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Spin dynamics of transitions between muon states

P. F. Meier
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(Received 15 October 1981)

The time dependence of the muon spin polarization is calculated for situations where
transitions occur between the different (paramagnetic or diamagnetic) muon states which
have been observed in semiconductors. It is shown that under suitable experimental con-
ditions the transition rates can be measured with high accuracy.

I. INTRODUCTION

The positive muon is used extensively as a probe
in solid-state physics and chemistry. In insulators,
semiconductors, and liquids, the muon may bind
an electron to form a one-electron atom which can
be studied by measuring the time dependence of
the muon spin polarization.

Two different paramagnetic muon states have
been observed in Si,' Ge, and diamond. ' The
hyperfine spectrum of the so-called normal muoni-
um state (Mu} is analogous to that of vacuum
muonium but with a reduced hyperfine frequency.
The observed spectra of the anomalous muonium
state (Mu*} are describable by an axially symmetric
hyperfine interaction. Besides these two paramag-
netic states, the experiments also show that a frac-
tion of the muons are in a diamagnetic state (p+)
with the muon precessing in the external field with
the Larmor frequency.

The amplitudes of the pSR frequencies for these
three states (p+, Mu, Mu~) depend both on tem-
perature and doping concentration. Recent data
on diamond indicate that at elevated temperatures
Mu transforms into Mu*. These experiments ini-
tiated the present theoretical investigation of the
spin dynamics of transitions among the various
muon states.

Analogous transitions are well known in pSR
chemistry. The reaction rates for muonium to
form muon-substituted diamagnetic compounds
have been determined for a variety of cases. ' The
observation of muonic radicals has led to extended
studies' of the reaction mechanisms for muons
stopped in liquid unsaturated organic compounds.

If an observed muon state is the reaction pro-
duct of a transition from an unobserved short-lived
precursor state, the amplitudes and phases of pre-
cession depend on the reaction rate and the applied
field. These dependencies were first calculated by

II. EQUATIONS OF MOTION

The spin Hamilton operator for the anomalous
muonium state is given by'

K=AcooS„S, +fico~(S„n)(S, n)

gpppSp B—g~pgS~ 'B,
where n is a unit vector along the symmetry axis
(a(111) axis in the diamond lattice). It is con-
venient to introduce the vectors

co, = —g,pgB/A'=2~2. 802421 MHz/GXB

and

co&——g&p&B/%=2@6.013 553 MHz/GX B .

The hyperfine parameters coo and co* have been
determined in Si, Ge, and diamond. For later

(3)

Ivanter and Smilga" for transitions Mu~p+.
Transistions in pSR chemistry have been studied
by Percival and Fischer, ' and an improved and
complete theory of the muon polarization for a
general reaction scheme has been developed in Ref.
10.

In the present investigation, the theory is applied
to the case of anomalous muonium. New features
occur since for Mu* the precession axes of the
various frequencies in general do not coincide with
the external field. In particular it is shown how
the amplitudes and phases depend on the field in
the neighborhood of field values for which the fre-
quencies of the precursor and the final state coin-
cide. The occurrence of the predicted phenomena
is qualitatively evident; the purpose of the present
paper is to provide the quantitative theory of the
pertinent spin dynamics and make possible experi-
mental studies of the temperature dependence of
reaction rates in detail.
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TABLE I. Low-temperature values (Refs. 13 and 15) of hyperfine parameters in units of
2m. &(10 s ' for normal muonium (Mu) and anomalous muonium (Mu*) in vacuo, Si, Ge,
and diamond. The table is from Ref. 5.

Mu

Np

Mu»

Vacuum
Si
Ge
Diamond

4463
2012
2361
3711

92.6
130.7
392.5

—75.8
—103.9
—560.4

reference their values are summarized in Table I.
The following discussion of the spin dynamics of

the system described by Eq. (1) also includes the
cases of normal muonium (Mu: co*=0) and of the
bare muon (p+: coo ——ron=co, =O).

Introducing the Pauli matrices cr and 7 for the
muon and electron spin, respectively, the Hamilton
operator reads

H =—ficopcr 7+ —Aco*(o n)(7'n)4 0 4

dpJ No
enlm fij, m ~k, n (pie Jle )

N l m1k—
&j,n nm&kpp, —

Np, p

m l Jm+~k, n nj nlPe +NeP (12)

—
2 AN& 0 + 2 AN 7 .

The density matrix is given by

p= 4 (1+p~'0 + pe'r+p cT T ),
where

p„=Tr(po ), p, =Tr(pÃ),

pjk= Tr(poj ),

(4)

These 15 equations describe the time evolution in
the undisturbed anomalous muonium state. A dis-
turbance due to spin exchange of the bound elec-
tron with the surroundings can be accounted for by
adding to the right-hand sides of (11) and (12) re-
laxation terms of the form

dpe

dt
—&expe ~

jkp ~ ~ e y p J
dt

are the muon, electron, and mixed polarizations.
The commutation relations

and

[0',0' ]=2l &jll0'' (7)

[0 r, o r"]=2i(5&ke „,r'+5 „efglcT ), (g)

and the equation of motion for the density matrix

Ai = [H,p],.dp
dt

lead to the following set of equations for the polar-
izations:

(10)

d J
ml k

jkl 2 P + P k~m+NePedt

lk N lm k I=alki
2 p + p nknm co~&—at

where v,„ is a phenomenologically introduced rate
of spin exchange. These kinds of equations have
been thoroughly studied by Ivanter and Smilga"
for the case of normal muonium.

The solution of this set of equations may be
written as

p (t)=M ~(t)p~(0),

with a,P=( 1, . . . , 15). We are now interested in
transformations of a state described by the spin
Hamiltonian (1) into a state described by H which
has the same structure as (1) but different parame-
ter values (denoted by-). This transformation is
symbolically denoted by

H~H,
where A is the transformation rate. The time
dependence of the polarizations can then be calcu-
lated from
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(14)

with
t

p (t)=A dt'M ~(t —t')M»(t')e-A'p~(0) . (15)
0

This is valid if during the reaction the electron
spin polarization is conserved. Conservation of po-
larization is generally assumed in current theories
of radical termination reactions and has been
demonstrated in various ESR experiments. The
problem of the conservation of electron polariza-
tion during reactions of muonium has been dis-
cussed extensively by Percival and Fischer. '

It is a straightforward numerical task to solve
the equations of motion and to evaluate (15) for ar-
bitrary relaxation rates v,„and directions of n and
B. If U denotes the matrix which diagonalizes
M(U 'MU =D), the time dependence of the
polarizations is given by

D„t D„t—At

p (t)=U U„p Up„U 'p~(0)A
A+D~ —D„

(16)
Expression (16) allows the extension of the work

of Ivanter and Smilga" to include the Mu* state.
This will be discussed elsewhere. In what follows,
a simplifying assumption is made that the relaxa-
tion effects are negligible (v,„=0}.In this case it
is unnecessary to work in the Liouville space as
has been shown by Fischer et al. ' ' who devel-

oped an elegant and straightforward approach to
calculate p&(t) for a general reaction scheme. In
our notation the muon polarization in the final
state is given by

p„(t)=A f dt'e

&& Tr[e iH(t —t')p(t i }e
—iH(t t')

cr1—

This equation, which has been derived in Ref. 10,
has been applied to the determination of the reac-
tion rates of muonic radicals.

In the case of anomalous muonium, the eigen-
vectors and eigenvalues of H can be evaluated
analytically for n parallel or perpendicular to B.
These two cases are discussed in Sec. III along
with a few examples of transitions between muon
states which are of particular interest for pSR ex-
periments.

III. ANALYTIC SOLUTIONS AND EXAMPLES

A. n parallel to B

co) ——(cop+co +co~ —co&+w)/2,

COg=(COp+CO +CO —
CO&

—W)/2,

CO3 = ( —COp —CO +COt —CO&+ W)/2,

C04 = ( —C00 —CO +COq
—

CO~
—W) /2,

where

w =[cop+(co, +co&} ]'C

(19)

(20)

The dependence of these frequencies on B at low
fields is shown in Fig. 1 for the hyperfine parame-
ter values appropriate to diamond [co;(0') refers to
anomalous muonium and co;(Mu) to normal
muonium]. The eigenvectors associated with the
four oscillations are given in the Appendix. Here
we just mention the well-known' result for the
muon polarization

The direction of the field is taken to be the z
direction and the equations of motion can be
separated. The muon polarization perpendicular to
the field oscillates with four transition frequencies:

p(ti) e
—tHt p(0) iHt' (17)

p&(t)+ipse(t) = —, sin X(e ' +e '
)

where the formal solution of Eq. (9) has been used
to describe the time dependence of the density ma-
trix in the precursor and final states. Introducing
the eigenvalues and eigenvectors of H(H

i
m )

~

m ) ) and similarly of H, one obtains

p„(t)=g(m
~
m)(mip(0)in)(n~ n)(n icr im)

m, n
m, n

—Ar' —"
m

—~n"' —"—'(~~ —~~]t'
0

(1S)

1

X= —, arctan
C00

CO~ +Np
(22)

Using the expressions for the time dependence of
the polarizations given in Appendix A one can cal-
culate the resulting polarization for a transforma-
tion from a precursor state H to a final state H

(21)

which results if the only nonvanishing' initial po-
larization is p&(0)=1.

The transition amplitudes depend on the angle 7
which is defined by
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FIG. 2. Amplitude and phase of the muon's Larmor

precession with normal muonium as precursor state vs

x =cot(2g). The labels on the curves denote the ratio

A/NQ(MU).

with rate A. Neglecting the oscillations of the pre-

cursor state at frequencies co;, one obtains

4

p„"(t)= g A;cos(to;t+P;), (23)

FIG. 1. Frequencies vs transverse field for the hyper-

fine par'ameters determined for diamond. Negative

values correspond to a negative sense of precession

around the field axis. The slope of the Larmor preces-

sion frequency co„ is —0.013 55 MHz/G.

the expressions (19)—(22}, where according to the

Hamiltonian of the final state, coo and co* have to

be replaced by coo and co*. These general formulas

allow different transitions to be discussed on the

same footing.
As an example we discuss the transitions

Mu~p, + and Mu'(0')~p+. For both we have

X=0 and co2 ——co4———co&. The amplitude A and

phase P of the final p+ frequency are determined

from

where'

4

At cosfg i g WfJ cos ajJ
2

i=1
4

A; sing; = ——, g WJ sin(2a, J ) .
j=1

(24)

A cosg= —, cos X(cos a2+cos a4}

+ —, sin X(cos ai+cos a3)

and

A sing = —, cos X[sin(2a2)+ sin(2a4}]

+ —, sin X[sin(2ai )+sin(2a3 }],

(27)

(28)

The angles a,J depend on the ratio of the differ-

ence of the frequencies and the reaction rate A:

tana;J = CO —COl J (25)

(26)

The nonvanishing elements of the matrix 8' are

given by

8 1 1
—$V33 S1~S1~Cos(g —g )

8 22 = %44 =COSX COSX COS(X —X ) s

8 12 —%34 sing cosg sin(X —X )

W2, = W43 —cosX sinX sin(X —X) .

The frequencies co; and the angle P are given by

where

N) +COp
tana; =

A
(29)

For the transition Mu~p+ the amplitude and

phase are plotted in Fig. 2 as a function of
x =cot2X for various values of A/coo. These re-

sults are already contained in the work of Ivanter

and Smilga" and have been used to interpret meas-

urements in Ge by Kudinov et al. ' In pSR chern-

istry, this field dependence of the p+ amplitude
has been used extensively to determine rnuonium

reaction rates. ' ' The monotonic decrease of the

amplitudes with increasing field is related to the

increasing difference of the frequencies of Mu and
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p +

Interesting phenomena are observed by applying
the above equations to transitions Mu*~p+. The
field dependence of A and P for diamond is plotted
in Fig. 3. The strong variation of the phase is due
to the change of the differences of frequencies in

the precursor and final states. The peak in the
amplitude at 120 6 corresponds to the crossing of
the lines rp4(0') and rp„(see Fig. 1).

Equations (23)—(26) can also be used to discuss
transitions from }tt+ into Mu or Mu*(0') or from
Mu into Mu*(0') or vice versa. Since the frequen-
cies for Mu*(0') and Mu are always different, the
latter transitions result in a monotonic dependence
of A and P on the field and the transition rate.

B. n perpendicular to B

If the symmetry axis n is perpendicular to the
field direction, the spin dynamics are characterized
by two angles X and 1(, which are defined by

0,,
+l'-

.1~

.05»
I

I I I

UJ
V) 0

+
Mu —g

0 200 40Q
FIELD G

FIG. 3. Amplitude and phase of the muon's Larmor
precession with anomalous muonium (n

~
~B) as precur-

sor state vs field. The labels on the curves denote the
ratio A/coo(Mu*).

tan(2$) = —CO /2
CO~ —N~

(30)

and

COO+ N /2
tan(2X) =

N~ +CO~
(31)

The four transition frequencies observed in a trans-
verse field experiment are then given by

1

rpi ———, [rpp —rp «/2 csc(2$)

+(pip+co'/2) csc(2X)],

These frequencies are denoted by rp;(90') and are
also plotted in Fig. 1 for the case of diamond. The
labeling has been chosen such that for co*=0, the
cp; for normal muonium [Eq. (19) with rp«=0] are

recovered.
The time development of the spin polarization of

a muon initially polarized in the x direction and
with the field in the z direction is given by

1

roi ———,[cup —pi */2 csc(2$)

(rop+rp'—/2) csc(2X)],

C03 =N i
—COO, CO4 =CO2 —COO .

(32)

p„"(t)= —, sin (X+1(t)(cosrp it + cosrpit)

+ —cos (y+y)(cosrpit +cosrp4t)

and

(33)

pq(t) = —, sin(I+tj'j) sin(X —g)(sincpit+sinrpst)+ —, cos(X+1()cos(X —$)(sinrp2t ~sinrp4t) . (34)

Here and in the following discussion, we have
chosen n =(1,0,0). Other directions are treated in
the Appendix.

Since the curves of the frequencies ro2(90') and
ais(90') as a function of 8 cross those of the triplet
muonium (see Fig. l), it is of interest to investigate
the transformation

Mu~Mu*(90')

and

4

A; cos(('i; = —, g (WJ cosl(leos a,~.

j=i

+ Wi sing cos a,j )

4

A;sing;= ——, g [Wi cosl( sin(2a, j )

j=i

(35)

in more detail.
The amplitudes and phases of the final-state fre-

quencies [see Eq. (23)] are now given by with the abbreviations

+ WJ+ sinl(csin(2a~+J)], (36)
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co;+coj
a,j.=arctan

A
(37)

C. Zero external field

The expressions for the transition Mu~Mu*
can be considerably simplified in zero external

0.3

02-
0.2

O. l I-

I

0.0.
0.3 t

o
Q2j (0

& O. l
-&

Aq
.'Ij
.Ii
I'

I

II

II

II

II

II

II
I I

I

I

Mu —IVlu

I

r

The quantities Wg are given in the Appendix [(A5)
and (A6)]. The t0; are now to be identified with
the frequencies in Eq. (32), whereas the tuj are the
four muonium frequenciesgEq. (19) with toa =0].
In contrast to the case n

I IB, the precession axes of
Mu and Mua(90') point in different directions.
Therefore, the amplitudes and phases of the final
state depend on both the differences and sums of
co) and coj.

In Fig. 4 the amplitudes A2, A3, and A4 are plot-
ted versus 8 for three different values of A using
the hyperfine parameters of diamond. For small
transitions rates, A2 is strongly peaked at 173 G.
At this field to&(Mu} =tot(Mua), and the amplitude
is given by —, %22 cosg. A3 is maximal at 89 G
and A4 at 117 G. These fields correspond to
values where co3(Mu) =co3(Mu~) and co2(Mu)
= —co4(Mu*). The amplitudes A3 and A4 are
weaker than A2, which is due to the fact that the
electron and mixed polarizations reduce the transi-
tion matrix elements O'-+. The phases change sign
as the field crosses the values where the amplitudes
are maximal.

field. The n pointing in an arbitrary direction, the
time dependence of the component of p„perpen-
dicular to n can be obtained from Eqs. (23)—(26):

p„(t)= —,p„(0)[A i cos(toi(t)+Pi)

+A 2 cos( co2t +f2) ] . (38)

For the component parallel to n, Eqs. (33)—(36)
yield

p&ll(t) = t p&ll(0}[1+A 3 cos(c03t+Ps}] .

The zero-field frequencies for anomalous muonium

are denoted by

Co~ =Cop+CO /2 &

CO2 =Co /2,
-p
CO3 =Cop,

(39)

(40)

and the amplitudes and phases can be determined

from

A; cosP; =cos a;;,
A; sin(I), = ——, sin(2a;;),

where the a- are given by

Co )
—Qp

a~~
——arctan

A

(41)

I.O 0.5

0.8 0.4

-p
CO2

a22 ——arctan
A

(42)

CO3 —Qp
a 33

——arctan
A

Here Qp denotes the hyperfine frequency of normal
muonium. As a function of the reaction rate A,
a22 behaves drastically different from a» and a33
since it is independent of Qp. This is shown in

Fig. 5, where the amplitudes and phases are plotted
as a function of A/Qp for the hyperfine parameter
values of diamond. A distinct behavior of the am-
plitude A2 of Mu* as a function of temperature

Q.o
03

5.0
0.2-

LJJ

8 0.6I-

~ 0.4

0.2

0& E
UJ

02 ~

O. I

O.I—

0.00 100
FIELD (G)

FIG. 4. Amplitudes of Mu~(90 ) vs field resulting
from the transition Mu~Mu* for three different values
of A =2m x 10 s ' [0.2 (top), 1.0 (middle), 5.0 (bottom)].

0.00.0 Io'Io-' I0-I

hlno

FIG. 5. Amplitudes and phases for the transition
Mu~Mu~ in zero field vs A/Qp. The parameter values
are those of diamond where cop(co*) is assumed to be
positive (negative). For the reversed sign assignment A 3

would be below A, and Pz would be negative.
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has recently been observed in zero-field experi-
ments in diamond. An inspection of Eqs. (41) and
(42) shows that the phases p~ and p3 are positive,
since

QII
is positive and much larger than

~

ro&
~

and
~

to3
~

. The sign of the phase p2, however,
depends on the sign of co*, and a measurement of
p3 thus determines the signs of coo and co".

IV. CONCLUSIONS

The theory for the spin dynamics of transitions
among muon states including anomalous muonium
has been discussed. Since the formation of Mu* in
crystals introduces a new axis n in addition to the
field B, a variety of interesting experimental ar-
rangements can be realized. Analytical solutions
have been given for special cases which allow a full
discussion of all interesting features. In the gen-
eral case with an arbitrary direction of n, no new

phenomena occur.
Of particular interest are situations where the

frequencies of the precursor and final states are de-

generate. Measurements in the neighborhood of
these points can yield detailed information about
the temperature dependence of the reaction rate.
This could also be of interest for investigations of
formation rates of muonic radicals in crystals.

Relaxation effects have not been taken into ac-
count. They could be included by introducing a
phenornenological relaxation frequency v,„and
solving Eq. (16) numerically.
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APPENDIX

(A1)

They are conveniently expressed as linear cornbina-
tions of the polarizations:

F1 ———cosXG1+sinXG2,

F2 ——sin/61+ cos162,

F3 —cos+63 +slnJG4

F4 ———sin/63+ cosJ64,

(A2)

where the mixing angle 7 has been defined in Eq.
(22) and the 6's are given by

61 Pe +ape +P +~p

G2 ——Pp+ tpp+P + tp

63=P +~p —P —Ip

G4 ——
pp+ lpga

—p —ip

(A3)

With increasing field the angle I tends to zero
(Paschen-Back region) and the even (odd) eigenvec-
tors and frequencies involve the motion of the
muon (electron) spin only.

If n is perpendicular to B, the amplitudes
depend also on the angle between n and the initial
muon polarization. With p&(0) = 1 and n =(cosy,
siny, 0) one gets

In this appendix the detailed expressions for the
eigenvectors and transition matrix elements are col-
lected.

For the case treated in Sec. III A (n parallel to
B) the eigenvectors corresponding to the four fre-
quencies given by Eq. (19) are denoted by FJ'

FJ =lCOJFJ.

+ —,[cos ycos (X+l()+sin ycos (X—l(j)](cosco2t +cosro4t),
I

have been defined in E s. 30 and andwhere X and l( q ( )

(31). Two angles occur since the precession axes
are not along B and change their directions with
increasing field. The nonzero matrix elements for
the transition Mu~Mu*(90 ) are given by

W), —W33 —cos(X —X) sinX sin(X+ g),

p"„(t)= —,[cos ysin (X+l()+sin ysin (X—|)'j)](cosco,t +cosco3t)

(A4)

W ]3
—W3 /

—

sin�(X

—X ) sinX sin (X+p ), W, ~ = W34 ——sin(X —X) cosX sin(X+ p),
8'14 ——+

+
W23 ——

W32 cos(X—X ) cosX sin(X + t( ),
(A5)

W4~ ———cos(X—X) sinX cos(X+ l('),
Wp) ——W43 —sin(X —X) sinX cos(X+ l('),

(A6)

W+34 ——W4z ——sin(X —X) cosX cos(X+ /) . W23 ——W44 ——cos(X —X) cosX cos(X+/) .
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of a paramagnetic state the electron would be coupled

to the exchange field.
It is more meaningful to present the formulas for
A;cosP; and A; sing; than for A; and P;. If the ob-

served frequencies correspond to a muon state which

results from several reaction channels n, the total am-

plitudes and phases can be calculated from

A;(tot)cosP;(tot)=~;(n)cosP;(n) .
[n)
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