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A direct method is described for obtaining conditions under which certain N-degree-of-

freedom Hamiltonian systems are integrable, i.e., possess N integrals in involution. This

method consists of requiring that the general solutions have the Painleve property, i.e., no

movable singularities other than poles. We apply this method to several Hamiltonian sys-

tems of physical significance such as the generalized Henon-Heiles problem and the Toda

lattice with N =2 and 3, and recover all known integrable cases together with a few new

ones. For some of these cases the second integral is written down explicitly while for oth-

ers integrability is confirmed by numerical experiments.

I. INTRODUCTION

The question of integrability of a dynamical sys-
tem was raised soon after Newton formulated the
equations of motion of three bodies in a gravita-
tional field. By integrability (often referred to as
complete integrability) of a Hamiltonian system
with N degrees of freedom we mean the existence
of ¹nalytic, single-valued, global integrals of the
motion which are functionally independent and in
involution. ' When this is the case, the equations
of motion are (in principle at least) separable and
the solutions can be obtained by the method of
quadratures.

To date, however, there exists no general method
for determining whether a given dynamical system,
Hamiltonian or not, is integrable. Since Newton, a
number of "jewel" results have been obtained in
this direction, notably Jacobi s solution of the geo-
desic motion on an ellipsoid and Euler's and
Kovalevskaya's integration of the rotation of a
rigid body in some special cases. More recently,
several examples of integrable Hamiltonian systems

have been discovered mainly by ingenious applica-
tions of the theory of Inverse Scattering Trans-
forms (IST).

In this paper a direct method is used to identify
integrable Hamiltonian systems. In particular, we

look for all values of the parameters of the system
such that its solutions will have the Painleve prop-
erty, i.e., that the only mouable singularities they
can have are poles. (A singularity is movable if its
location in the complex plane depends on the ini-
tial conditions; an equation whose only movable

singularities are poles is said to be of P-type. "' )

It is known that a deep connection exists be-

tween IST and ordinary differential equations of
P-type. "' This connection suggests that dynami-
cal systems with the Painleve property might also
be integrable. Here we demonstrate the effective-
ness of our direct method —originally adopted by
Kovalevskaya —on several Hamiltonian systems
of two or three degrees of freedom, which arise in
a variety of physical problems. In some of the
cases presented here we are able to provide the in-

tegrals explicitly, while in others we offer numeri-
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We apply here the Painleve analysis to a number

of Hamiltonian systems of physical significance

and find all parameter values for which their solu-

tions have the Painleve property. In some of these

cases we demonstrate complete integrability by ex-

plicitly writing down the integral, while in others

we offer numerical evidence which confirms the

existence of the second integral. Specifically we

have analyzed among other systems:

(1) The Henon-Heiles Hamiltonian

(x2+y2+Ax2+By2)x2yy3
3 (2.1)

well-known from a variety of problems in celestial
mechanics, ' statistical mechanics, ' and quan-
tum mechanics. '

(2) Two coupled quartic oscillators

H =—(x +y'+Ax'+By')
x4 0. 4

+ + " +~x'y',
4 4 2

arising, for example, in connection with problems
in field theory

In Sec. III the analysis is described only for case

(2.2)

cal evidence supporting integrability.
This paper is concerned only with Hamiltonian

systems mainly because it is not clear how to nu-

merically investigate integrability in dissipative sys-
tems. For example, while in integrable Hamiltoni-
an systems all orbits are known to lie on invariant
tori whose presence is evidenced by their intersec-
tion with Poincare Maps, ' ' etc., the correspond-

ing situation in nonconservative systems is not as
well understood. However, the method itself is not
restricted to Hamiltonian systems. For instance,
the Painleve property has already identified inte-
grable cases in dissipative systems such as the
Lorentz equations' and Fisher's equation. '

Strictly speaking, of course, integrability is a
mathematical property. From a physicist's point
of view "globally" stable motion, i.e., absence of
large scale "chaotic" regions is often equally im-

portant. Our numerical investigations, in agree-
ment with many other studies, indicate that for
considerably large ranges of parameter values near
the integrable (Painleve) cases the general behavior
of the system is remarkably stable. Thus we ex-

pect that the Painlt.'ve method of identifying inte-
grable systems can become a practical tool for lo-
cating "global" stability, a highly desirable prop-
erty in many physical problems as, e.g., fusion
research' or high-energy accelerators. '

II. SUMMARY OF RESULTS

1, since that of case 2 proceeds along similar lines.
The general solution (i.e., four arbitrary constants)
is found to possess the Painleve property only in
the following cases:

Case 3 The periodic lattice' with three masses:

2 2 2
Pi P2 P3 eq, -q )+ + +e

2m& 2m2 2

+e +ef(qp —q3 ) (2.3)

(and three degrees of freedom) where q&, qz, p3 are
displacements from equilibrium, pi, p2, p3
their conjugate momenta, and m &, m2, 5, e are
positive parameters. There is only one case with
the Painleve property here: m&

——m2 ——a=5=1.
This is the well-known Toda case which was first
shown to be integrable numerically by Ford et al.
Integrability was then proved rigorously by
Henon, Flaschka and Manakov for the case of
1V degrees of freedom.

Case 4 Fixed-end lattice with two masses:

2 2
Pi P2 ~, ~q& q&) q&

2m
& 2m2

(2.4)

Here we find three cases with the Painleve proper-
ty

m i/m2 =1, 5=/=1
(b) mi/m2 ——1, 5=1, g=-
(c) mi/m2 ——

3 5 1
1

Case 4 was studied by Casati and Ford and by
Bogoyavlenski. In particular, Casati and Ford
concentrated on 5=a=1 and numerically explored
the behavior of the solutions for different mass ra-

Case 1 (a) A =B, e= 1: Here the equations of
motion decouple in (x +y), (x —y) variables and in-

tegrability has long been known. (b) a=6, any

A,B:This case is less trivial and the second in-

tegral is given explicitly in Sec. III. For the spe-
cial choice A =1, B =4, it was known' that the
equations of motion separate in parabolic coordi-
nates. (c) a=16, B=16A (see Refs. 32 and 33).

Case 2 (a) A =B, o =p= I; (b) A =B, o =1,
p=3: For these examples, we prove that the Pain-
leve property implies integrability by explicitly
deriving the second integral of the motion (see Sec.
III).

We have also studied a one-dimensional lattice
with nearest-neighbor exponential interactions for
different boundary conditions:
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tios (m
& /m~) ranging between 0 and 1. They

found evidence for complete integrability only for
m ~ /mz ——1 (and 0) which agrees with our result in
Case 4 (a) above. Bogoyavlenski, ~9 using group-
theoretical methods, obtained several examples of
Hamiltonians with exponential interactions admit-
ting the Lax pair representation. For the fixed-end
two-particle case considered here, he found exactly
the same three cases (a), (b), and (c) listed above,
and no more. The integrability of case 4 (b) and
(c} is also suggested here numerically by the sur-
face of section method (cf. Figs. 1 —7).

Case 5 Free-end lattice with three masses
(center-of-mass frame):

2 2 2
P 1 J 2 ~3 ~q& qz~ q2 q3+ +—+ ' '+e ' '. (2.5)

f = Q.45

FIG. 2. See Fig. 1.

There are three families of lattices, which have the
Painleve property (within each family all members
are equivalent under scaling}:

3e(2e —1 }(c) m,=, mz ——2e —1,
2 —36

] 2(6'(
3

e(2e —1)
(a} m~ —— , mq ——2e—1,

2 —E'

(b) m~ —— , mz ——e—1,
e(e —1)

2 —E'

J

I

1(a(2,

The integrability of case 5 (a) was shown rigorous-
ly by Moser and Bogoyavlenski. Their results
apply to the N degree-of-freedom case and yield
the N integrals of the motion. Their methods,
however, rely on one's ingenuity to find for a given
system the appropriate symmetry group or Lax
pair if it exists. The advantage of the Painleve
analysis is that it is directly applicable to any sys-
tem provided that the equations of motion can be
written in (or transformed into) polynomial form.

Cases 5 (b) and 5 (c) above are, to our know-
ledge, new. Their integrability, however, cannot be
verified numerically by the surface of section
method, since (2.5) describes a "scattering" prob-
lem, much like the familiar collisions of steel balls,
for which the energy surface H =E is not com-
pact.

g =0.4

FIG. 1. Surfaces of section for the fixed-end lattice
(2.4) with 5=1, m ~

——1, and energy E=1000. Orbit in-
tersections are plotted in the p&, q& plane at q&

——0,
p& )0. In the Painleve cases, Fig. 3 and 7, invariant
curves everywhere suggest integrability, in agreement
with Ref. 29. Nonintegrability in Figs. 4, 5, and 2 is in-
dicated by some of the invariant curves "breaking" into
chains of "islands". Note the sizable range of e values
over which the motion is "globally" stable, i.e., free
from large-scale "stochastic" regions.

S =O.5

FIG. 3. See Fig. 1.
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6 =0.55

FIG. 4. See Fig. 1. FIG. 6. See Fig. 1.

III. PAINLEVE ANALYSIS OF
THE HENON-HEILES PROBLEM

The equations of motion for Hamiltonian (2.1),
written as a system of first order o.d.e.'s are

(a) x=u,

(b) y=u,

(c) u= —Ax+2xy,

(d) 6= —By+my +x

(3.1)

'T=E —fp

with leading-order behavior

(3.2}

of (3.1 ma
he Painleve property require that th 1a e so utions

o . may be written as Laurent series expan-

sions in the complex variable (see also Refs. 11, 12

16, and 32)
7

(3.3)x QpT, P Aqua, 7 ~0
( ikewise for u, u) where p, q are as yet undeter-lik
mined integers.

Inserting the dominant' terms (3.3) in (3.1) one

finds two possibilities:

(i) p=q=-2,
(ii} p& —2, q= —2.

y 3~ 2+Pr 2+1

u —6(2 e} r +
y7

(3.4)

For (i) Eqs. (3.1c) and (3.1d) yield a 2
——3(2—E)'

b 2
——3. Now , to +ind higher-order terms we write

x 3(2—E) t1 +tx +

E, =0.6 E, =O. 5 m

FIG. 5. See Fig. 1. FIG. 7. See Fig. 1.
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r —g

0
det

—6(2—e)'/

0 0
r —2 —1

—6(2—e)' r —3 0
—6e 0 r —3

and substitute in (3.1}to obtain "resonances", "'
i.e., conditions such that arbitrary constants may
enter in the expansions (3.4). This will happen if

(r —5)(r+1)r(r —6)=0 . (3.10}

momenta, it also can be obtained by a special
method of Whittaker (see Ref. 4, Sec. 152).
Whether there is any connection between his
method and the Painleve property is open.

(c) @=2, with resonances r =n =0,5, [cf. (3.7)]
and possibility (i) reduces to (ii) since a2 ——0 [cf.
(3.4)]. The resonance condition here is

=0,
or

[(r —2)(r —3)—6@+6]

X [(r —2)(r —3)—12]=0 .

(3.5)

(3.6)

However, when the expansion in (3.4) is carried to
higher orders only three arbitrary constants appear
corresponding to r = —1,5,6. The fourth constant
corresponding to r =0, may be obtained by replac-
ing (3.3) with '

For Painleve all roots of (3.6) must be integers.
The second square-bracket term gives r = —1

(corresponds to to) and r =6 which implies that a
second arbitrary constant exists, besides to. Re-
quiring that the first square bracket in (3.6) also
have integer roots, we arrive at

e= [(2n —5) +23]/24, (3.7)

where n =0, +1, +2, . . . . Equation (3.7) imposes
a restriction on e which will be taken into account
below.

Turning to possibility (ii) we find that the dom-
inant terms in (3.1) balance provided

ep(p —1)=12 . (3.8)

It is easy to see that there are three values of e
which satisfy both (3.7) and (3.8):

(a) @=1, with resonances r =n =2,3 [cf.(3.7); in
addition to r = —1 and r =6 mentioned earlier)];
hence 4 arbitrary constants appear in the series
solution of (3.1), which is a genuine Laurent series.

(b) a=6, with resonances r =n = —3 (no infor-
mation} and 8 [cf. (3.7)]. Together with r = —1

and r =6 we have only three arbitrary constants
here. Checking possibility (ii) we find the reso-
nance condition

y 3r—2 x ( )1/2r —2(in') —1/2

as ~~0. Certainly this solution is not of P-type
and numerical experiments confirm that (3.1) with
a=2 is not integrable; see Fig. 8.

So far our analysis has not dealt at all with the
harmonic square frequencies A, B which enter at
higher order. Their values are determined by ex-
plicitly carrying out the expansions in each case
and making sure that no contradictions arise in the
evaluations of the coefficients ak, bk in the
Laurent series of x and y. It turns out that in
Cases 1(a) and 2 we must choose A =8, while in
1(b), and (c) any A, B are possible.

By a similar analysis we find that the general
solution of the Hamiltonian (2.2) has the Painleve

L

r (r —3)(r —6)(r + 1)=0, (3.9)

whence four arbitrary constants: to, and three at
r =0, 3, 6 and integrability conditions are estab-
lished in this case also. The second integral, due
to John Greene is

x +4x y +4x(xy —yx)

—4Ax y+(4A —B)(x +Ax )=const,

as can be verified by direct differentiation. Be-
cause this integral happens to be quadratic in the

FIG. 8. Surface of section x, x (y =O,y &0) of the
generalized Henon-Heiles (2.1) with a=2, A =1, B =3,
and energy E=0.205. The presence of large "stochas-
tic" regions indicates nonintegrability.
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property only if

(a) A =B and o=p=1,

(b}A =B, o=l, p=3.
(3.11)

In these cases, it is also possible to derive the
second integral explicitly: written in terms of polar
coordinates x =r cos8, y =r sin8, the Hamiltonian

(2.2) [with (3.11a)] is independent of 8. This
means that the "angular momentum"

2 2 2
b2 —— (a2 —ea i), m~, m2 E'&0

mp
(A3d)

where we have made use of the total momentum

integral m ib&+ mzb2+b3 ——0 to eliminate b3.
The dominant behavior" of a i(t), ai(t) near a

pole in the complex t plane t =to can be found by
letting ai -ci(t —tp), a2-c2(t —to) in (A3),
where p, q are as yet undetermined. One easily

finds that three choices are available

r B=xy —yx =const (3.12} (i} ai-ciri'+. . .
, a2-c2r +. . . ,

is conserved, as can be directly verified by differen-

tiating (3.12} and substituting in the equations of
motion. In the case (3.lib} the equations uncouple

in (x +y), (x —y) variables and the second integral

is

(ii} ai-cir +, a2-c26

(iii) ai-cir '+, ap-c2r '+ .

p& —1

q& —1

xy+Axy+xy(x +y )=const,

as was also observed by Yoshida.
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(A4)

as v—+0, with ~= t —tp. We now examine these

cases in detail and find all possible (p, q, e,m i, m2)
values for which no branch points or essential

singularities can arise in the expansions (i), (ii), (iii)

of a i, a2 (or in the expansions of simple functions
of a i and ai as a i or aq, etc.; see,below).2 2

Starting with (i) we find that equations (A3)
yield the dominant behavior

a& -c~r~+

APPENDIX: THE FREE-END TODA
LATTICE (N =3)

m2
a2 l

2(1+m2 }

1/2
1 + ~ ~ ~

In this appendix we find all cases for which the

solutions of the three-particle, free-end Toda Ham-

iltonian,

2 1 2 l 2 «i —q2] q2 —q3pi+ pz+ p3+e +e
2m ) 2m2

(A1)

admit no movable singularities, other than poles.
We first change variables by defining

2c iE'
2

b)- Pa+i+. . .
(2p + 1)m i

1b2- + ~ ~ ~

(I+m, }r

where ci is an arbitrary constant and

p=, 2p =integer( & 0)
1+m&

'

(A5)

(A6}

aq, —q, )n
a& = —,e

Pk
bk

2mk

(q, —q3)na2= —,e
(A2)

k =1, 2, 3, with m3 normalized to one. In terms
of the ak, bk's, the equations of motion become (in
the center-of-mass frame)

r (2p + 1+r)(r + 1)(r —2) =0 . (A7)

so that the dominant behavior of b] does not intro-
duce a branch point. Following the method de-
scribed in Sec. III we find that the resonance equa-
tion associated with (A5), (A6) is

a) ——ea)(b2 —b)),

a2 = —a2[(1+m2)b2+mib, ],
26'

bi —— a),
m]

(A3a)

(A3b)

(A3c)

Thus the solutions of (A1) have the Painleve prop-
erty in this case with 3 arbitrary constants avail-
able: to ci, and one entering at r =2.

We now turn to case (ii), (A4). Examining the
dominant behavior of the a's and b's we find
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m&
q= 2q =integer( &0}

e(m&+m2)
' (A8)

cf. (A6), (A8). For the Painleve property, (Al 1)

must have integer roots only and this implies that

analogous to (A6). The resonance condition (see
Sec. II) in this case is

(1+p)(1+q) n (n +1)
1 —pq 2

(r +1)r(r —1)(r —2)=0, (A9)
n =0, 1,2. . . (A13)

m)m2
a) ~—

e 2(m t+m2)

and full dimensionality is obtained since there are
four arbitrary constants here: tp cz f, and g
entering at r = —1, 0, 1, and 2, respectively. Car-

rying out the expansions explicitly we find
1/2

1—+gr+ '
r

with 2p and 2q positive integers. Equation (A13)
has five possible solutions:

I
(a) p =q = —,, with n =2 and resonances at

r = —2, —1, 2, 3. In this case (A6} and (A8) yield

e(2 —1)
m) —— , m2 ——2e —1, —, &a&2 .

2—6

(A14)
az-czar 1 — ~+. . .

2—E'

m2 2m2gb)- +f 7+
e(m)+m2)r e(m)+m, }

—m& 2m )g
b2 — +f+ 7+

e(mt+m2)r e(m)+m2)

(A10)
All these cases are equivalent within scaling to the

equal mass Toda lattice m
&

——m2 ——a=1, which is

known to be integrable.
(b) p = —,,q = 1, or p = 1, q = —, both with n =3

I
and resonances at r = —3, —1, 2, 4. For p = —,,

q =1 Eqs. (A6} and (A8) give

We remark here that, in the case of p in (A6) [or q
in (A8)] being a half integer, the expansion of a

&
in

(AS) [and/or that of a2 in (A10)] would suffer
from the presence of movable branch points. This
could be remedied, however, with a simple change
of variables a—:a

~ (or a—:a2), which has only mov-2 2

able poles, resulting in the Painleve property being
recovered.

A similar analysis in case (iii}, (A4} leads to the
resonance condition

E(e 1)—
mt —— , m2 ——e—1, 1&@&2. (A15)

2 —6'

All these are also equivalent within scaling. The
case p =1, q = —, is identical to (A15) with e~2e.

(c) p = —,, q = —, or p =—,, q = —,, both with n =5
I

and resonances at r = —5, —1, 2, 6. For p = —,,

q= —, (A6) and (A8) yield

r2 —r —2M =0,
where

[m, +e(m, +m2)](1+m2+e)
M-=

Em2(m]+m2+1)

(1+p)(1+q)
1 —pq

(A 1 1 }

(A12)

3e(2e —1)
m2 ——2e —1,

2 —36

(A16)

Again e can be scaled out of the equations of mo-
3 1

tion and the second case p = —,, q = —, lead to (A16)
with e~e/3.
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