
PHYSICAL REVIEW A VOLUME 25, NUMBER 2 FEBRUARY 1982

Conditions for convergence of variational solutions
of Dirac's equation in a finite basis
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A recent variational study of the Dirac Coulomb problem using a discrete basis set leads to a
conjecture of a type of Hylleraas-Undheim theorem for "positive energy" solutions. Analysis of
the matrices involved suggests convergence criteria for the method which may be of use in
self-consistent-field calculations.

Of the many recent attempts to perform relativistic
molecular structure calculations using variational
methods with discrete basis sets, three recent pa-
pers' on the hydrogenlike atom are particularly in-
structive. We describe here a matrix analysis of the
calculation of Drake and Goldman3 which may also
have relevance to relativistic molecular (self-
consistent-field) SCF calculations.

Drake and Goldman separated angular and radial
parts of the Dirac operator in the usual way and
solved the radial equations
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Here c is the velocity of light (n ' a.u. ), and the zero
of energy is shifted by subtracting the electron rest
energy (c') so that, in their notation,

H„= cH, —c', e =E —c' .

We need some mathematical properties4 of the opera-
tor H„. This is defined on a domain which it is na-
tural' to take as a dense subset of the Hilbert space
3C [L (6t) ) of two-component functions 4(r), of
which each component is a distribution in L~(6t).
The free-particle operator

(finite expectation of the potential) is needed to en-
sure uniqueness, eliminating the r "solution.

In these conditions H„has a discrete spectrum (the
Sommerfeld eigenvalues) in —2c~ & a & 0; the corre-
sponding eigensolutions lie in 3C, having real ex-
ponential behavior like e~'or e ~', h. =+[—2e(1
+e/2e )]' ', as r 00 'On the re.st of the real line
excluding (—2c', 0), A, is pure imaginary and all
eigensolutions lie in the continuum. Further details
can be found in Richtmyer's book.

Drake and Goldman' expanded 4(r) in a set
{xj.j= 1, . . . , N } of Sister type orbitals (STO) on
[0, m), x = e ""x r"+J '

y = (~ —Z /c )'~ ' forJ
N mand any real —

p, )0, the set {AX,: A
= ((), (|)} is dense in X. They determined estimates
of eigenfunctions 4 and eigenvalues e(+ varia-
tionally for ~= —1, 1, —2, 2 (s|~q, pi~q, d3n, dsp sym-
metries) and N =1,2, . . . , 14 in the usual way. The
pertinent results are (a) the eigenvalues e; of the
discrete problem divide into two classes "positive
energy" and "negative energy" each having N
members. s (b) There appears to be a sort of
Hylleraas-Undheirn theorem for the "positive"
eigenvalues e1 '+, which appear to converge from
above to the corresponding Sommerfeld eigenvalues.
The lowest positive root for K )0 is degenerate with
the lowest root for the case —~ and is clearly spuri-
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ous. (c) The N negative energy eigenvalues all lie

below —2c' in the continuous spectrum of H„, and
do not converge as N —'~. These correspond to
square integrable pseudostates which may be impor-
tant in some applications, where a complete (finite)
basis set is needed. ' An analysis of the process
allows us to interpret these observations. It is
convenient to replace the STO set [X, ] by an
equivalent orthonormal set (P, ], Qt(r)
= [ ( n —1)!2@/I'(2y + n ) ] 't' exp( —p r) .

(2pr) "LtBPl(2pr), 0 & r & ~, j=1,2, . . . ,
where L t '(p) is a generalized Laguerre polynomial.
The variational procedure' requires us to solve a ma-
trix eigenvalue problem

—ZS'
cn'„

cn„a a
—2cI —Z8' b b (4)

where a, b are N vectors of expansion coefficients for

f(r) and g (r), respectively, and r, W, II„, and its ad-

joint II„are N x N matrices. By virtue of (5), Wis
bounded, and it is also symmetric and positive defin-

ite, with elements

ij =1,2, . . . , N

If D is the antisymmetric matrix with matrix ele-

ments

dD„=—D,; = J "d;(r) t(i') dr-
dr ' (6)

ij, =1,2, . . . , N

then

n„=~w —D, n„=—n „=Kw+D .

We observe that

II„II„=n W —n[D, W] —D'

„11„=n W +n[D, W] —D

(8)

where l, l are the usual orbita1 angular quantum
numbers corresponding to g(r) and f(r), defined as
non-negative solutions of i(i+1) = ~(a+I), and

The formal commutation relation [d/dr, r '] = —r '
corresponds to a matrix equivalence of [D, W] and
—W . This cannot be exact for any finite value of N,

and the rate of convergence of [D, W] to —W', if
any, as N ~ will depend crucially on the choice of
basis set. Nevertheless, we can identify the matrices

(8) as (possibly poor) matrix representations of the
radial Schrodinger kinetic energy operators
—

i d'/dr'+i(i+1)/2r', and we write

(9)

where HI = T~
—ZR'is a matrix representation of

the radial Schrodinger Coulomb Hamiltonian and

K'"( ) = —'11 r+ ZW+.r
K 2 K
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It is clear from this that the operator Ktz' (e), and

hence tt, e (and, by implication, cb), Eq. (4), can be
expanded in a regular perturbation series in 1/c', this

is a matrix analog of a theorem of Hunziker. ' Simi-

larly, shifting the zero of energy by writing

e =—2c'+e', "elimination of large components, "
gives, using the notation of (10),

(12)

Next, we examine the formal nonrelativistic limit

c ~. Whether we allow the parameter y to vary or
not, K„(e)~ and tt, e become an eigenvector and

eigenvalue of HI . Thus, the quality of the solution

depends, to start with, on the quality of this matrix
representation of the Schrodinger operator, which

may underestimate energies. Similarly —e' and b are
an eigenvalue and eigenvector of H~I, having a

repulsive Coulomb potential in line with the identifica-
tion of negative-energy states with those of positrons.
The N eigenvalues eI' are therefore negative, c
with the true zero of energy e= —2c' —~. The N
eigenvalues of (10), e;t+ +, approximate the Rydberg
eigenvalues and should converge as predicted by the
Hylleraas-Undheim theorem. "

To analyze the case of c finite, rewrite (10) as a

Rayleigh quotient

e=a [H' ' K' '(e)]a/a a— (13)

Whenever e is such that (ZW+ er) is positive definite,

a K„(e)a is positive, so that relativistic corrections
decrease ~. Suppose also that 8'has a finite spectral
radius pP; this is required by (3). Then, for all a

t
such that x = n„a is non-null

R(e,a) =a K„( )ae/a a

=—x I+1 t ZR'+ eI (ZW+er)/2c x a o2

2 2c

a a 2c

Provided supn p P is finite (a requirement which

may restrict the basis set), R (e,a) &a Ta/a a,
on 0 & e & —2c' and the right-hand side of (13) is

i(i+1) =(—n)( —n+I), respectively. The matrix
equivalent of the textbook "elimination of small
components" gives

(10)
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uniformly bounded below. This, in conjunction with
the separation property e;"+' ( e;
i =1,2, . . . , k, k =1,2, . . . of leading diagonal sub-
matrices of any real symmetric matrix" like that of
(10), suffices to explain observation 8 of Drake and
Goldman's calculation. A similar analysis shows
that the remaining N eigenvalues yll lie in the lower
continuum.

This discussion reveals several points at which the
numerical results may be sensitive to the choice of
basis set. The numerical difficulties observed in

many recent calculations on atoms and molecules' '
which are usually just attributed to the presence of
negative-energy states are obviously closely connect-
ed. Here we suggest sufficient conditions for conver-
gence which may be useful to test particular choices
of basis set. Necessary conditions are at present out
of reach. %e expect the analysis given here to gen-
eralize in several directions. There should be no dif-

ficulty in extending it to include more general effec-

tive atomic central potentials of the Hartree-Pock
type with Coulomb singularities at the origin. Like-
wise, it should not be difficult to replace the
Coulomb singularity with the potential appropriate to
a distributed nuclear charge. It should also be possi-
ble to generalize the argument to cope with the self-
consistent-field problem for atoms and molecules, ex-
ploiting the similarities in matrix structuret to (7).
Any progress in these directions will be reported else-
where.
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