively less

accurate as y increases. Improvement in Ep))

0.01 and 0.04 at y= 100 and y= 1000, respectively,
has been obtained by multiplying P in (10}by

exp[ —Sp (Rq +Ra )], where S is an additional
variational parameter, and reminimizing with

respect to all parameters. Undoubtedly further en-

ergy improvements of similar or even greater mag-
nitude remain possible.

At extremely high fields the wave function

P =e r}'» f(z),
with f(z) a one-dimensional analog of the GZ
wave function defined by

f(z)= expI —a[(z —zo) +A ]' —P[(z+zo) +B ]'» )+exp[ —a[(z+zo) +A ]'» —P[(z —zo) +B ]'» j,

is superior to g given by Eq. (10). For y= 1000 an

energy improvement of 0.055 is obtained. Howev-

er, at y= 100, P gives the lower energy.
We have examined the H2+ vibrational potential

at y=1 and y=100 by minimizing the energy

(1(
~
Hi

~
f) l(1(

~
f) at various fixed values of zo

near the respective equilibrium values, zp', listed in

Table II. Potential curves are obtained by least-

squares fitting the function

energies in the stated ranges of zp for y=100 and

are very much more accurate than that for y=1.

IV. FIELD PERPENDICULAR
TO MOLECULAR AXIS

For this configuration y, =0 in Eq. (5). An ap-
propriate trial function for zp not too large is
thought to be

x (A„+B„x+C„x')ill D„x ), —
exp( Dz Ap —Tx )—Poz, — (12)

X =Zp —Zp
(e)

to the change in minimized energies from the ener-

gy at zp ——zp'. For y=1 and 0.6 &zp &zp ' the fit-
ted parameters are A„=0.719, B,= —1.20,
C„=2.63, and D„=—3.81; for zp" &z &1.4 we

find A„=0.719, B„=—1.27, C„=1.25, and

D„=3.20. At @=100and 0.09 &zp &zp',
A„=73.5, B„=—122, C„=4,930, D„=—397,
whereas in the range zp' &zp & 0.6, A„=73.5,
B„=—529, C„=1,869, and D„=512. The fitted
curves deviate by 0.0198 or less from the calculated

where D, A, T, a, and P are variational parameters

[see Eq. (7}].' Energies and equilibrium values of
zp are given in Table III. Parameters found for
y= 100 are g» =0.265, D = 11.4, A =0.944,
T=32.9, a=1.90, and P=0.102. Notice that the
relatively large value of T indicates that the wave

function of (12) is strongly compressed along x, the
direction perpendicular to the plane determined by
the molecular axis and the magnetic field. The
charge density along the z axis is strongly peaked
between the protons.

TABLE III. Variational lower bounds, E~$ to the binding energy of H2+ for fields ver-
(e& .

pendicular to the line connecting the protons as calculated from trial function (12). zo is
half of the equilibrium interproton separation in units of ao, and Ed,„„is the donor binding

energy, believed accurate to the number of figures quoted. All energies are in units of A.
(e} . ~ (e) ~

Note that zo is always smaller than the corresponding value of zo' in Table II.

(e)
zo Edonor

1

10
100

1000

0.817
0.386
0.160
0.0789

1.8988
3.7620
7.229

11.58

1.6623
3.4956
7.579

& 15.325
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Notice also that the ionization energies and
equilibrium separations in Table III are uniformly
lower than the corresponding quantities in Table
II. Of special interest is the fact that at y=100
and y=1000 the ionization energy of the Hq+ at
its "equilibrium" separation is lower than that of
the donor, implying that the Hq+ becomes unstable
to dissociation at these high fields when B is per-
pendicular to the molecular axis.

V. FIELD AT ARBITRARY ANGLE
TO MOLECULAR AXIS

When 8 is between 0 and n. /2 a more general
wave function than either (10) or (12) is required.
In this case cross terms in Hz proportional to

y~y, zy may not be negligible (especially at high

fields), and, it is thought, a trial function of the
form

well as zo. At y=100, Pi gave lower energies for
0&8&0.6 and 1(z for 0.75&8&ir/2. At y=1, 1(&

proved superior for 8)0.5 and gi for 0 & 8 &0.25.
In general we find that the change in energy

with 8 can be well fit by an expression of the form

(Aii+Bit sin 8) sin 8. (16)

For y=100, Az ——5.85 and 8~ ———2.85. At small

values of y we expect from (9) that

As = r'[Di (zo" } D,—(zo" )]

and Bg =0.
In the presence of the potential (16}the Hq+

molecule will not in general rotate freely in its
lowest-lying rotational states but rather oscillate
like a pendulum pivoted at the molecular center of
mass. Simultaneously, the molecule will vibrate in
the potential (11). We discuss the ensuing low-

lying rotational and vibrational levels in Sec. VI.

exp( Dz Ap— Tx—'+Bz—y )goz (13)

(relatively accurate for smaller 8 values) and

3

1+g C;(zy}'

X exp( Ap Dz Tx—)goz— — (15)

might be appropriate. However, this function, al-

though giving satisfactory results at zo ——0 (the
He+ limit} seemed rather difficult to work with

when zo &0, and two simple variants defined by
Eqs. (14) and (15) were employed instead:

1(,=(1+Ty') exp( —A'p Dz +Bz—y)goz

(14)

VI. ROTATION AND VIBRATION OF Hg+

IN MAGNETIC FIELDS

In Secs. III and V we discussed how vibrational
and rotational potentials, approximated by Eqs.
(11) and (16), respectively, can be calculated for
Hz+ from various trial functions for the electronic
motion. For low-lying vibrational states the wave
functions describing the proton motion are large
only for small displacement of zo from zo" (

~

x
~

small). Likewise, for low-lying rotational levels
and y) 1, the molecular axis makes only small an-

gles with the B field with significant probability so
that

~

8
~

is also small. In this region it turns out
to be a fairly good approximation to write the total
potential for the proton motion in the form

(relatively accurate for 8 near ir/2).
The expectation that T in (13}would remain

small at small 8 motivates the replacement

exp( Ap:—exp[ —(A + T)p'+ Ty']

~(1+Ty )exp( —A'p )

made in obtaining (14). In choosing (15) we have
in effect approximated exp(8zy) in (13) by the
series (1++, ,C;(zy)'), where the C; are varia-

tional parameters.
Over the range 0&8&m./2 two sets of energies

were calculated, one set from g, , the other from

Pi, by varying all parameters in (14) and (15) as

v(x)+ V(8), (17)

where v(x) is evaluated at 8=0 and is approximat-
ed by (11) as discussed earlier; V(8) is evaluated
at x =0 for a number of discrete 8 values and is
least-squares fitted by (16). For y= 100 we find
Ag ——6. 13 and Bg ———2.49, for y=1, 0.0583, and
—0.004 39, respectively.

In the approximation leading to (3) we have the
Schrodinger equation

——Vz +v(x)+ V(8)
1

p 12

=E'P [R ip
——2x+2z ']o, (18)

for which we seek eigenvalues by the variational
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S~(R )p )e Rn, ML

To obtain a semiquantitative overview of the
low-lying energy levels of (18) we can neglect the
rotation-vibration interaction and also the anhar-

monicity of v(x) [replacing, for the moment, v(x)
by A„x ]. In that case, S„becomes the harmonic
oscillator (HO) wave function associated with the

energy level
1(++ 2 )~HO (20)

The ground-state oscillator wave function (unnor-

malized) is

exp[ —(pA„)'~ (R,p r, )'—/4],

where r, =2zp', and is therefore the internuclear

separation at x =0, the minimum of v (x).
The equation satisfied by R„M (0) is approxi-

mately

a . a
sin0

pp
2 sin0 00 80

ML
R

sin 0

method. Although (18) is not separable in R,2 and

0, we shall adopt, as a first attempt, a trial
function of the form

with eigenvalues L (L +1)/pr . In the small-y

limit V(0) produces energy shifts which are easily

calculated in perturbation theory. For y large, on
the other hand, V(0) can be approximated by

A+0, where Az is evaluated at R~2 ——r, . In this
limit approximate eigenvalues of (21) may be found

by making the small-amplitude approximation
(sin8~8) in (21), leading to the equation

1 d ML,

2 +— —
2 +AR0 R =EgR .

(23)

Equation (23) describes the quantum-mechanical

pendulum in the harmonic approximation; the
quantum pendulum is closely related to the usual

one-dimensional harmonic oscillator and can be
solved in a similar way, leading to the energy spec-
trum

Es(n, MI )=2a[2n+5(MI )]/pr

a=(ARpr )'

n =np, np+1, np+2, . . . ,

~
ML

~

/2 for ML even,

(
~

Ml
~

—1)/2 for ML odd,

+ V(0)R =EgR, (21)
1 for ML even,

2 for MI odd . (24)

where we have omitted subscripts n and Ml . We

will approximate

(S„(Ri2)
~
1/R, 2 ~S„(Riq))

(S„(Ri2) ~S„(Ri2)) R„sr (8)=8 P„M (8')e (25)

For all n R„M (0) is even in 0 if MI is even and

odd otherwise. The general form of R is

by 1/r, .
For y sufficiently small that V(8) can be

neglected (y« 1) the solutions of (21) are the

familiar rotational eigenfunctions

M~
Pz (cos0), (22)

where P„M is a polynomial of degree

n —
~
MI

~

/2 for MI even, n —(
~
ML

~

—1)/2 for
ML odd, and P„M (0)+0. The ground-state eigen-

function, therefore, has the form Ro c(8)=e
In Table IV we list pertinent parameters for the

TABLE IV. Quantities related to the vibration-rotation ground state of Hz in a magnet-
ic field. Ski)uo is calculated from Eq. (20) with A„determined by fitting (11) to v (x). As is

obtained by fitting (16) to V(8) evaluated at the zo" value of Table II. Ez(0,0) and a are de-

fined in (24) with r =r, ; a is used in wave function (25). Energies are in units of A.

I—AcoHp Eg(0,0)

0
1

10
100

1000

0.0105
0.0140
0.0397
0.141
0.38

0
0.0583
0.925
6.12

35.6

0
12.8
14.0
33.6
40.1

0
0.0091
0.133
0.365
1.77
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vibrational and rotational states over a wide range
of y values.

The total energy of the proton motion is the sum
of vibrational and rotational contributions,

(v+ )flcoHo+Eii (n, ML )

R(8)=+R(8+ir)
[not satisfied by (25)], we simply replace 8 by sin8
in (25) and treat a and the constants appearing in

P„~ as variational parameters. Trial functions so

constructed are symmetric in the sense R (8)
=+R(8+ir). Antisymmetric trial functions can
be formed from these functions by multiplying by
cos0." Thus for the lowest-lying rotational states
we use exp( —ix sin 8/2) (symmetric) and

cos0exp( —a sin 0/2) (antisymmetric). Due to the
high rotational potential barrier these states are
practically degenerate when y is not small, but in
the limit y~O [V(8)~0] the symmetric state ap-

proaches the rotational ground state (L =0) of
(21), whereas the antisymmetric state approaches
the first excited rotational level Pi(cos8) ( ~ cos8).

Physically we expect states of high
~
ML, i

to
have high energies when y is large because the

large centrifugal force in such states tends to align
the molecular axis perpendicular to the magnetic
field direction, where V(8} is large. At y=O,
states of different ML but with the same L are, of
course, degenerate.

As an example, the states e '~sin0 and cos0 are
degenerate at y=0 since they have the same L
values (L =1). However, the former state, which

has ~Mr,
~

=1, transforms into e '' sin8e "" at
high y and therefore is higher than the latter by an

energy of 2a/(pr ), according to Eqs. (24).
To take into account the rotation-vibration in-

teraction and the anharmonicity of v (x), we have
used Morse-type trial functions for S„adopting

bo
Sp ——y exp( —cpy)/x,

Si ——(1+dy)y ' exp( —c&y)/x,

y =exp[ —a (R» —rs )],
(26)

From Table IV it is apparent that for the larger
values of y rotational oscillation rather than vibra-
tion along the molecular axis makes the predom-
inant contribution to the ground-state energy,

~Ho+Em(0, 0}.
For more accurate calculations of the low-lying

eigenvalues of (18) we introduce variational trial
functions for R and S in (19). To construct trial
functions for R, which interpolate between (22) and
(25) and which obey the symmetry condition

where for given R„~ parameters a, r~, bp, and cp

are found by minimizing the ground vibrational
state energy, d is chosen to orthogonalize Si to Sp,
and bi and ci are varied to minimize the v=1 en-

ergy.
Energies resulting from employing the wave

functions of (19) and the Hamiltonian (18) in the
variational calculations are denoted E„„~~ ~,

where Ep p p is the ground-state energy. For
y=100 we have obtained the results:

Ep p p =0.476 E& p p =0.716

Ep p i =0 780 Ep &
p= 1.087 .

(27)

Comparison of these results with the parameters in

Table IV and the energy spectra of (20) and (24)
gives an idea of the accuracy of the simple har-

monic oscillator approximations at high y.
In adopting a trial function in the form (19) one

is implicitly assuming that the rotational motion
associated with each vibrational state is associated
with a molecule of fixed moment of inertia. To in-

vestigate the error introduced by such an approxi-
mation we have replaced R„M (0) given by (25)

with

S1&2g

R„~ (8)=(sin8) ' P„M (sin 8)e

where k is a variational parameter. This nonrigid
pendulum ansatz at y=100 gives only a 0.4%%uo im-

provement in the ground-state energy relative to
that obtained with (25) with 0 there replaced by
sin0.

Finally, we have investigated the adequacy of
the approximation (17) for the rotation-vibration
potential. At y= 100 we find that for small

~

x
~

and 0 a potential much more accurate that (17) is

v(x)+ V(0)+37.5x sin 0 . (28)

The new term, 37.5x sin 0, produces a significant
increase in the energies of Eq. (27). This is be-
cause both the centrifugal force associated with the
rotational motion and the asymmetry of v(x) about
x =0 have the effect of displacing the center of os-
cillation from x =0 to some positive value of x
which, for large y, can be quite sizeable. Thus the
expectation value of x sin 8 in the wave functions
of (19) is positive, producing an increase in the en-

ergy. Using (28) and trial functions (19) we find,
for example, that Ep p p is increased to 0.495 and

Ep p i to 0.829 as compared to the values given in
(27).
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VII. SUMMARY AND CONCLUSIONS

We have examined the hydrogen molecular ion
in its electronic ground state in magnetic fields of
arbitrary strength and direction.

The electronic energy is calculated assuming that
the protons are fixed in position. The proton mo-
tion is calculated in the Born-Oppenheimer ap-
proximation.

In the weak-field limit the electronic diamagne-
tism of the H2+ is found to reach a maximum
value when the separation of the protons, R ~2, is
near five Bohr radii; the diamagnetism at this
separation is strongly dependent on 8, the angle be-
tween the interproton axis and the magnetic field,
reaching a maximum at 8=~/2. Roughly speak-

ing, the diamagnetism depends on the degree of
spread of the electronic wave function in planes
perpendicular to the magnetic field. When R &2 is
zero the electron is strongly localized in a He+
atom. As R &2 increases the electron wave function
spreads out, at first filling the space between the
protons, and the diamagnetism increases; but final-

ly, at large R &2, the electron becomes localized
around each of the two protons. In the limit
R ~2~ oo, the diamagnetism has decreased back to
that of a single hydrogen atom.

For magnetic fields of intermediate or large
strength (y& 1) the electronic wave function is al-

tered by the presence of the field in a way which
depends upon field strength and orientation. When
the field lies along the molecular axis (8=0), the
electronic wave function is compressed, primarily
in planes perpendicular to the axis, producing in-

creased charge between the protons and drawing
them together. When the field is perpendicular to
the axis (8=m/2), the diamagnetism is much
higher than for 8=0, and the electronic wave

function suffers moderate compression along the

molecule axis (resulting in a strong tendency for
the protons to draw closer together) and very

strong compression (at high y) along axes perpen-
dicular to the plane of B and the molecular axis.

At some critical value of y, y„which the
present calculations place at y, ~ 70, the molecule,
assumed to be held perpendicular to the field, be-

comes unstable to dissociation into a proton and a
hydrogen atom. For 0 & 8 & ~/2 the diamagnetic

energy increases monotonically with 8 and the
wave function of the electron is skewed by the
field in a complicated way.

As a first approximation at high field the elec-

tronic energy as a function of proton position can
be written u(z&& —zo')+ V(8), where u is calculated

at 8=0, the angle minimizing V(8), and V is cal-
culated at zo', the displacement minimizing v.

This electronic energy acts as a potential for the
proton motion, which becomes a superposition of a
vibration along the molecular axis and a pendulum

oscillation about the magnetic field. At large
fields the energy of the pendulum motion is con-

siderably greater than that of the vibration in the

ground rotation-vibration state.
The vibration of Hz+ in high magnetic fields in

the absence of rotation has been investigated previ-

ously by Melo and co-workers. We would have

expected that their results and our estimates (indi-
1

cated by —,ficoHo in Table IV) would agree well at

large y since the potential curves, u (x), are not

very different. However, we find their values of
AcoHO larger than ours by more than a factor of 2.
We are unable to explain this discrepancy.
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