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Two muonium states have been found in diamond. "Normal" muonium shows an iso-

tropic hyperfine interaction with a coupling constant 2/h =3711+21 MHz.
"Anomalous" muonium is described by a (111)axially symmetric spin Hamiltonian with

coupling constants extrapolated to 0 K
~
A

~~ ~

/h =167.98+0.06 MHz and

~

Aq
~

/h =392.59+0.06 MHz. A
~~

and Aq are of opposite sign, and they exhibit a tem-

perature dependence describable by a Debye model. The amplitudes of the three

anomalous muonium hyperfine transitions in zero applied field increase with increasing

temperature and show relative variations which give information about muonium forma-

tion and indicate that anomalous muonium is the most stable state for muons in dia-

mond. These diamond results are compared with those from the isostructural materials

silicon and germanium.

I. INTRODUCTION

A positive muon stopped in an insulator or sem-

iconductor may bind an electron to form muonium
(p+e =Mu). Since the muon mass is much
larger than the electron mass, muonium can be
considered a light isotope of hydrogen, and Mu
and H have similar properties in vacuum isee
Table I}. It is expected that these two atoms when

implanted in a solid also have similar electronic
structures.

Two different muonium states named normal
muonium Mu and anomalous muonium Mu~ have
been detected in Si (Refs. 1 and 2) as well as in

Ge. In an extension of this research, we have in-

vestigated diamond and have again found the
corresponding states. Our measurements were per-
formed on a powder sample and on a single crystal
as a function of temperature and applied magnetic
field.

The formation of a paramagnetic muon state can
be observed via the characteristic precession pat-
tern of the muon spin polarization under the influ-

ence of the bound electron and the applied field.
In a muon-spin-rotation (pSR) experiment, polar-
ized positive muons are stopped in the material to
be investigated, and the positrons from the muon

decay (~&——2.2 ps) are recorded as a function of
the time after a muon stop. Since positron emis-
sion is most probable in the direction of the muon

TABLE I ~ Comparison of hydrogen and muonium.

Mu

Mass (m, )

Reduced electron mass (m, )
Ground-state radius a ik)
Ground-state energy (eV)
Nuclear gyromagnetic ratio y (s 'T ')
Hyperfine frequency vp (GHz)

1837.15
0.999456
0.529 465
—13.5984
2.675 20)& 10
1.420 41

207.769
0.995 187
0.531 736
—13.5403
8.51607X10'
4.463 30
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spin, the counting rate is modulated with the muon
precession frequencies. This type of measurement

requires that not more than one muon be present
in the sample at any one time.

The Hamiltonian which determines the time evo-
lution of the muon spin in normal muonium has
the form of that for vacuum muonium:

HM„——A I.S g,p—AS B g„I—J, g I.B, (1

where I and S are the spin operators of the muon
and the electron, respectively. The vacuum values

of the g factors and magnetic moments are given
in Sec. II. For the 1s state, the hyperfine constant
A is proportional to the electron density at the
muon site

A =»o= , 1 e„a—l—~sus IP(0) I'. (2)

The values of A for Si and Ge are considerably re-
duced compared to the vacuum values

A (Si)/A (vac) =0.44

in Sec. IV B show that HM„. also applies for dia-

mond, with the same symmetry axis.
The temperature dependence of Az and A

~~
in Si

was first reported by Blazey et al. , and our meas-

urements on diamond described in Sec. IV C give a
similar result. In these measurements a large and

nonmonotonic variation of the precession ampli-

tudes was observed at high temperature. A model

is presented in Sec. IV E which attributes this vari-

ation to thermally activated transitions among the
various muon states.

A "magic"-field method is described in Sec. II B
which allows powder measurements on Mu* in an

external field. This method makes possible the
study of the Mu* hyperfine parameters without an

expensive single crystal.

II. ENERGY LEVELS OF MUONIUM

A. Normal muonium (Mu)

and

A (Ge)/A (vac) =0.53 .
The eigenvalues of the spin Hamiltonian HM„

[Eq. (1)] for normal muonium are

The diamond result is given in Sec. IV A. Mu can
probably be considered a "deep" impurity in Si and

Ge, the theory of which is difficult and incom-
plete. Various models for Mu in Si and Ge which
treat the reduced A values have been reported, and
in Sec. V these models are reexamined in light of
the diamond data.

Anomalous muonium in Si and Ge can be
described by a Hamiltonian whose hyperfine in-

teraction has axial symmetry about one of the four
equivalent (111)directions z:

HM„e ——Aq(I„S„+ITS@)+A ~~ITS, —g,psS B

—g„p~~ I -B . (3)

Ei 3
——A/4+hv B,

E~ 4= —A/4+[A /4+(hv+8) ]'i

where

v+=( g,ps+g~—p a)/(2h) .

For vacuum muonium the constants are

g, =g, (1—
3 a )= —2(1.0011419),

gp ——gp (1——,a ) =+2(1.001 1481),

p~=efi/(2m, )=9.27408X10 JT

p ~& ——eh'/(2m&) =4.485 24X 10 JT

(4)

(5)

The Mu* hyperfine parameters are much smaller
than the vacuum Mu value

where g, and g& are the free-particle g factors, g,
and g„are the bound g factors, and a is the fine-

structure constant. The numerical values for v+ are
A (Si)/A (vac) =0.020,

A q(Ge)/A (vac) =0.029,

Aii/A, =0.20.

v+= 07 87 G z/T

v =13.94434 GHz/T .
(6)

The energy-level diagram for normal muoniuxn is
shown in Fig. 1. In an external magnetic field
transverse to the initial polarization P„(0), the in-

dicated Am =+1 transitions can be observed.
The time-dependent polarization of the muon is

then

These small values and the large anisotropy indi-
cate that Mu* is very different from vacuum
muonium, and no satisfactory model of its elec-
tronic structure has been reported so far. The
measurements on sin le c stal diamond resented

(7)

g P

P„(t)= —,[(1+k)cos(to&zt)+(1 k) cos(co&3t)+(1 k)—cos(co,4t)+(1+k—) cos(co34t)]P~(0)
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with

and

k =v+BI[vo/4+(v+B) ]'~

co;J =2nv;J .=(E; EJ—) lfi .

Owing to the limited time resolution of the particle detectors in this experiment, only the transition frequen-

cies v&z and v&3 in the low-field Zeeman region are observed. A direct observation of the hyperfine frequen-

cy vo in zero external field has recently been performed in Si, Ge, and Sioux with a pSR apparatus of high

time resolution.

B. Anomalous muonium (Mu~)

The eigenvalues of the spin Harniltonian HM„. for anoinalous muonium [Eq. (3}]depend on the angle 8

between the symmetry axis and B. Exact analytical solutions can be found for 8=0 and m/2 by diagonaliz-

ing HM„.

Ei 3(8=0)=Aii/4+hv B,
E2 4(8=0)=—A

~~
/4+ [A i /4+(hv+B) ]'

Ei 3(8=ir/2)=Ail4+[(Aii —Ai) /16+(hv B) ]'

Ei 4(8=rr/2) = —Ai/4+[(A~~+Ai) /16+(hv+B) ]'

ZEEMAN=
I

PA SCHEN-BACK
I

mS

The indices are chosen in such a way that for
A

~~

=A j ——A, Eqs. (8) transform into Eqs. (4}. As

an illustration, Fig. 2 gives the energy-level di-

agram for Mu~ in diamond using the hyperfine

constants determined in the experimental part of
this article. At high fields only the transitions v~q

f

and v34 can be detected, since the amplitudes for
the others are practically zero.

Approximate expressions for the transition fre-

quencies v» and v34 at fields B» (Aj,
A

)Ip,s can

be obtained for arbitrary angles t9:

t

viz, 34=[ [vq+, (Ai sin 8+A~~ cos 8)/h]

+[4 (All Aj )sin(28)/h] j'~,
where

LLI

F=l

0

mF

~N
34 3

v&
——vL, B =0.135 537B GHz/T

.
Fz

Fi

(10)

F=O ~~,
E~

20
I I

1 2

X= B/B B =2xAg1- —)—me% me
~ ~ice. ,

FIG. 1. Breit-Rabi diagram for normal muonium.

The magnetic field X is measured in units of Bp. In va-

cuum, Bp(vac) =0.158 68 T. The transitions indicated

correspond to the observable @SR frequencies in a trans-

verse field.

200
Nx

0X

4J
-200

0 0.0[

Es
Ea

--. Es
Ee

OQ2 OQ3 0.04
ep)

FIG. 2. Energy-level diagram for anomalous muoni-

um in diamond for 8=0' and 90'.
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is the Larmor frequency of the free muon. It is in-

teresting to note that for

B =BM =(Ai +Aii) /(4hvt),

Eq. (9) implies that
1

v&2
——vM 4 (A& —A

~~
)/h

is independent of the crystal orientation 0. As will
I

be shown in Sec. IV D this allows the observation

of a Mu* signal at the magic field BM in a powder

sample.
More accurate expressions for BM and vM can be

obtained from Eq. (8) by setting

v]2(0=0) =v~2(0=@/2) .

The result, to order (m, /m„), is

2
m, A~~(2Aj+A~~) m,

Ag+A
()
—2Ag +

mp J +
/) mp

2A J (A J A
~ ~

) m, 4A i 2A—iA
~ ~

+3A iA
~ ~

+A
I~

m
vM —— 3j —A ((+ +

4h (Ai+Aii) m& (Ai+A
~~

) mp

1
BM

4h vL

mp mp

If vM and BM are known, the hyperfine coupling constants may be determined by

(B~vL, +vl ) m, BlvL, 3vM—B~vL —2v~ m,2 3 3 2 3

=2(BMvL —v~)+2 +2
MVL BMvL

+ ~ ~ ~

+ ~ ~ ~

(12)

mp

2 2 2 3 2 2 2 3 3
Aq me 6vM + vM BM vL + 2vM BM vL —BM vL me

=2(BMVt +vM)+2 +
h BMvL my BMvL

+ ~ ~ ~

vi ——(Ai+Aii)/2h,

vp
——(Ai —A

~~
)/2h,

v3 ——A g/h,

(13)

and satisfy the relation v&+v2 ——v3.
The case of zero field was also treated in Ref. 7,

and the polarization P„(t) averaged over all crystal
orientations (i.e., for a powder sample) is given by

P (t)= —,[1+2cos(ro,t)+2cos(to2t)

+cos(to3t) ]P„(0) . (14)

III. EXPERIMENTAL DETAILS

The measurements reported were performed on a
powder sample and on a single crystal. The
powder sample consisted of 10 g of type-IIa dia-
mond with a grain size of 1 —6 pm. Type-IIa dia-

From the high-field approximation for P&(t), it
11

can be shown that at BM a fraction —„ofthe p+
polarization in Mu oscillates with vM, —„are time

15
independent, and

3Q
remain unobservable.

In zero field, three Mu* frequencies can be ob-
served. These are given by [Eq. (8)]

I

mond is characterized as the purest diamond found
in nature.

The single crystal sample was the "Maltese
cross" diamond, a 46-ct (9.2-g) diamond of type Ia.
Ia diamonds contain on the order of 0.1 at. %%uoni-
trogen and are therefore slightly yellow. The cry-
stal is a cube with 14-mm edges parallel to the
(100) directions. This large diamond contains
what is believed to be an aggregation of inclusions
which appear optically as a beautiful three-
dimensional Maltese cross.

The experiments were performed at the Swiss In-
stitute for Nuclear Research (SIN), where intense
beams of polarized positive muons from the super-
conducting muon channels are available. A pSR
setup with either two or four positron counters was
used. The time resolution of 1.0—1.2-ns full width
at half maximum (FWHM) allowed the observa-
tion of frequencies up to approximately 500 MHz.
Magnetic fields up to 0.5 T could be generated by
Helmholtz coils, and the earth field could be com-
pensated by three pairs of "zero-field" coils. For
the zero-field measurements of anomalous muoni-
um in the powder sample, the residual field at the
sample was smaller than 2 pT. A more detailed
description of our apparatus is found in Ref. 4.

A He-bath cryostat was used for the single-
crystal measurements at 4.2 K. The temperature
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N(t) =N, e "[1+X(t)]+b, (15a)

X(t)= g a/R/(t) cos(2nvjt+P/) . (15b)

of the powder sample was controlled by a He-flow
cryostat below room temperature (RT), and above
RT a high-vacuum hot finger oven was used. The
ratio of muon stops in the sample to muon stops in
the cryostat or oven material was measured by re-

moving the target from the beam and was in the
range 3.5:1 to 4.5:1. The signal amplitudes quoted
in this article have been corrected by this ratio.

The general form of a pSR spectrum consists of
an exponential decay which is modulated by a sum

of damped sinusoidal oscillations corresponding to
the time-dependent muon polarization

2.0

DIAMOND

B= 20 mT
T=GK

UJ

o I 0- BEAM

LLJ

~ 0.5-
O 423

0 IOO 200 500
FREQUENCY (MHz)

FIG. 3. rMSR spectrum of normal muonium in dia-

mond powder at 6 K in a field of 20 mT. The observed

frequencies viz and v» are indicated in Fig. 1.

No is a normalization constant and b is a back-
ground assumed to be constant. The a&, vj, and PJ.

are the amplitudes, precession frequencies, and ini-

tial phase angles of the n different contributions to
the muon polarization. In the data analysis, the
damping functions were assumed to have the form

RJ ( t) =exp( A~ t) . —

To determine the number n of significant signals
and the approximate frequencies, the modulation
spectra X(t) were Fourier transformed. Then,
least-square fits of the data to Eq. (15) were per-
formed. A single damping rate A, was assumed for
all the signals corresponding to a particular muoni-

um state. Some of the single-crystal spectra
showed a large number of weak signals. In these
cases least-square fits of the complex Fourier spec-
tra to the Fourier transform of Eq. (15b) were per-
formed. A comparison showed that the two
methods yielded identical results.

In each run, (2—3) )& 10 good events were accu-
mulated, corresponding to a counting time of 2 to
3 h and resulting in a typical statistical accuracy of
the frequencies of the observed signals in the range
0.1 to 0.01 MHz.

IV. EXPERIMENTAL RESULTS

A. Normal muonium

Mu was observed in the powder sample in the
low-field Zeeman region. Measurements were per-
formed in fields from 1 to 20 mT, and signals
could be observed at temperatures from 4.2 to 150
K (Fig. 3). The two lines seen in the frequency
spectrum are the transitions viq and v&3 indicated

in the Breit-Rabi diagram (Fig. 1). The third line

at 50.63 MHz is a background signal at the cyclo-
tron frequency of the SIN accelerator. From the
formulas in Eq. (4), an expression for the hyperfine
frequency vo can be derived which contains only
experimentally measured quantities:

vo ——A /h = , [(v12+v23+2v—&) /bv bv], —

where

(16)

me
g„[(v12+v23)/v„+1] .

mp

The results from the measurements at 6 K are

(17)

A/h =3711+21 MHz,

g, = —2.0034+0.0017 .
(18)

The hyperfine coupling constant corresponds to
83.2+0.5% of the vacuum value (see Table I) or a
6.3% increase over the vacuum radius aM„.

The amplitude and relaxation rate of the Mu
signal was studied as a function of temperature at
a field of 0.975+0.015 mT. At this field the fre-
quencies v&z and vz3 are approximately equal

(viq-—v/3=V B =13.6 MHz)

and were not resolved. The result of the fits, as-

suming R (t) =exp( —A,t), are listed in Table II.

kv= Vp3 —V]p,

and v& is the free-muon-precession frequency [Eq.
(10)]. Under the assumption that the muonic g
factor g„ is not appreciably influenced by the solid

host, we obtain in addition the electronic g factor

ges
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TABLE II. Experimentally determined asymmetry
and relaxation rates for normal muonium in powdered
diamond. The measurements were performed at 0.975
mT.

a (%) A, (ps ')

8.1

22.7
42
66.5
87

105
123
150

1.75+0.20
1.30+0.18
1.52+0.17
1.84+0.20
1.35+0.15
1.29+0.15
1.20+0.25
2.0 +0.5

1.95+0.27
1.78+0.30
1.77+0.26
2.85+0.42
2.38+0.37
2.33+0.37
3.02+0.78
4.6 +1.6

B. Hyperfine parameters of Mu~

In order to unambiguously determine the sym-

metry and the parameters of the hyperfine interac-
tion of Mu*, measurements on a single crystal are
required. The field dependence of the pSR fre-
quencies was measured at 4.2 K with the (110)
axis parallel to the applied field. In this orienta-
tion two of the (111)axes are at 8=90' and two
(111) axes at 8=35.26' with respect to the exter-
nal field. The observed frequencies for the (110)
orientation are shown in Fig. 4. Additional meas-
urements were made with the field parallel to the

Within errors, the amplitude is temperature in-

dependent, whereas A, increases with increasing
temperature such that above 150 K no Mu signal
could be detected. For measurements of -2)& 10
decay positrons, the upper limit for a detectable
Mu signal is A, =5—10 ps '. The asymmetries
were normalized by a measurement of the effective
asymmetry for a Cu sample (a,~~

-—0.20) to give
the formation probability of Mu in diamond. The
result is given in Table III. It is worthwhile to
note that the Mu signals in Ge (Si) vanish at about
100 K (300 K) also due to strong relaxation ef-
fects.

(100) direction (Fig. 5). For this orientation all

four body diagonals make an angle t9=54.74 with

the field. At all nonzero applied fields, the only
Mu* signals observed were vi2 and v34 (see Fig. 2).
These two frequencies critically depend on the an-

gle 0, and a misalignment of the crystal by -=0.2
for 8=35.26' (54.74') already makes the observa-

tion of the lines difficult. A misalignment is the
reason for the limited number of data points for
0=35.26'. The effect of a deviation 50 from
0=90' is much smaller, because at that angle the
frequencies only depend on 68 .

The experimental points are well represented by
the spin Hamiltonian given by Eq. (3). The @SR
frequencies vi2(8) and v34(8) from the 8=90' data
(Fig. 4) were fitted to Eq. (8) resulting in 72=33
for 19 degrees of freedom. The best estimates for
the hyperfine parameters are

I Ai
I

/h =392.52+0.07 MHz,

I

A
~ ~

I
/h = 167.72+0.23 MHz,

/~tl (0
g, —1.9932+0.0043,

gp
——+2.0016+0.0017 .

(19)

As already noted, a crystal misalignment has more
serious consequences for the 8=35' frequencies
than for those with 0=90'. The observed position
and splitting of the 35' lines was used to estimate
the true orientation of the crystal. The deviation
from 0=90' was 60=1.0'+0.5 . The effect of this
deviation was investigated by fitting simulated data
to Eq. (8) and was found to be 150 (440) ppm for
Aq, A~~ (g„g&). The values above include a correc-

tion to account for this deviation, and the quoted
errors are the sums of the statistical standard devi-

ations and the corrections. The lines drawn

through the data points for L9=35.26' (Fig. 4) and
0=54.74 (Fig. 5) were calculated from the values

given in Eq. (19). Figure 6 shows the measured 8
dependence of the Mu* frequencies v&2 and v34 ob-

tained at a field of 0.2 T and clearly indicates that

TABLE III. Formation probabilities for muon states in diamond. The values are correct-
ed for background from cryostat, etc., and normalized with the precession amplitude in a Cu
sample.

Mu (%) Mu~ (%) p+ (%%uo) Missing (%)

Powder
Powder, magic field
Single crystal

4.2 —90
296

4.2

18.5+0.9

20 +4

9.9+0.7
14.5+1.3
11.9+0.9

(10
&5

&10

&60
&80
&60
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240 I I I I I I I I I

DIAMOND

BII &110&
7= 42 K

50-

r200

u 150

e 35.26'

U

Vg4

V&4

Vg
Vip

200
N
X
~ 160

C3

u 120

UJ

80

I I I I I I I I I

0 30 60 90
e (deg)

0.0 Q.1 0.2 0.3 0.4 Q.5
B(T)

FIG. 4. Mu» frequencies as a function of the applied
field for single-crystal diamond with B~

~
(110). At this

orientation, two (111)axes are at 8=90' and two

(111)at 8=35.26' with respect to B. Alignment errors

cause a splitting of the 0=35.26' signals, making their

detection difficult. Curves are calculated with the

parameters from Eq. (19).

Mu» has (111)syinmetry.
It is noteworthy that A

~~
and Az have opposite

signs, in contrast to the case of Si and Ge, imply-

ing an even stronger anisotropy. We cannot
discount the possibility that g, is anisotropic.
Since the analysis above was performed for 0=90',
"g,"would then be "gz". For an estimate of an

upper limit of an anisotropy in g„we refer to Sec.
IV D.

The measurements on the single crystal at low

fields also exhibit normal muonium signals. The

5001

25

FIG. 6. Mu» precession frequencies as a function of
the angle 0, the angle between the applied field, and the

[111]symmetry axis. Curves are calculated with the

parameters from Eq. (19).

formation probabilities for the muon states in this
sample are included in Table III.

C. Temperature dependence
of the Mu» hyperfine interaction

The temperature dependence of the anomalous

muonium hyperfine constants in Si has been meas-

ured by Blazey et al. With an increase in tem-

perature from 4 to 150 K, a decrease of both A
~~

and Az by about 1% was observed. This tempera-

ture dependence was attributed to the interaction
of the paramagnetic Mu» center with host pho-
nons. For an interaction with the long-wavelength

part of a Debye phonon spectrum, the hyperfine
interaction should vary as

T eD/T ~3
A (T)=A (0) 1 —C J dx

eg) o e"—1

(20)

~ 200

& 150

o= 100

50-
B II &IOO&
T $42 K
e = 5474'

Y34 where eD is the Debye temperature and C is a
coupling constant.

A second model of phonon interaction considers

only coupling to a single-phonon mode with fre-
quency v and leads to the temperature dependence

II.O OI 02 03 04 05
e(T)

FIG. 5. Mu» frequencies as a function of the applied
field for single-crystal diamond with BI ~(100). At this
orientation the four (111)axes are at 8=54.74'. In the
experiment, a slight splitting of the lines due to align-
ment errors of &2' was observed. Centers of the split
lines are plotted. Curves are calculated with the param-
eters from Eq. (19).

A (T)=A (0) j 1 C'[coth(hv/kT—) —1] ) . (21)

Zero-field frequencies of anomalous muonium in

diamond were measured with the powder sample in
the temperature range 4.2 to 925 K, and the ob-

served frequencies (Fig. 7) always satisfied the rela-

tion v&+v2 ——v3. The hyperfine constants resulting
from Eq. (13) are plotted in Fig. 8.

A fit of the data to the Debye model Eq. (20)
yields the following parameters:
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IO
6

tK

O
CL

4
IJJ

DIAMOND

B= OT
T=&5K

i
At(0)

I
/h =392.528+0.070 MHZ,

A
II

}
I

/'h =167.936+0.075 MHz,

Cg ——0.0407+0.0021,

C
I I

——0.0781+0.0041

e=hv/k =653+19 K .

(23)

[SIULJJllkail!UI&li~ &I~klili ~~ iuLJL&ik.

0 IOO 260 300 400 500
FREQUENCY (MH2)

FIG. 7. Zero-field frequency spectrum of Mu* meas-

ured in diamond at 325 K. The lines vl, v2, and v3 are

characteristic for Mu~.

I
At(0)

~

/h =392.586+0.055 MHz,

I
A II(0)/h =167.983+0.057 MHz,

Ci ——0.379+0.019,

CI
I

——0.727+0.036,

eD ——1902+51 K .

(22)

The Debye temperature found compares well with

the averaged calorimetric Debye temperature of di-

amond' (eD ——1860 K) in this temperature range.

The curves shown in Fig. 8 are calculated with

Eq. (20) using the parameters given above. Within

errors, A II(0) and Aq(0) are equal to the values ob-

tained from the single-crystal measurements [Eq.
(19)].

A fit to the second model [Eq. (21)] results in

the parameters

The fit to this model results in a considerably infe-

rior 7, and the fitted frequency

v=ke/h =1.36' 10' Hz

cannot be associated with any special feature in the

phonon distribution. ' Since the data are better

described by Eq. (20) and since the obtained Debye

temperature has the correct value, the Debye model

seems preferable. Blazey et al. argued that the

monotonic decrease of their A values and the non-

monotonic variation of the thermal expansion of Si

excludes the possibility that lattice dilation is the

major cause of the temperature dependence of A&

and A II. Since the thermal expansion of diamond"

is even smaller (but monotonic} than that of Si, we

may conclude by analogy that also for diamond

lattice dilation is not the major cause of the effect.
It is noteworthy that the coupling constants ob-

tained for Si (CII
——0.5, Cz ——1.1 for the Debye

model in our notation} are similar in tnagnitude to

those for diamond. Because of the limited tem-

perature range where signals of Mu~ in Si could be

observed, the data of Blazey et al. did not allow

a discrimination between the two models, nor was

it possible to extract a value of eD from the data.

I I-172-
~ ~ 0

-170-

1 I I I I

I AMOND 392

-168
388

Mz
X386~

-162-

384

382

-160-
380

0 200 400 600 800 1000
TEMPERATURE (K)

FIG. 8. Temperature dependence of A
II

and A& meas-

ured on the diamond powder sample. The lines fitted to
the data points correspond to the Debye model [Eq.
(&0)]

D. Measurement on Mu~

at the "magic" field

Since the Mu* Hamiltonian and the energy

eigenvalues [Eqs. (3}and (9)] strongly depend on

crystal orientation 8, in general, no @SR frequen-

cies can be detected in a powder sample in an ap-

plied field. But as has been shown in Sec. IIB,
there exists a magic field BM where the frequency

v~2 is independent of 8 and hence the magic fre-

quency vM ——viq can be observed. The field depen-

dence of the frequency v]2, obtained by numerical

diagonalization of H~„. for various angles 8, is

shown in Fig. 9. The lines cross to an extremely

good approximation at one point.
Experimentally, the linewidth A, of the frequency

v]2 is measured as a function of B near the es-

timated BM, and a minimum occurs at BM. Such
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C4

144

143

DI AMOND

296
167
392

results

vM
——142.37+0.02 MHz,

A, =0.25+0.10 ps
(24)

o 142

141

I ) I I I I

0.395 0.400 0.405 0.410 0.415 0.420

ext( )
FIG. 9. Calculated frequencies v12 for Mu~ in dia-

mond as a function of the external field B for various

angles 6I. The parameters used were obtained from
zero-field measurements at 296 K, and g, =g, (vac) was

assumed. Curves cross at the magic field BM ——0.40718
T and the magic frequency vM ——142.36 MHz. Meas-

uremegt shown in Fig. 10 was done at the indicated

field B,„, and gave the indicated frequency.

This confirms the result of Sec. IV B that All and

Az have different signs, because in the opposite
case BM would be 1.0 T.

The accuracy with which the frequencies vi2(8)
cross at a point is a sensitive function of any aniso-

tropy in the electronic Zeeman energy. This fact
can be used to give an upper limit for the anisotro-

py. Comparing the damping rate A, of Eq. (24)

with the expected frequency distribution at BM for
an anisotropic g~ factor in HM„. [Eq. (3)], one ob-

tains

(25)

where gi and g~~ also refer to the (111)axis.

and

BM =0.4072 T

vM =142.36 MHz

at 296 K. A measurement at the slightly lower
field B =0.4059 T and at 296 K (Fig. 10) gave the

DIAMOND
T= 296K
8 = 405.86+0.07 mT

measurements are relatively fast and give precise
values for the hyperfine constants without accurate
sample orientation, but approximate starting values

o All and Aj are required.
Using the parameters from the zero-field meas-

urements (Fig. 8), it can be predicted [Eq. (11)]
that

E. Formation of Mu~

at high temperatures

The investigation of Mu* in the powder sample

in zero field showed the following two unexpected

phenomena (Figs. 7, 11, and 12):

(i) a strong increase of the precession amplitudes

with temperature, and

(ii) a variation of the relative amplitudes of the

three lines. The expected amplitude ratio for lines

v&, v2, and v3 should be 2:2:1,as given by Eq. (14).

These two phenomena shed light on the process of
Mu* formation in diamond. Assuming that there

exists a short lived and hence unobserved precursor
state to Mu*, the observed zero-field polarization

of Mu* is changed from that given in Eq. (14) and

x10

60-

DIAMOND

B= OT
T =656 K

LJJ

40-

0 50 100 150 200
FREQUENCY (MH2)

FIG. 10. Frequency spectrum of Mu* in the diamond

powder sample near the magic field BM. Magic fre-

quency v12 is observed. Line at 55.01 MHz corresponds
to the Larmor precession of muons stopped in the sam-

ple container.

4IJ

CL

20-

V3

0
0 100 200 300 400 500

FREQUENCY (MHz)

FIG. 11. Zero-field frequency spectrum of Mu*
measured in diamond at 636 K.
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xl0

tLj

o 100-

DIA MOND

B= OT
T =925 K

one has

and

a~ ——a2 ——a3 —1

K
LLJ

iL

P 50-

V2

0
0 IOO 200 500 400 500

FREQUENCY (MHL)

may be written in the form

P„(t)=—,[1+2aI cos(coIt+t)I)

+2a 2 cos(co2t +ctI2)

+a 3 cos(co3t +$3)]P„(0), (26)

FIG. 12. Frequency spectrum for diamond measured
at 925 K in zero external field.

(tI =t)2=6=0 .

Normal muonium was observed below 150 K in
a transverse field with a hyperfine frequency
cop 2m{——371.1}MHz {see Sec. IV A}. If this muoni-
um state disappears with increasing temperature
because of transformation into Mu*, the ampli-
tudes and phases of the three zero-field frequencies
will depend strongly on the Mu~Mu* reaction
rate A.

The general theory of spin-polarization transfer
in transitions among muon states will be discussed
elsewhere. ' Here, the results pertinent to the
zero-field experiments are given. Assuming that
the electron polarization is conserved in the reac-
tion Mu~Mu*, one obtains

where the amplitudes a& (j =1,2, 3) and phases PJ.

depend on the state of the muon prior to its incor-
poration in Mu* and on the transition rate from
this state to Mu*. The measured precession ampli-
tudes (not normalized) are plotted in Fig. 13. The
constant values for T & 400 K can be explained by
almost instantaneous Mu~ formation for a particu-
lar fraction of the incoming muons. In this case

a, =1/[1+(cop—co, )'/A']'",

a, =1/(1+co, /A')' ',
a3 ——I/[1+(cop —co3)2/A ]Ic3,

(t I ——arctan[(cop —co I )/A],

t)2 ——arctan(co2/A ),
Ifl3 arctan[(cop —co3)/A]

(27)

2 I I I I I I I I I I

Vg

«tt«. «A
~ 0& ~ ~ ~ y ~

«

0.:

Since coo is one order of magnitude larger than coj,
the amplitude a2 shows a A dependence distinctly
different from a

&
and a3, as shown in Fig. 14.

One obtains quite different results if the electron
spin polarization is not conserved in the reaction

2-
~4

~O

LLI
D
I-

0

Vp

tt tttt tt««v t «« 0.4

1.0

0.8

CRYOSTAT OVEN

0.2

06 ~
I-

0.4 +

VI

)t «ttt tt «, t ' 't «« ' «

0 I I I I I I I

0 200 400 600 800 IOOO

TEMPERATURE (K)

0.1

0.0
10 10' 1010

REACTION RATEP (s )

0.2

0.0
10

FIG. 13. Measured precession amplitudes (not nor-
malized) of the zero-field Mu* lines vi, v2, and v3 as a
function of temperature. The curves correspond to the
fit discussed in the text.

FIG. 14. Amplitudes and phases of the three Mu*
lines in zero field as a function of the reaction rate A
for the transformation Mu~Mu*. Notice that A2 at in-
termediate A is much stronger than lines I and 2.
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Mu~Mu*:

a&
——I/( ]+co&/A' )'

P&
——arctan(ro& /A') .

(29)

Equations (27), (28), and (29) apply to the case
where a single transformation (Mu~Mu* or
jT, +~Mu*) occurs. Each type i of transformation
involves not only a A-dependent amplitude aj' for
each Mu» line, but also a A-dependent initial phase
angle ItI&. If both transformations occur simultane-

ously, the resulting amplitudes and phases are
given by

roj /A 1 (coo—coj )/A'—2aj sinyj ——

I+roj~/A' 2 I+(roo —coj ) /A'

(coo+coj )/A'
+ 2 ~2, (28)

2 I+(Ioo+coj) /A'

1 1
2aj COSItIj = +-

I+roj/A' 2 I+(roo —co, )'/A'

+ 1 1

1+(coo+coj ) /A

In contrast to the case where the electron polariza-
tion is conserved, there is no dramatic difference in

the amplitudes for a given value of A', and one al-

ways has the sequence a i & a2 )a3 as shown in
Fig. 15.

For the case where Mu* is formed directly from
a "naked" p+ with reaction rate A', Eqs. (28)
reduce to

A=1( exp( —U/kT) .

The fit indicated in Fig. 13 corresponds to values
for the reaction Mu~Mu*:

U/k =7000 K,
/=4&(10' s

(31)

The observed variation of the amplitudes with

temperature can now be discussed in terms of these
theoretical results. The high-temperature data (see

Fig. 13) show a dramatic increase of the amplitude

a2 at 600 K accompanied by a slight increase of a
&

and a3. This distinctive behavior of the intermedi-

ate frequency line is strong evidence for the forma-
tion of Mu» from Mu with the conservation of
both muon and electron polarization.

The problem of the conservation of electron po-
larization during reactions of muonium has been

discussed extensively. ' Conservation of polariza-
tion is generally assumed in current theories of
radical termination reactions and has been demon-

strated in several ESR experiments. In pSR chem-

istry, the precession frequencies obtained with

tetramethylethylene in zero field' have been inter-

preted with muonium as radical percursor and as-

suming spin conservation during the reaction.
An attempt was made to fit the data to this

Mu~Mu* reaction model under the assumption
that at low temperature 10% of the incoming p+
form Mu* instantaneously (see Table III). It was

further assumed that the reaction rate is given by

2

aj sinItIj = g aJ sinPj,
i=1

2

aj cosPj = g aj cosPj' .

0.5

0.4

1.0

0.8

(30)

This temperature dependence for A is not com-
patible with the measured Mu relaxation rate
(Table II). The latter is describable using quite dif-
ferent values: U/k =500 K and /=10 s '. The
discrepancies suggest that an additional process
such as a temperature-dependent relaxation of the
muonium electron spin is responsible for the disap-
pearance of the Mu signals.

I- 0.3
LLI

& 0.2Q

0.6
LLI
C)

I-
o.4 &

V. ELECTRONIC STRUCTURE
OF Mu AND Mu»

0.1 0.2

0.000
1O' 108 10~, 1O'0

REACTION RATE A (s )
FIG. 15. Amplitudes of the zero-field Mu* lines vl,

v2, and v3 as a function of the reaction rate A' for the
transformation p+ ~Mu*.

Table IV lists the hyperfine coupling constants
of Mu and Mu» in diamond together with the
corresponding values obtained for the isostructural
materials silicon and germanium. A point to be
noted is that, although diamond has the smallest
lattice constant of the three elements, its coupling
constants for Mu and Mu* are largest and hence
most vacuumlike.
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TABLE IV. Comparison of the hyperfine coupling constants of Mu and Mu* at 0 K.

A/h (MHz)
Mu

f=A/A„„ Aii/h (MHz)

Mu~

Ax/h (MHz)

Diamond
Silicon
Germanium
Vacuum

3711
2012
2361
4463

0.831
0.450
0.529
1.000

—167.9
16.8
26.8

392.5
92.6

130.7

Shallow donors and acceptors in semiconductors
are well described by the effective mass theory. '

Deep levels whose bound-state orbits are compar-
able to the interatomic spacing, on the other hand,
are more difficult to treat. Hydrogen and its "iso-
tope" muonium are the simplest examples of inter-
stitial donor impurities, and their microscopic
description has been the subject of several theoreti-
cal investigations. '

Wang and Kittel' studied muonium in Si and
Ge using phenomenological models. They obtained
reasonable values for the hyperfine constants both
in a cavity model and in a model using a space-
dependent dielectric function, provided that the
electron mass was taken as the free-electron mass.
The latter assumption, however, cannot be justified
in the framework of the effective-mass theory as
has been discussed by Pantelides.

Recent theories ' which take into account the
intervalley mixing effect on donor impurities in
many-valley semiconductors lead to a deep
ground-state level for a hydrogen impurity.
Whereas in Ref. 22 this deep state is predicted to
occur only for an interstitial impurity, the interval-

ley interference effect considered in Ref. 23 should
cause a deep level for both interstitial and substitu-

tional sites. In both theories the effective-mass ap-
proach is extended to account for many-valley con-
tributions. For a point-charge impurity, the
ground-state binding energy then becomes larger
than the fundamental gap, indicating that the
effective-mass approach breaks down. This break-
down is attributed to the formation of a deep level.
Thus the prediction of the deep donor character of
hydrogen and muonium is only a qualitative one,
and extended effective-mass theories are inherently
inadequate to quantitatively describe deep states.

The new data on muonium in diamond have led
us to the investigation of the question whether the
models introduced by Wang and Kittel' (the so-
called "cavity model" and the "dielectric function

2—e

4m'
V(r)= '

e

pep

1 1 1+r R eR

1
for r &R,

Er

for r(R,
(32}

where e is the static dielectric constant and ep the
permitivity of vacuum. The potential is continu-
ous at the cavity radius R. There are two probable
symmetrical interstitial sites for muonium in the
diamond structure; one with tetrahedral local sym-
metry and one with hexagonal local symmetry.
If the corresponding cavity radii RT and R~ are
determined from the radius of the interstitial
sphere that fits inside the touching hard spheres of
the lattice atoms, one obtains RT ——0.227a and

Rz ——0.198a, where a is the lattice constant. The
values for RT and R~ are given in Table V. The
ground-state energies for C, Si, and Ge of the po-
tential (32} are shown in Table VL The enhance-

TABLE V. Parameter values for diamond, silicon,
and germanium. R~ and RH are the cavity radii for the
touching spheres model for the tetrahedral and hexago-
nal interstitial sites. Q is the inverse screening length
for the dielectric function, e is the static dielectric con-
stant, a the lattice constant, and ao the Bohr radius
(ao=0. 53 A).

a (A) Rr (ao) RH (ao) Q (as ')

C
Si
Ge

3.56
5.43
5.65

5.7

16.0

1.45
2.22
2.31

1.33
2.03
2.12

1.15
0.92
0.82

approach") also work in the case of normal muoni-
um in diamond. These phenomenological models,
although admittedly crude, are at present the only
ones which lead to quantitative statements.

In the cavity model, the potential is assumed to
be given by
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TABLE VI. Results obtained for Mu in diamond, silicon, and germanium for different models. The potentials refer
to the corresponding equations in the text. The ground-state energies E are in Rydberg units (1 Ry =13.6 eV). The se-

quence of the calculated enhancement factors f=A/A„„should be compared with the experimental results. T stands
for tetrahedral site and 0 for hexagonal site.

Potential Eq. (32) T
E f

Eq. (32) H
E f

Eq. {35) Eq. (36) Experiment

C
Si
Ge

—0.108
—0.220
—0.226

0.419
0.834
0.856

—0.086
—0.168
—0.174

0.313
0.754
0.786

—0.151
—0.115
—0.129

0.381
0.428
0.487

—0.054
—0.033
—0.028

0.114
0.170
0.175

0.829
0.450
0.529

Sequence fc &fsi &foe fc &fs &fo. fc &fsl &fo fc &fsi &foe fc &foe &fsi

ment factor f is defined by

(33)

where

I g„„(0)I
'=(irai'i)

Although the actual cavity radius could be some-
what different from RT or Rz, it is evident that
the cavity model always leads to fc &fs; &fo, in
contrast to the experimental results.

The dielectric function approach of Wang and
Kitty assumes a potential of the form

(34)

where the space-dependent dielectric function e(r)
is obtained as the Fourier transform of e(q), which
can be calculated from the band structure. In Ref.
16 the model dielectric function

'+ '
e(q) =e

2 2eq'+ Q
(35)

proposed by Herrnanson was used with the
screening parameter Q determined by fitting Eq.
(35) to the spherically averaged calculated values
of e(q). The corresponding values for Q used in
the present calculation are given in Table V.

Another model for e{r) was proposed by Resta
who, by solving the linearized Thomas-Fermi equa-
tion, obtained the following form:

ea'R I sinh[ir(R r)+sr] )
' for r &R, —

e for r&R, (36)

where a =(4kFlrr)' and R =2.76, 4.28, and
4.71ao for C, Si, and Ge. The f values obtained
for the dielectric function (36) are generally even
lower than those obtained from (35).

The results for all these models are summarized

in Table VI. All models lead to deep bound states,
which is a consequence of the use of the bare elec-
tron mass, but they predict the wrong sequence for
the enhancement factor. The models with a factor

f close to the data for Si and Ge give an fc value

lower than fs; or fo„ in contrast to the measure-

ments.
From these results it is concluded that the ap-

parent quantitative success of the models of Wang
and Kittel for muonium in Si and Ge does not
hold in the case of diamond. Further calculations
are needed which take account of the detailed elec-
tronic structure of the host.

Recently, a self-consistent pseudopotential
method has been used ' to treat the hydrogen inter-
stitial impurity in germanium. By including
strong intra-atomic correlation effects, it was
found that a singly occupied H-1s deep donor state
exists which lies at least 1 eV and perhaps as much
as 6 eV below the Ge-valence-band maximum. To
decide whether this deep donor state is the one
seen in pSR experiments, one should have similar
calculations for silicon and diamond.

The electronic structure of the anomalous
muonium state has so far not been investigated by
microscopic calculations. The phenomenological
models which have been proposed are reviewed by
Estle. The obvious difficulty in explaining the
two different muonium states are the unknown
sites of Mu and Mu*.

VI. SUMMARY AND CONCLUSIONS

The data presented in this article clearly estab-
lish the existence of two different muonium states
in diamond. The basic features of these two states
agree with those observed in Si (Ref. 2) and Ge.
The normal muonium state (Mu) is described by an
isotropic spin Hamiltonian with a hyperfine fre-
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quency reduced from the vacuum value. The
anomalous muonium state (Mu~) is described by an
axially symmetric spin Hamiltonian with the sym-
metry axis parallel to one of the four (111) axes.
The hyperfine coupling constants are of the same
order of magnitude as those for Si and Ge (see
Table IV).

Differences in the behavior of the muonium
states in diamond as compared to Si and Ge are
apparent in the temperature dependence of the for-
mation probabilities and relaxation rates. In Si
and Ge the relaxation rates A, of both Mu and Mu*
increase with increasing temperatures and the sig-
nals disappear (A, & 10 ps ') at about 200 K (300
K) for Mu* (Mu) in Si and at 80 K (100 K) in Ge.
This relaxation is usually attributed to the scatter-
ing of phonons or charge carriers by the muonium
atom, resulting in a spin flip of the bound electron.
If at higher temperatures the rate of spin flipping
exceeds the hyperfine frequency, a signal with the
bare p+ frequency should be observed. This effect
has been verified both in Si (Ref. 29) and Ge.

In C, on the other hand, the situation is quite
different. Mu disappears around 150 K, whereas
the Mu* signals show constant relaxation rates and
increasing amplitudes at higher temperatures. This
indicates that Mu* in diamond has a lower total
energy than Mu, whereas the situation may be re-
versed in Si and Ge. The stability of Mu* in dia-
mond is also indicated by the observed increase of
the Mu* amplitudes at about 600 K which can be
explained by Mu~Mu* transitions, as has been
discussed in Sec. IV E. Analogous transitions of
Mu*~Mu in Si and Ge have not been reported.
This may be due to the relaxation of the bound
electrons mentioned above which destroys the hy-
perfine structure of the paramagnetic states. In di-
amond, these relaxation processes are not effective
since there are no free charge carriers and since
Raman processes are suppressed at the relevant
temperatures due to the high Debye temperature.
In Si and Ge a similar transition should, however,
be indirectly observable since it influences the
behavior of the amplitude and phase of the p+ sig-
nal as a function of temperature and transverse
field as well as the dependence of the polarization
on an applied longitudinal field. In this respect it
should be noted that measurements of the p+ sig-
nal in Ge at around 200 K showed a temperature-
and field-dependent phase shift. This was inter-
preted by the authors as an indication of a chemi-
cal reaction or thermal ionization of Mu. The
present results for diamond makes it seem plausi-

ble that this observation in Ge could be reinterpret-
ed as being due to a transition between normal and
anomalous muonium.

Another question which must be addressed is the
possible influence of impurities on the formation
of Mu or Mu*. Despite recent experiments '

which seem to indicate that the Mu state in Ge is
related to C impurities, we believe that the forma-
tion of Mu and Mu* is an intrinsic property of
group-IV semiconductors for the following reasons:
(i) The formation probabilities in the two diamond
samples used in the present experiment are equal
(see Table III) although the impurity contents
differ markedly. (ii) The direct observation of the
Mu hyperfine transition in zero field in high-purity
Si and Ge shows that Mu is formed in a time less
than 10 ' s after the p+ enters the target. There
is insufficient time for a muon to reach an impuri-
ty and become trapped at low temperature. (iii) A
recent experiment showed no difference in
muonium formation in ultrapure Ge crystals
grown under quite different conditions. (iv) The
observations of Mu and Mu* with similar proper-
ties in Si, Ge, and diamond make the assumption
of any defect-related formation very unlikely.

The electronic structure of neither Mu nor Mu*
is understood. The models of Wang and Kittel, '

which gave a reasonable explanation for Mu in Si
and Ge, fail for C. No quantitative model for
Mu* exists so far. Such a model should account
for the observed hyperfine parameters in all three
elements. The suggestion that the two muonium
states may be identified with muonium atoms at
the tetrahedral and hexagonal interstitial sites is
plausible but lacks any experimental or theoretical
evidence. The variation of the hyperfine constants
of Mu* with temperature is accurately accounted
for by a Debye model and is similar to that ob-
served in Si.

In conclusion, we hope that the data which are
now available for the muonium states in Si, Ge,
and diamond will stimulate more theoretical work
on this particularly simple example of an intersti-
tial impurity in semiconductors. The major experi-
mental challenge is the identification of the sites of
Mu and Mu*.
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