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Asymptotic form of wave functions for two continuum electrons in a Coulomb field
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Within the framework of a partial-wave expansion, the Schrodinger equation for the asymptotic form of the wave

function for two electrons in a Coulomb field is reduced to a set of first-order coupled differential equations in one

variable (r& /r +). The solution of these equations is found both for the monopole interaction only, and the

monopole and dipole interactions. The monopole result greatly simplifies an expression derived in an earlier paper.

These results can be applied to the calculation of ionization processes for any atom or ion.

I. INTRODUCTION

The problem of correctly describing a quantum-
mechanical state with two continuum electrons in

a Coulomb field has attracted attention for a long
time. "' Wave functions for such states are needed
for the calculation of electron-impact-ionization
cross sections as well as double-photoionization
cross sections.

For some applications, such as plasma modeling
and diagnostics, total ionization cross sections
are what is important. Current calculations use
various approximate final states based on the
Born approximation and motivated by intuition
2nd physical reasoning. ' Such calculations re-
produce experimental data for isoelectronic se-
quences fairly well with some discrepancies.
Still, since uncorrelated final states are used,
the effect of such correlation on the results is
not known and cannot be assumed to be negligible
without further investigation.

More detailed data on the electron-impact-
ionization process is provided by the work of
Ehrhardt et al. ,

' Beaty et al. ,
' and the group at

Flinders University. ' These groups have meas-
ured differential cross sections which include energy
and angle analysis for both outgoing electrons.
'The most successful theoretical description of the
lower energy data is the application of the Cou-
lomb-Born approximation, ' but significant dis-
crepancies with experiment remain. For higher
energies, useful information can be obtained by
analyzing the data in a distorted-wave impulse
approximation. '

'The focus of this paper is to consider the final
state of electron-impact ionization of a hydrogen-
like ion or of double photoionization of a helium-
like ion. The asymptotic form of the wave func-
tion for such a state is studied. If only the mono-
pole part of the electron-electron interaction is
included, the asymptotic form is found exactly.
This was done in an earlier paper, hereafter
cal.led I. The results in that paper can be sim-

plified significantly, and the simpler forms are
presented here.

If the entire interaction between the electrons
is included, the Schr'odinger equation for the as-
ymptotic form is reduced to a set of coupled,
first-order, differential equations in one vari-
able, (r(/r)). The solution of these equations
for the combined monopole and dipole parts of the
interaction is found and has a simple form. The
results are immediately applicable to an ioniza-
tion of any atom or ion as shown in Sec. III.

II. THE ASYMPTOTIC FORMS

'The wave functions for two electrons in a Cou-
lomb field of charge Z are written as eigenstates
of total orbital angular momentum L and total
spin S. Defining

llew 2

! ~ ! 1(r r )~! ! l!!(

is a form with the proper symmetry. 'The plus
sign defines the singlet function while the minus

sign defines the triplet. In what follows, only
the singlet case is considered. The extension to
triplets is immediate.

The 4 's have no particular symmetry proper-
ties, but it is advantageous to write them as

4! ! g (r r ) 4! ! g (r r )

+ @ t,, &,.s, (r! ra)

where 4' is symmetric under an interchange of

ri and r, and "4 is antisymmetric. Also, let

(3)

~1! lm, L!!I( 1 ~ 2)

g (L,m!l,m, l IM)Y, (Q, )i', (0,), (i)
1 2

then
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+I gt I Py L ff ( I & 2) ~ I I I I 2I L If ( I & 2) The Schr5dinger equation, in a.u. , reduces to

~II~ I2eLII( 2&

for l, 4 l, . For ly l2 and L even

44 LfI( lt 2) ~I~I~LII( lt 2) t

I Llf( 1 2)

while for l, = l„L odd

~ I, I,L/f (AI ~ A2)

(4)

(5a)

(5b)

1 82 82 1 f l(l+1)
2 Bp', Bp,'p, p, 2p,'

2p2 2

but the angular momentum terms, going as 1/p'„
will be ignored.

The ansatz for 4, , 2(p„p2) in I is

Now

~I~ ILIII( lr 2) ~lqltLIf( I& 2) ' (6b)

(7)

S@ (p p ) pf / ills I
2&PIPIT / 22e I22P2

~ ~

P BIO
1

p ~oo
2

+P &8 & 2P ~ 28'~2 X ]y
n

p, )

(12)

with kg~ k2 and the boundary condition

Q(1)= 0.
This form is the most convenient for studying the
asymptotic forms because

d A& fA2M„I„L(II»A2)1"2'9 ;,I;,ILII (Ai A.)=

(8)

dAd, '9, , „A„A,

'The case k, = k, is especially simple and treated
in I. Following the development in I, the differen-
tial equation for Q is

( I+Q(~p ——Q ——Q = 0 (14)kp, kp ~p, k Bp, k Bp

xP„(cos8») "'JJI, I L.„,(A„A,)= 0

for any values of the subscripts. The P„(cos8„)
is a Legendre polynomial and 8» is the angle be-
tween r, and r, . 'The last equation follows be-
cause P„(cos8») is a symmetric function of A,
and A, . Because of Eq. (8), the two terms in
Eq. (7) uncouple in the Schr'odinger equation.

The Hamiltonian is

f, = (1 —f)/ik2,

&2= (1 —4)/ik, .
(15)

Equation (14) can be written in one variable by
defining

This was found by consistently dropping terms of
p(1/p', ). The quantities $2 and CI are prominent
in the expressions found throughout this paper.
They are given by

Z Z f (H T~+ T2 + f14) P~ cosa~2rl r2 ~0 y') ' (9) y = pl/p2- 1
~ (16)

First, the asymptotic form retaining only the
monopole, n= 0, term in Eq. (9) will be found.
For simplicity, let L = 0. Other values of L will
be considered at the end of this development.
In this case only ~C

I I .(r„r2) is present in the
sum in Eq. (7) because Ill I «(A„A, )= 0. Fur-
ther, each '4I I~,(r„r,) is decoupled and can be
considered separately. Repeating some defini-
tions made in I,

a.nd, also

1+Q(y) = &(S) . (17)

1-—3 y+ ————=0, (18)

with the boundary condition S(1)= 1. The solution
to Eq. (18) is

With the variable change made, Eq. (14) becomes

pi Zx

4= 1 —I/Z,
e = 2E/Z2

(10)
(19)

This expression replaces Eq. (25) of I. The two
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are entirely equivalent —in fact, Eq. (19) was
originally arrived at by simplifying Eq. (25) using
continuation formulas for the hypergeometric
functions. Since y~ 1, and f, /i;2=4, /&2&1, the

function s(y) is analytic over the entire range
of its argument. It has a modulus of 1 which was
not obvious in its previous form. The asymptotic
form is then

( g P )ll&2

(p p ) pl/21el2121pl2/22el2222y P /21el2122pl~/22el22211 ~
1 ~ l ~ 0 1& 2 ~ 1 2 2 1 ] p(P2

P +OO
2

(2o)

For L even and l1 l2 the same expression,
Eq. (20), is valid. For L odd and l, = l„ the right-
hand side of Eq. (20) with a minus sign between
thetermsholdsfor"4, , ~(pl p2), while24, , (p„
p, ) is not present in the expression for 4('L, r„
r, ). For unequal l„ l, both 24» ~(p„p2) and

4. ..I (p„p,) are present in general. The treat-
ment for 242 l ~(p„p2) is just the same as above,

le 2e

i.e. , Eq. (20) is valid. For 4» ~(p„p2), Eq.
(20) is changed by the plus sign being replaced by a mi-
nus sign, and the unde rstanding that ~4, , ~ (p„p,)

changes sign as the ~, =r2 line is crossed. As-
ymptotic forms for all L are thus established
for the monopole interaction.

Considering now the entire interaction, the

Hamiltonian can be written

1 1H=T +T1 2
p p

+ [1+yP,(cos8»)+y'p, (cos8„)+~ ]. (21)
(1 —0)

P2

Towritethecoupledequationsfor the 24, , ~(p„p,),
found by equating the coefficient of each P,(cos8»)
to zero in the Schr'odinger equation, it is conven-
ient to define p„,„coefficients by

P„(cos8»)P, (cos8») = p„l„P„(cos8„). (22)
t'22 n-ll

In Eq. (22), b2 = 2. The p„„are, of course, es-
sentially squares of 3 -j coefficients and can be
found in a number of places, e.g. , Edmonds. "

For 'S symmetry,

4('S, r„r,) =—[~4. 0 0(p„p,)P0(cos8») —M324. . 0(p„p2)P, (cos8„)

+ ~ ~ ~ (- 1)'(2l+ I)'/224. . 0(p„p2)P, (cos8»)+ ~ ~ ~ ],
and the coupl. ed equations are

1 f 2 (1 —f)
I &1+ &2 ————'40, 0, 0(P„P2) f yp 110 1,1,0(P1 P2)

P1 P2

P220 2e2y0(P1 & P2) ] 2 OyOe0(P1 & P2

1
~
r, + r, ————M3'4. .~.(p„p,)

1 2

(23)

(24)

(I - &) 2

P ( y[P101 OeOe0(P1& P2 P121~ 2~2, 0(P1 s P2)]

+y'[p.„~&'4„„.(p„p,)+p„,~I'4„...(p„p,)]+ ]= 2~3'4„„.(p„p,) .

An asymptotic solution can be found by building
upon the monopole solution. The monopole solu-
tions, Eq. (20), consist of two terms. The first
term will. be called the "direct" term, and the
second, the "symmetry" term as it owes its ex-
istence ultimately to symmetry and continuity
requirements. When the entire interaction is
present, each term must be treated separately.

'The ansatz for the direct term is

$4d (p p ) p'!/21ellk pl 2/IIOIAx ll efl2( 22)

(25)
Ir (p p ) p'l/21e12121p 2+a )el f(2y22)2

1
1 ~ 1 ~ 0 1& 2 ~3 1 2 1
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The —I/v 3 is added to cancel the like factors
in Eq. (24). The changes from the monopole case
consist of an added phase factor p2' and a set of
functions f,(y). The necessity of adding the phase
factor has to do with analyticity requirements
and will become clear as the development pro-
ceeds.

In the asymptotic region 1/p2„1/p,'and higher
inverse powers are neglected. With the forms in
Eqs. (25), Eqs. (24) become

presumably all distinct, giving rise to l wave
functions. This lack of uniqueness for an asymp-
totic form is familiar from close-coupling calcu-
lations where N linearly independent solutions
exist for an N-channel scattering problem.

The boundary condition at y = 1 comes into con-
sideration when the symmetry terms are intro-
duced. The form for the symmetry term is taken
to be

Sc,sm (p p ) p
(1(/22+0) e(22Ppl/ (21

fp (yplipfi 3 p220f2(
1 1 df i(2

2 1 Y 1

1 1 d~ i& (I
X eik1P2 go(y)

y (p211fl p231f3) )
(25)

S@37m (p p ) 3(p/22+0) ( 2p2P(i/ 21
1

1,1,0 1/ 2 ~3 Pl 2

(29}

It is emphasized that this set of equations con-
tains only one variable, with a finite range. The
only acceptable solutions to these equations will
be analytic in the range 0 &y & 1. The equations
contain a singular point at )/ = t, /$2 =k,/k, (1. To
investigate the solution in this region, let z =(1
—t~/f, ) and expand all f,. around z =0, i.e. ,

X fp'~k1 2 y gl(y)

fo(z) =doo+dolz+ ' ' ',
f,(z) =d, +d„z+ (27}

Such an expansion assumes an analytic form at z
= 0 and will be realizable for particular values of

The equations for the d,, are

i&
00 ~110 10

g
~220 20

b1 2 2

i&
di o

— (pl oidp p +

pl

2

1�d2�p�)

2

2

(p211 dip +p231d30) + ' = 0 .

(28}

By putting the determinant of the coefficients of
the d,, equal to 0, a secular equation for u is
found. The values of z satisfying this equation
allow the determination of the d«and thus
sC, , p(p„p, ) which are analytic at y =k, /k, . For
a particular u, there is just one arbitrary con-
stant in the solution. By giving it a value, the

f,(1), which enter the boundary condition, are all
fixed.

In practice, the expression for the wave func-
tion Eq. (23) will have to be truncated at some I,
and so the secular equation for n will have l roots,

f (y)
—C c-(pv23/pi

f,(y) =C e-'~23«1
(30)

When these are inserted in Eqs. (24), the result
is a set of linear equations for the C, , namely,

with f,'=f, +i. This form bears a strong resem-
blance to the symmetry term form for the mono-
pole case. It is established in the Appendix.
When Eqs. (29) are used in Eqs. (24) the resulting
coupled equations for the g,(y) are similar in form
to those for the f,(y) but the interchange of t, and

t2 pushes the singular point toy =$2/f, &1, outside
the range, and so the equations have no singular
points. The consequence of this is that there are
N arbitrary constants in the solution for Ng, (y)
and so the g,.(1) can be chosen to match the f,.(1),
thus meeting the boundary condition.

As a specific example of a solution to Eqs. (24),
the monopole and dipole terms in the interaction
are retained in the Hamiltonian. This is accom-
plished by putting p„,„=0for n ~ 2. The f,.(y) are
now given by
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i » &Co-P110C1 —0,
b1

Z 2 ~C] —P101C0 —P121C2 —0 ~ (31}

These equations have a nontrivial solution for o.
determined by the vanishing of the coefficient ma-
trix. If C~ is the last coefficient retained, this is
an Nx N tridiagonal matrix and convenient meth-
ods exist to find its eigenvalues. " For N=2 or 3,

k

2 2
n=& (32)

+ (~}-C I& ia&vltz-

with the phase factor also changed slightly to

(33)

Once C, is chosen, C, and C, follow immediately
and the direct-term solution is complete.

The details of the symmetry term treatment are
given in the Appendix. As shown there, it is con-
venient to introduce a quantity P = f',/f,'u. The

g, (y) defined by Eqs. (29) are then given by

I

condition is met by imposing

C e '~'2"1 =C'e '~1"2
0 0 (36)

and the same condition for other C, and C'. follows
automatically (see the Appendix) completing the
solution.

For L IO, the only significant change is in the
definition of the p„,„coefficients. The relevant
coefficient now is

where f,' is as given earlier and

(34)

dQ, dQ, "y*, , ~~(Q„Q,)P„(cos8»)I 2
S t A ~

2I t r 2 ~ tM I t 2 ~ I2

&&
~'"g,, , (Q„Q,) = ' p(l„l„l,', l2, L, n) . (3&)

&2= &2++. (35)

The C,'. obey equations identical to Eqs. (31) with
the substitution of t;,P/f', for r, o)/f,'The bo.undary

The evaluation of the p's is straightforward and
can be found in Edmonds. " The symmetric and
asymmetric cases produce different p's. The an-
satz for a particular '"4, , (p„p,) is

(
s @ (p p ) pi/A&e k&P&ip ilikz+ 0!&)e i+Pgf (y ) + p (ili++tI&)e EAgPgpilp e iA~P2 -fy g ( )

S A
l1'i l2e L 1 & 2 ~ 1 2 l1 p l2f L 2 l1, l2gL ~

P1 ~oo 1 —~
P2

(38)

When this is used in the Schrodinger equation,
the result is a set of coupled equations for the

f, , (y} similar to Eq. (26} except the p„,„are
replaced by the more general p's of Eq. (37).
Thus the procedures followed in the 'S case are
successful here also, and the asymptotic forms
for different L have the same appearance.

For the triplet case, Eq. (7) is replaced by an
expression which is antisymmetric in the spatial

variables. Otherwise the entire development is
unchanged.

III. EXTENSION TO N ELECTRON ATOMS AND IONS

The asymptotic wave functions found here can be
used for the study of electron-impact ionization or
double photoionization of any atom. The extension
from two electron atoms is immediate. Consider
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the final state of an ionized atom. If the two free
electrons are a long way from the residual ion,
the wave function is written as a product of the
ion wave function, I-I and Sz good quantum num-
bers, and the two-electron continuum wave func-
tion, L, and S, good quantum numbers. The two
sets of angular momenta are coupled to form a
total I- and S. One term in the wave function is
thus written

(29) are put in Eqs. (24), the result is

I 1 1 dGp f Gp+~

(yP 110G +1y P220 G2+ ' ) = 0
~

t' 1 1 dG1 ~l G
(A2)

(29)

where +z is the ion wave function, properly sym-
metrized, and y, is the function given by Eq. (2)
with the small alteration that x,. now represents
the spin variable as well as the space variable and
so +, is the function in Eq. (2) multiplied by a
suitable spin function. This expression is, of
course, appropriate for x„„r„becoming large.
To form an antisymmetric wave function with
respect to all coordinates, it is necessary to add
to Eq. (39), products with permuted electron in-
dices such that every possible electron pair is
represented in 4,. The signs in this linear com-
bination can be easily chosen using Slater de-
terminants as a guide. This symmetrized wave
function, then, has a proper asymptotic form
for any pair of electrons in the continuum and
provides a starting point for calculations.

IV. CONCLUSION

Within the framework of partial waves, asymp-
totic forms for two continuum electrons in a
Coulomb field have been investigated. The forms
for a monopole interaction and for a monopole
plus dipole interaction are found explicitly while
a set of first order coupled differential equations
in one variable is derived for the general case.
These forms are valid for r, -, r2- ~, but

r, /r2 is not restricted.
These wave functions can be applied to the

calculation of ionization processes for any atom
or ion. To perform the calculations, suitable
ways of extending these functions to small values
of r, and r2 must be developed.

APPENDIX: TREATMENT OF THE SYMMETRY TERM

Let

—G, —[y(p,o, Go+P121G2)

+y '(P G +P-1G3) ' ' ' ]= 0.

The factor S (y) is common to all G, . When the
derivative of S (y) is evaluated and S (y) is fac-
tored out, the resulting equations for the g (y)
are

(
1 1 dgp

y (yPllogl y P220g2dy

1 1—
&

y
—„'—[y(P...g. +P...g.)

1 2

(P21181 P23183) ]

(AS)

These equations resemble strongly Eqs. (26) for
the f, . The differences are f, and t'2 are inter-
changed and u is not present. There are no
singular points.

For the specific solution when the monopole and

dipole terms only are kept, it is convenient to use
still another variation of S(y) given by

&()
L'

S (y)=y (A4)

The only difference between 8 and S~ is the ap-
pearance of f 2 in the exponent. Its definition is

(A5)

Using S~ in place of 8 the g, equations become

(
gp ilggp+ -XP

dy g
11P 1

(A6)
1 1 dg, iPg1+ y(P101ZO P12182)

, (--,"I""'
S (y)=y"

)
and G,(y) =S,(y)g. (y). When the forms in Eq.

(Al)

The solutions are



P. L. ALTICK

g ( y) —Cre iscg3IR

with the C,' found from

(A7) Choose C, and C,' such that Eq. (A9) is satisfied,
then it will be satisfied for any i provided

2 ~ 0 Pll0 1

2 ~ Z PROX O &&2'

(A8)

(A10)

With the value for P, Eqs. (A8) become identical
to Eqs. (31) and so

The boundary condition is
j C2A] —Cfe yc] 42j j (A9)

~C ~C'

Co Co

holds for all i.
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