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Calculated electron affinities of the elements
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The extra-electron binding energies of the ground-state monatomic negative ions with

Z & 86 are calculated using the self-interaction correction (SIC) to the local spin-density

approximation (LSD) for exchange and correlation. The results agree reasonably with ex-

periment, and the errors reflect the familiar "interconfigurational energy error" common
to LSD and SIC. Some of the rare earths, e.g., Ce and possibly Gd, are predicted to
form stable negative ions. In addition we have the following: (1) Relativistic (other than
spin-orbit) contributions to the electron affinities are included and discussed. In Au the
relativistic effects boost the calculated affinity from 1.5 to 2.5 eV. (2) The doubly nega-
tive ions 0 and Te are predicted to have no stable ground state. (3) Electron affini-
ties are calculated for a few excited atomic states. (4) The calculated ground-state densi-

ties n (r) of all the neutral atoms and negative ions are monotonically decreasing functions
of r. (5) Corrections to the random-phase-approximation electron-gas correlation energy
are shown to cancel out of SIC calculations for atoms.

I. INTRODUCTION

The electron affinity A of an atom is the energy
released when an extra electron binds to the atom,
forming a negative ion. This quantity, which obvi-

ously influences charge transfer in molecules and
solids, enters Mulliken's definition of the electro-
negativity, '

g= —,(I+A ),
where I is the first ionization potential of the neu-

tral atom. Isolated negative ions are also of in-

terest, not only in the laboratory but also in outer
space and in the Earth's upper atmosphere.

Unlike many other atomic properties, the elec-
tron affinities are hard to calculate with a small re-
lative error. The negative ions are so loosely
bound that effects usually regarded as small, espe-
cially electron correlation, play a crucial role in
binding them. Starting with the 3d transition
series of the periodic table, relativistic effects also
influence the affinities significantly. While the
affinities of most of the elements have been meas-
ured quite accurately, e.g., by laser photodetach-
ment, reliable calculations exist only for the light-
est elements (say Z & 17).

The single-configuration Hartree-Fock approxi-
mation, which neglects correlation, gives a very
poor description of the affinities. The Hartree-
Fock total energy differences underestimate the af-

finities so badly that, of the six stable negative ions
with Z &9, only two (carbon and fluorine) are
predicted to be stable. On the other hand, the
Hartree-Fock orbital energies usually ouerestimate
the affinities. Recently, adjustment of the one-
electron potential was proposed to fit the orbital
energies to experiment.

The method of configuration interaction includes
correlation via the mixing of orbital configurations.
Conscientious calculations of electron affinities
for B through F still disagree with experiment by
0.1 —0.3 ev. Somewhat better agreement for Al

through Cl has been obtained by concentrating on
valence-valence correlation and relying on a cancel-
lation of error from the core. Calculations of this
kind have been reviewed in several recent arti-

les 3,4, 6

Density functional approximations' "have the
potential to incorporate correlation within an orbi-
tal scheme that is similar to but simpler than
single-configuration Hartree-Fock. For example,
in the local spin-density (LSD) approximation" '

the exchange-correlation energy is

E„, [n„n, ]= f d rn(r) e(n, {r),n„(r)),
where e„,(n „n,) is the exchange-correlation energy
per particle of an electron gas with uniform spin
densities n, and n, . The density n ( r ) =n, (r )

+n, (r ) is constructed from orbitals which feel the
self-consistent potential
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—Z 3, n(r')+ d r' +p„,(n, (r),n, (r)), (3)
T /r —r'/

where

p„,(n „,n, )= [n e„,(n „n, )]
Bn

is a local exchange-correlation potential. Unfor-
tunately, negative ions do not find self-consistent
solutions within LSD or the related Xa approxima-
tion. ' ' Nevertheless, the affinities can still be es-
timated by artifice —e.g., by confining the negative
ion inside a large spherical box, ' or by applying
Eq. (1) with Slater transition-state calculations of X
and I.' Direct calculations of A by the

transition-state method have also been report-
d 15, 16

LSD fails for the negative ions because Eqs. (2)
and (4) include a spurious interaction of each elec-
tron with itself. In particular, for an N-electron
ion the potential (4) tends to (N Z)/r—at large r,
and not to the electrostatically correct limit
(N 1 Z——)lr T.here are several schemes' 23 to
remove the self-interaction from Eqs. (2) and (4),
all of them permitting self-consistent solutions for
negative ions (N=Z+1) and some of them '

yielding reasonable estimates of the affinities.
One ' of the latter group which has been tested
extensively for neutral atoms as well as posi-
tive and negative ions is the self-interaction
corrected (SIC) scheme:

Estc ~LsD[ ] y i f d3& f d3ri ««+ELsD[ 0]
n (r)n (r ')«/r —r

where n (r)=~/ (r)~ is an orbital density. The orbitals are constructed from the orbital-dependent
exchange-correlation potential

(5)

p,„,(n, (r),n„(r))— f d r' +p„',(n (r),0)
/r —r'[ (6)

While these orbitals for different a are not strictly
orthogonal, the effect of Schmidt orthogonalization
upon the total energy is negligible, e.g., less than
0.01 eV for Kr. In order to simplify the calcula-
tions, the orbital densities in Eqs. (5) and (6) are re-
placed by their spherical averages.

In this paper we report SIC calculations of the
electron affinities of the elements. We emphasize
that the SIC approximation is simple, fully self-
consistent, and involves no empirical input. Be-
cause the affinity is calculated as the small differ-
ence of two large numbers, the total energies of the
neutral atom and negative ion must be well con-
verged. To insure this, we used an "energy norm"

5n(r)

to monitor the difference hn( r ) between input and
output densities on each iteration. Details of this
idea will be presented elsewhere. (Some other
methods of calculating electron affinities avoid the
need to take the small difference of two large
energie .g., the transition-state' ' and many-

I

body Green's-function methods. )

Because correlation is important, we have used a
parametrization of e, (n „n,) which accurately
describes the true electron-gas correlation energy.
However, we have found (Appendix A) that essen-
tially the same SIC values for the total energies
and affinities would be found using the simple
random-phase approximation (RPA) for the
electron-gas correlation-i. e., corrections to the RPA
essentially cancel out of (5) and (6). This behavior
supports a recent suggestion ' that the RPA might
be much better for atoms than it is for the electron
gas.

Unlike earlier SIC calculations ' for the elec-
tron affinities of some lighter atoms, these calcula-
tions are relativistic. Because the LSD and SIC
approximations assume that cr (the z component of
electron spin) is a good quantum number, these ap-
proximations do not blend well with the full Dirac
one-electron equation. We solve instead the
Koelling-Harmon equation, equivalent to the
Dirac equation with the spin-orbit interaction aver-
aged out. The electron-gas exchange energy e„(n„
n, ) also includes a relativistic correction, ' ' al-
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though this has little effect on the affinities. The
relevant expressions are collected in Appendix B.
We also performed a few calculations in the nonre-

lativistic limit with the same computer program in
order to gauge the relativistic contributions.

II. RESULTS

Discrepancies between theory and experiment are
no worse for the heavier atoms (Z & 36) and, in

fact, the errors of the calculated affinities for 4d
electrons are somewhat smaller than for 3d elec-

trons, again mimicking the errors of the LSD in-

terconfigurational energies of the neutral atoms.

A. Electron affinities of atomic ground states

The calculated affinities are compared with
measured values for Z & 86 in Fig. 1. The neutral
atom and negative ion orbital configurations were
taken from the review article by Hotop and Line-
berger, as were most of the experimental affinities
except for a few more recent values.

The calculated values are in satisfactory agree-

ment with experiment, and the discrepancies exhib-

it patterns which are not hard to understand. Con-

sider, for example, Z & 36. The calculated affini-

ties for s electrons are nearly exact, while those for

p electrons are about 0.3 eV too large. The calcu-
lated affinities for 3d electrons are also too large,
sometimes by more than 1 eV but with consider-

able scatter.
These errors just reflect the. familiar

"interconfigurational energy error" which shows

up in both ' ' LSD and SIC calculations of ioni-

zation potentials for the neutral atoms. The calcu-

lated removal energies are about right for s elec-

trons, a little too large for p electrons, and about 1

eV too large for 3d electrons. The 3d errors are
scattered due to the spherical averaging (which can
be removed with some extra effort).

B. Affinities of the rare earths

Hotop and Lineberger have observed that "Al-
most nothing is known about the negative ions of
the rare-earth elements. "

Recently Sen, Schmidt, and Weiss ' have used

Eq. (1) and the relativistic Xa method to estimate
the electron affinities of the rare earths. They
found negatiUe affinities around —4 eV and con-
cluded that these negative ions are "not likely to be
stable. "

However, an earlier semiempirical estimate by
Zollweg predicted small positiue affinities for at
least four of the rare earths (Ce, Pr, Nd, and Gd).
We have performed calculations for these four
negative ions, assuming a configuration the same
as that of the neutral atom plus one extra Sd elec-
tron. The resulting affinities are compared with
Zollweg's estimates in Table I. The agreement is
about as good as could be expected and tends to
support Zollweg's analysis.

The neutral atom configurations are 4f" Sd '

6s for Ce and Gd, and 4f" 5d 6s for Pr and
Nd. The calculated affinities are significantly
smaller for the latter configuration, probably be-
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FIG. &. Theoretical (histogram bars) and experimental (asterisks) electron affinities of the elements for (a) Z & 36
aud (b) Z & 36. Cross hatching indicates the angular momentum of the electron added to form the negative ion. [Ex-
perimental values from Ref. 3, with the exception of more recent values for Al, Pb, Bi (Ref. 37); Ti, V, Cr, Zr, Nb,
Mo, Rh, Pd, Ta, W, Ir (Ref. 38); Fe (Ref. 35); and Co, Ni (Ref. 36).]
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TABLE I. Calculated electron affinities of the rare
earths, compared with semiempirical estimates of
Zollweg (Ref. 42). Since our theory tends to exaggerate
the affinities for Sd electrons, we are skeptical about the
existence of stable Pr and Nd, where the calculated
affinities are only 0.1 eV (and where the calculated Sd
orbital energies of the negative ions are essentially zero).

Atom Z
Electron affinity (eV)

This work Zollweg

Ce
Pr
Nd
Gd

58
59
60
64

0.81
0.11
0.10
0.34

0.6
0.3
0.1

0.2

cause 4f electrons shield the nuclear potential more
efficiently than Sd electrons.

C. Relativistic contributions to the affinities

TABLE II. Calculated relativistic (excluding spin-
orbit) contributions to the electron affinities of selected
atoms. Unlike this work, the calculation of Fraga et al.
(Ref. 5) employed nonrelativistic orbitals of the analytic
Hartree-Fock-Clementi form to evaluate the expectation
values of the mass enhancement and Darwin operators.

(eV)

Table II shows the calculated relativistic (exclud-

ing spin-orbit) contribution to the electron affinity
for selected atoms. For those atoms with Z & 36,
this table also exhibits the same quantity as calcu-
lated by Fraga, Saxena, and Lo. Unlike the
present work, their calculation employed nonrela-
tiuistic orbitals to evaluate the expectation values of
the mass-enhancement and Darwin operators.

It appears from Table II that relativity enhances

the affinity for s electrons (as in the alkali and no-

ble metals) and suppresses the affinity for p (as in

the halogens) and d electrons (as in the transition
metals). The relativistic effects are small in the al-

kalis and halogens, but dramatic in the transition
and noble metals.

Fe can bind an extra 3d electron and relativistic
effects reduce its affinity by 0.2 or 0.3 eV. Bunge
and Bunge have attributed this reduction to a sub-

stantial outward relaxation of the valence orbitals
that occurs when the extra electron is bound.

Both Cs and Au can bind an extra 6s electron,
but in Au the 6s orbital is considerably more con-
tracted and feels a much stronger nuclear potential.
The relativistic contribution to the electron affinity
of Au is a full electron volt, which is comparable
to the contribution from correlation and essential
to the agreement between theory and experiment.
Note that, in the absence of relativistic effects,
gold and silver would have similar electron affini-
ties, as discussed qualitatively by Pyykko and Des-
claux; it is relativity which makes gold "almost a
halogen. "

D. Monotonic ground-state densities

The atomic ground-state densities n(r) are
monotonically decreasing functions of r. [It is

only 4n.r n(r) which exhibits the familiar shell-
structure oscillations. ] Weinstein, Politzer, and
Srebrenik pointed out this fact for the neutral
atoms with Z & 36. Our computer program
checked the calculated ground-state densities of all
the neutral atoms and negative ions with Z & S6,
and found that they are always monotonic. There
could be a theorem here in search of a proof.

E. Doubly negative ions

Atom

K
Rb
Cs
Cu
Ag
Au
Cl
Br
I
At
Fe
Os

19
37
55
29
47
79
17
35
53
85
26
76

This work

0.00
0.01
0.02
0.07
0.22
1.03

—0.01
—0.04
—0.06
—0.21
—0.22
—1.52

Fraga et al.

—0.00

—0.00

0.06
—0.05

—0.27

Mass spectrometric observations of doubly
charged negative ions, including 0,Te, F
C12, Br, and I have been reported, although
these observations have not been confirmed by oth-
er groups.

We could not have checked a11 the possible excit-
ed states that might be doubly negative, but we did
search for ground-states of 0 and Te . Here
the neutral atom valence configuration is p, with
a fairly substantial affinity for the first extra elec-
tron, so a second extra electron might be welcome
to complete the p subshell. However, we found
that the SIC equations have no self-consistent
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bound solutions for 0 or Te in the p configu-
ration, and we strongly suspect that such ions do
not exist. Herrick and Stillinger have arrived at
similar theoretical conclusions about 0 using
variational many-electron wave functions.

Out of curiosity, we took the ten-electron neon
configuration and the nine-electron fluorine config-
uration, and continuously reduced the nuclear
charge Z for each. The ten-electron configuration
became energetically unstable against emission of
an electron at Z=8.73, just as Herrick and Stil-
linger predicted, although the 2p orbital energy of
the ten-electron configuration did not go to zero
until Z=8.5. These results suggest that 0
(Z=8) is not very close to stability.

F. Electron affinities of excited states

Excited states of neutral atoms may also bind an
extra electron, with the electron affinity defined as
the total energy difference between excited neutral
parent and negative daughter. The daughter, an
excited state of the negative ion, might then decay
by autodetachment, e.g. , to the neutral ground state
by emission of the extra electron.

The SIC equations admit excited-state solutions
and have already been used to calculate the ener-
gies of the (ns) autodetaching states of H
Without any intention of making an exhaustive
study of the affinities of excited states, we present
a few typical results for light atoms in Table III.

III. CONCLUSIONS

The electron affinities of the elements (binding
energies of the negative ious), including the impor-

tant effects of correlation and relativity, have been

calculated using the self-interaction correction to
the local spin-density approximation for exchange
and correlation. The results are in reasonable
agreement with experiment and the absolute errors
depend on the orbital character of the extra elec-
tron in much the same way as do the errors of the
LSD and SIC ionization potentials for the neutral
atoms. Some of the rare-earth atoms, e.g., Ce and
possibly Gd, are predicted to form stable negative
ions by binding an extra 5d electron.

Relativistic effects (excluding spin-orbit interac-
tion) enhance the affinity for s electrons and
suppress it for p and d electrons. These effects are
small in the alkalis and halogens, but surprisingly
large in the transition and noble metals. In gold,
relativity boosts the calculated electron affinity
from 1.5 to 2.5 eV.

The calculated ground-state electron densities of
all the neutral atoms and negative ions are mono-
tonically decreasing functions of distance from the
nucleus. No stable ground state is predicted for
the doubly negative ions 0 and Te
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TABLE III. Electron affinities of some excited states of light atoms. [For C, only the
daughter, and not the parent, is an excited state. No SIC solution was found for He
Sources of the experimental values are listed in Ref. 3. A few of the Expt. numbers are ac-
tually the results of sophisticated calculations: H (sources listed in Ref. 48) and Li (Ref.
51).]

Parent Daughter
Electron affinity (ev)

Theory Expt.

H (2s t)'
(3s t)'

He (1st)'(2st)'
Li (1s t)'(2s t)'(2p t)'
Be (1s)'(2s t)'(2p t)'

(1s) (2s) (2pt)
(» )'(2s )'(2p t )'(2p l )'

H (2s )

(3s )2

He (»t)'(2sf)'(2pt)'
Li (1s t )'(2s t )'(2p t )

Be (1s) (2s t)'(2p t)
C (1s) (2s) (2pt) (2pl)'

(» )'(» )'(2p t )'(2p l )'

0.40
0.24

0.69
0.46
0.10
1.58

0.63
0.36
0.08
0.50
0.24
0.04
1.0(3)
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APPENDIX A:
ON THE RANDOM-PHASE APPROXIMATION

FOR ATOMS

The SIC correlation energy ' ' is

E, ' = f d rn{r}e,(n, (r),n, {r)}
—g f d3r n (r)e, (n (r),0}, (Al)

where e, (n„n, ) is the correlation energy per par-
ticle of a uniform electron gas. Our SIC calcula-
tions have been performed using a parametriza-
tion of the accurate Ceperley-Alder e, . Re-
markably, almost the same results would be ob-
tained using a parametrization (Table IV) of the
numerical RPA correlation energy e, . For ex-

ample, for Na we find a correlation energy per
electron of —1.12 eV and an electron affinity of
0.59 eV using Ceperley-Alder, and —1.13 eV and
0.57 eV, respectively, using RPA.

It is not hard to see how the corrections to RPA
cancel out of the correlation energy per electron in
atoms, since the latter is dominated by high-
density electrons and in the high-density limit

e, (n„n, )=P, (n„n, )+0.63 eV . (A2)

APPENDIX B:
RELATIVISTIC EXPRESSIONS

We self-consistently solve the one-electron radial
equations of Koelling and Harmon

The second-order exchange constant, 0.63 eV, obvi-

ously cancels out of (Al) [but not out of the LSD
correlation energy, the first term of (Al}]. What is
more remarkable is that the corrections to RPA
also cancel out of the electron affinity, a property
of the low-density valence electrons.

TABLE IV. Parameters for the RPA correlation en-

ergy of an unpolarized (U) and fully spin-polarized (P)
electron gas. These parameters are to be used with the
analytic expressions given in Appendix C of Ref. 25.
The parameters were found by fitting these expressions
to numerical RPA values (Ref. 50).

U P

A

8
C
D
r
Pi
Pi

0.0311
—0.071

0.0021
—0.0078
—0.2044

1.5023
0.0916

0.01555
—0.0499

0.0005
—0.0020
—0.1104

1.1102
0.0170

density, which integrates to 1 over all space, is

1» 1(1+1)
4ir (2Mcr }' (B4)

Only the large component g survives in the limit
C —+ 0O.

The total energy is now constructed in the usual
Kohn-Sham way". the noninteracting kinetic ener-

gy is found by summing the occupied orbital ener-

gies E and subtracting off the interaction of each
orbital with its effective potential V. To this we
add the usual electrostatic energy

f d rn(r)
r

f 3 f 3 n(r}n(r '}
(B5)

and the exchange-correlation energy (5}.
Finally, we note that there are relativistic contri-

butions of the form

, + (V E) g,—(B—l)
2 l(l+1} 1

r 2Mcr c

bE„" [n]= f dir n(r)f(n(r)), (B6)

(B7)

g'=2Mcg, (B2)

for each principal quantum number n, orbital an-
gular momentum 1, and spin o, where

to the exchange energy and potential in the local-
density approximation, which become, respectively,
in SIC:

~=m+ (E—v)1

2c
(B3)

bEslc bELDA[ ] y bELDA[ (B8)

is the relativistic mass, E is the orbital energy (ex-

cluding the rest energy mc ), and V is the one-
electron potential consisting of the first two terms
of (3) plus (6). The spherically averaged orbital

and

bp (n(r)) —hp (n (r))

Here

(B9)
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9 3nf(n)=
8

' 1/3 2
Pr) —1ng

p2
(B10)

where p=n'~'/44. 3, ri =(1+p )', and (=p+r).

'Present address: Solar Energy Research Institute, Gol-
den, Colorado 80401.
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