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Frequency shifts of hyperfine splittings of S~l2 states due to the blackbody radiation field are

calculated. It is shown that they can be estimated from the dc hyperfine Stark shifts, which

have previously been measured in the ground states of hydrogen and the alkali atoms. The
shift at 300 K is large enough to be significant in primary Cs atomic beam frequency standards,

and should be measurable. A simple method of calculating the hyperfine Stark shifts is

described, which is based on the Bates-Damgaard method for determining radial matrix ele-

ments and the Fermi-Segre formula for determining the contact hyperfine matrix elements. It
is applied to Ba+ and Hg+, for which no experimental data are yet available, and which are

currently of interest for frequency standards.

The most accurate and stable atomic frequency
standards are based on hyperfine transition frequen-
cies in S~l2 ground states, such as in "Cs, 'H, and
'Rb. In this Communication, we estimate the

temperature-dependent shift of 'S~l2 hyperfine split-
tings due to the blackbody radiation field. We note
that this effect is large enough to be observable in a
Cs atomic beam apparatus. The shift of the Cs hy-

perfine splitting at T =300 K from the unperturbed
(T =0 K) value causes a frequency offset which is

significant for primary frequency standards.
According to the Planck radiation law,

The fractional blackbody ac Zeeman shift of the
ground-state hyperfine splitting in H or Cs was es-
timated in Ref. 1 to be about 10 ' at T =300 K. We
have derived the following expression for this shift in

any 'S~/2 ground state, which is valid at zero dc mag-
netic field and at temperatures such that the peak of
the blackbody spectrum is at a much higher frequen-
cy than the hyperfine frequency. We find
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where E'((u)d(u[B ((u)d(u] is the squared amplitude
of the blackbody electric (magnetic) field in a
bandwidth d(u around (u. [Atomic units (a.u. ) are
used unless otherwise specified (g =m, = e =1).]
The mean-squared fields are
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and

= (2.775 x 10~ T)'[T(K)/300] . (3)

Gallagher and Cooke' pointed out that these fields
induce temperature-dependent shifts of transition fre-
quencies in atoms and molecules through the ac Zee-
man and Stark effects." They estimated the shifts
in high-n Rydberg levels and some other systems.
Blackbody frequency shifts have not yet been ob-
served in any system.

where gJ and g~ are the electronic and nuclear g fac-
tors, respectively. In the last line, we have assumed
that gi=2 and that ~g(/gj~ (( l.

At laboratory temperatures, the blackbody ac Stark
shift of the hyperfine splitting, which has previously
been neglected, is generally larger than the ac Zee-
man shift. The ac hyperfine Stark shift due to an
electric field of frequency co is approximately equal to
the dc hyperfine Stark shift due to a static field with
the same rms values, if ao (( co„„where co„, is the
lowest allowed electric dipole transition frequency.
The correction is of order ((u/(u„, )' and will be con-
sidered in more detail below. For the ground states
of any of the alkali atoms, ((u/(u„„) 2 ( 3 x 10 ',
where ~ is the frequency corresponding to the peak
of the blackbody spectrum at 300 K. Therefore, at
300 K, the blackbody ac hyperfine shift is approxi-
mately equal to the shift caused by a dc field of 8.3
V/cm.

The dc hyperfine Stark shift was first observed in
Cs by Haun and Zacharias. Later, it was observed in
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The reduced matrix elements of r, the position
operator of the valence electron, are defined with the
conventions of Edmonds. ' We choose the phases of

H (see Ref. 5) and other alkali atoms. ' These experi-
ments measured the Stark shift of the (F = I + T,

1

Mr=0) ~(F= I —T~, MF =0) transition. They can

be considered to be measurements of the scalar hy-
perfine polarizabilities, which are independent of MF
and the orientation of the electric field, since the
contributions from the tensor polarizabilities can be
estimated and are less than the experimental uncer-
tainties. ' Only the scalar polarizability contributes to
the blackbody ac Stark shift, because of the isotropy
of the blackbody radiation. The fractional ac Stark
shift of the Cs hyperfine splitting can be estimated
from the measured dc hyperfine polarizability (see
Table 1 of Ref. 6) and Eq. (2) to be —1.69(4) X 10 '4

[ T(K)/300]4. This shift is large enough to affect the
calibration of primary Cs frequency standards and
therefore should be taken into account. For exam-
ple, the fractional uncertainty of one primary Cs fre-
quency standard (Cs 1 of the Physikalisch-Technische
Bundesanstalt) is stated to be 6.5 x 10 ', but has not
been corrected for the blackbody shift.

The theory of the dc hyperfine Stark shift of 'S~p
ground states is quite well developed, and the calcula-
tions are in good agreement with the experiments.
The shift appears in the third order of perturbation
theory, where the electric-field interaction is taken
twice and the hyperfine interaction is taken once.
For hydrogenic atoms and ions, an analytic solution
has been obtained. ' Numerical calculations have
been made for the neutral alkali atoms. " " The
shift in Li has been calculated without using pertur-
bation theory by the spin-optimized self-consistent
field method, with the electric field included in the
Hamiltonian. "

We write the third-order perturbation expression
for the scalar fractional dc hyperfine Stark shift of the
ns 'S~~~ state of an alkalilike atom or ion in the fol-
lowing form, which is independent of the spin and
magnetic moment of the nucleus,

the radial wave functions so that they are real.
W(n "PJ) and W(nS) are the energies (not including
the hyperfine interaction) of the n "p'PJ and the
ns St~q states, respectively, and P„,(0) is the value
of ns S~~q wave function at the origin. The dc mag-
netic field is assumed to be so small that the Zeeman
splitting is much less than the hyperfine splitting.

These formulas were derived by following the
method of Feichtner et al. ,

"in which the ns'S~~~
wave functions and energies are calculated to first or-
der in the contact hyperfine interaction and the Stark
shifts are then calculated by second-order perturba-
tion theory. We ignore the spin-dipolar and quadru-
pole hyperfine interactions, since they contribute only
to the tensor hyperfine polarizability. The terms k~
and k~ correspond, respectively, to the diagrams
drawn in Figs. 1(a) and 1(b) of Lee et al. " and the
"hfs" and "wave function" terms of Feichtner
e~ al. "

We have developed a simple method of approxi-
mately evaluating Eqs. (6a) and (6b). We calculate
the radial matrix elements using the Coulomb
(Bates-Damgaard) approximation" and the values of
the s-state wave functions at the origin using the
Fermi-Segre formula. ' We have used this method to
calculate the scalar fractional ground-state hyperfine
polarizabilities of Li, Na, K, Rb, and Cs and have ob-
tained agreement with experiment to within 12% or
better in all cases. The lowest three p states and the
lowest five s states were included in the basis. In us-
ing the Bates-Damgaard method, the experimental
term values were used to calculate the n' values.
For the p states, the centers of gravity of the two
fine-structure levels were used for the term values.
Table 3 of Ref. 17 was used with linear interpolation.
In evaluating Eq. (6b), the phases of the wave func-
tions must be kept consistent. If we define the s-
state wave functions to be positive at the origin, then
the sign of the radial integral involving the ns wave
function, obtained from Table 3 of Ref. 1'7, must be
reversed if n is even. This is because the Coulomb
wave functions used by Bates and Damgaard, which
are good approximations to the true wave functions
outside the core, are positive for r greater than the
last node [see Eq. (10) of Ref. 17] and the true ns
wave functions have n —1 nodes.

This method can be used for other atoms, for
which no experimental data or calculations have yet
been published, such as the singly ionized alkaline
earths. We have carried out the calculations for the
ground states of Hg+ and Ba+, which are currently of
interest for applications in stored-ion frequency stand-
ards. ' ' In atomic units, k =37.9 for Hg+ and
k =902 for Ba+. The conversion between atomic and
laboratory units of E' is given by

E'(a.u. ) =3.782 x 10 E [(V/cm)']
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At 300 K, the fractional blackbody ac hyperfine Stark
Shifts are —9.9 &10 "and —2.4 x10 "for Hg+ and
Ba+, respectively. In rf trap experiments, the ac
Stark shift due to the trapping fields may be larger.

The ground-state hyperfine shift due to an ac elec-
tric field of magnitude E(t) = E(fu) cosfut can be ob-
tained by the same method that was used to derive
Eqs. (6a) and (6b), except that the formula for ac
Stark shift is used. We assume that 0) (( cu„„where
~„,is taken to be the frequency of the center of
gravity of the fine-structure components of the first
resonance line. If we assume that only the first excit-
ed p state makes a significant contribution, which is a
good approximation for the alkali atoms, the shift is

gfuhfs/fuhfs

= ——, {kf[1+3(fu/fu„,)']+k~[1+(fu/fu„, )']]E'(fu)

=—k(E~(t))[1+(3k /kt+k /k2)( /fufus)s's] . (8)

The effect of the frequency distribution of the black-
body electric field is thus to increase {gfuhfs/fuhsf{ by
the fractional amount

e = (3k) /k + k2/k) ( fu') /fu'

relative to its value for a dc electric field of the same
rms value. The mean-squared frequency of the

blackbody electric field (fu') is given by

t-'i= (I; -s (.)s. J E (.)d.
40m. 2

(kT)' .
21

(10)

Among the alkali atoms, e is the largest for Cs,
which has the lowest value of cu„,. If we take k~ and
k2 from Ref. 11, then for Cs,

a=1.4 x10 ~[T(K)/300]',
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which, at 300 K, is smaller than the experimental un-
certainty in the dc hyperfine polarizability.

The blackbody shift could be observed in a Cs fre-
quency standard which was modified so that the tem-
perature of a tube surrounding the atoms in the reso-
nance region could be varied. If the temperature
were changed, for example, from 300 to 400 K, the
fractional frequency shift would be 3.7 x 10 ' . If the
frequency standard had the same frequency stability
as NBS-6, the primary frequency standard of the
United States, ' this shift could be determined to 30%
or better in an averaging time of several hours.
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