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de Schepper and Cohen have shown recently that the hydrodynamic modes for a hard-
sphere fluid may be extended to quite large wave vectors, and that at high densities the
hydrodynamic part of the dynamical-structure factors dominates over a wide range of
wave vectors. The objective here is to describe the results of a similar analysis of two
simple models of the self-structure factor. The simplicity of the models allows a scaling
of the frequency and wave vectors such that a universal form independent of potential
model, density, and temperature is obtained. The diffusion mode and hydrodynamic part
of the self-structure factor are calculated, leading to a behavior similar to that observed

by de Schepper and Cohen.

I. INTRODUCTION

In a recent calculation,' de Schepper and Cohen
showed, on the basis of a kinetic model for the
hard-sphere Enskog equation, that the hydro-
dynamic modes exist in a dense fluid even for
wavelengths smaller than the hard-sphere diameter.
Furthermore, the contribution of such extended hy-
drodynamic modes provides the dominant part of
the dynamic-structure factor, S (k,w), and the self-
structure factor, S;(k,w). The purpose of this
comment is to clarify the results of Ref. 1 for two
models of S;(k,w) that are sufficiently simple that
the analytic structure can be studied in some detail.
Each model admits a scaling such that S;(k,w)
may be written in a universal form independent of
the potential model and thermodynamic state
parameters. The results may therefore be con-
sidered as suggestive of the properties of fluids in
general, rather than anomalies of the hard-sphere
fluid. The first model is a single relaxation-time
equation where the relaxation time is characterized
by the self-diffusion constant; the second model is
the Fokker-Planck (FP) equation. Both equations
are exactly solvable and each describes hydro-
dynamic modes as well as more complex micros-
copic excitations. The hydrodynamic modes and
hydrodynamic parts of S;(k,w) are then easily cal-
culated, as well as S;(k,w) itself for comparison.

The self-structure factor may be expressed in
terms of an average of the solution to a formally
exact linear kinetic equation with the result?

Ss(k,0)=2Re[1,R (k,w)1], (1)
R=[—io+ik-V+Mkw)] " . 2)
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Here M (k,w) is the formal collision operator
characterizing the kinetic equation. V is the velo-
city of the tagged particle and the scalar product is
defined by

(a,b)= [dV fow)a*()b(V) . (3)

Finally, f((v) is the Maxwell-Boltzmann distribu-
tion, and Re in Eq. (1) denotes the real part.

Evaluation of the scalar product in Eq. (1) for a
given operator, M(k,0), is, in general, prohibitively
difficult. In practice M is replaced by a kinetic
model operator whose properties exactly reproduce
those of M(k,w) considered most important. Since
1 is an eigenfunction of M (k,w) with zero eigen-
value, a commonly used and reasonably accurate
kinetic model is*>*

M(k,w)—>M (k,0)(1—P) , 4)

where P is the projection operator onto 1 and
M (k,w) is the function

M (k,w)=[V,M(k,0)V]/(¥,V) . (5)

With this choice a dimensionless form for S;(k,w)
is easily found to be

(z)
R (x,)=kvoS, (k,0) =2 Re ¢ ,
xy)=kvoS;(k,0) i —yM*(x,y)¢(z)

(6)

where ¢(z) is the plasma dispersion function,* and,

z=x +iyM*(x,y) ,

® M, Vo
—, y=E—=—. (7)
kvo kl)o 2Dk
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The constant v is the thermal velocity,
vo=(2kpT/m)!"%, My=M(0,0) is the low-
frequency, low wave-vector limit of M (k,w) and D
is the coefficient of self-diffusion. Also M*(x,y)
=M (k,0)/M (0,0). The dependence of M (k,w)
on k and w is due to spatial variations of the parti-
cles during collisions and to the finite duration of
a collision. This dependence is therefore expected
to be important only for wo/vy>1 and ko > 1,
where o is the force range. In terms of the vari-
ables x and y, this gives wo /vg~n*x/y and
ko~n*/y, where n*=no>, and n is the density.
The range of values of x of interest in determining
the half-width of the structure factor is 0 <x <1.
Furthermore, as shown in the next section, the ex-
tension of the hydrodynamic diffusion mode exists
only if y >0.5, for this model. At low density, for
the x and y values considered M* (x,y) ~M* (0,0)
=1. For moderate density and very small values

L

— ® t ixt _
Rgp(x,y) 2Ref0 dt e™exp %

where x and y are the same parameters as in Eq.
(7). It may seem that the Fokker-Planck equation
is not an appropriate model for S;(k,w) since it is
generally justified only for the motion of a large
particle in a fluid. However, the same result
would be obtained from the less restrictive assump-
tions that the time correlation function determin-
ing S;(k,w) is Gaussian in k, and that the velocity
autocorrelation function decays exponentially in
time. These assumptions are indeed qualitatively
correct for simple fluids.

II. RESULTS

The extent to which hydrodynamic modes exist
in the fluid and constitute the dominant part of
Ss(k,) may be investigated by examining the ana-
lytic structure of R (x,y) for the two models con-
sidered. The hydrodynamic part of the self-
structure factor is written in terms of a single
nonpropagating mode,

R%(x,y)=2 Re_ﬁ——ix DG’
such that D(y) vanishes for large y. This form
reproduces the entire R (x,y) for large y when the
self-structure factor is the solution of a diffusion

(10)

of y, M* might change appreciably even in the
range 0 <x <1. However, only the combination
yM* appears in Eq. (6), so that the approximation
M?* =1 is reasonable over a wide range of densities
for the values of x and y considered.’ In this case
Eq. (6) becomes

R(x,y)=2Re—2X+D) (8)

i—yd(x +iy) ’

and the self-structure factor has a universal form
depending on the potential model only through the
definition of y. Equation (8) will be referred to as
the single relaxation-time model.

The second ‘model considered here is obtained by
choosing for M(k,w) the linearized Fokker-Planck
operator. The approximation of Eq. (4) is not re-
quired since R (x,y) can be calculated exactly.®
The result is

+—2l2—(1—e—") , ©)
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T
equation and 4 (y)—1, D(y)—1/2y.

First the model given by Eq. (8) is considered.
The hydrodynamic part of R (x,y) may be extract-
ed by searching for the pole xy(y)= —iD(y) which
goes to the diffusion limit, —i /2y, for large values
of y. The pole is therefore expected to be pure im-
aginary and is given by the solution of the equa-
tion

i —yé[xo(y)+iy]=0. (11

Equation (11) has been solved using tabulated
values of the plasma dispersion function.* A solu-
tion with the correct asymptotic limit exists only
for y > [Im¢(i0)]~'~0.57. (At the reduced densi-
ty n* =0.884 used in Ref. 1 this value corresponds
to ko ~22.6.) At the smallest values of y for
which the hydrodynamic solution exists, deviations
of D(y) from 1/2y are as large as 30%. In Fig. 1
the half-width of R"(x,y) is compared with the
half-width of R (x,y) as given by Eq. (8). As ob-
served by de Schepper and Cohen, most of the
self-structure factor is given by R(x,y) for values
of y > 1. Significant deviations start appearing for

<1
g Next consider the Fokker-Planck, or Gaussian,
model of Eq. (9). The hydrodynamic part may be
identified by expanding exp[ —(1/2y%)e ] and
evaluating the integral to give
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Rpp(x,y)=2Ree!/¥’ s L

g=09" 2

B
2p?

The spectrum consists of an infinite number of
equally spaced simple poles along the negative ima-
ginary axis, and the hydrodynamic mode is identi-
fied as that of the ¢ =0 pole. For this model the
hydrodynamic pole has the same form for all y,
xo(y)=—i/2y, and exists for all . The hydro-
dynamic part is

2
el/2y

RH(x,y)= [x2+(1/729)7]7 1. (13)
Figure 2 shows a comparison of the half-width of
the hydrodynamic part with that for the complete
series. Again, the hydrodynamic part dominates
over the region y > 1.

III. DISCUSSION

The range of frequencies and wave vectors, ©
and k, for which hydrodynamics fails is referred to
as the kinetic regime. It is readily shown that for
arbitrary y there are significant deviations from the
hydrodynamic value at sufficiently large x. This
corresponds to times short compared to the colli-
sion frequency, and typically occurs far out in the
wings of S;(k,w) or R (x,y) for a moderately dense
fluid. In contrast, for values of x less than or of
the order of the half-width (0 <x <1) the calcula-
tions of Sec. II show that the hydrodynamic range
corresponds to y > 1.

To clarify why the hydrodynamic part dom-

free particle limit —>
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FIG. 1. Half-width at half maximum of R (x,y) given
by Eq. (8) for the single relaxation-time model ( ),
and half-width for the hydrodynamic part only
(— — —); also shown is the asymptotic form, 1/2y, for
the hydrodynamic part (—-—-).

1
—ix+ - +gy
y

(12)

T
inates for y > 1, note that the spectrum of R (x,y)
is qualitatively expected to consist of a hydro-
dynamic pole nearest the origin and microscopic
singularities (continuous or discrete) starting at the
collision frequency. In terms of the variables x
and y the collision frequency is proportional to y.
Consider a simple example consisting of only two
simple poles,

AH(}’)
—ix +py(y)

A, (y)
¥ —ix+p,(y)

R(x,y)=2Re

) (14)

where py(y) and p,,(y) are the hydrodynamic and
microscopic poles, respectively, and Ay (y) and
A,,(y) are the residues of these poles. Then, since
the peak of R (x,y) is centered at x =0, the pole
nearest the origin will dominate unless the residue
of the microscopic pole is larger than that of the
hydrodynamic pole. This possibility is excluded by
the first two frequency moments of S;(k,w) which
imply Ay +A,, =1 and pyAy +puA, =0. Then
Eq. (14) may be written

R(x,y)=2Re—

(Pm —pPH)
Pm _ DPH (15)
—ix+py  —ix+p, |

Clearly, the hydrodynamic part will dominante
whenever pgy(y) <p,, (). Also, this inequality is

Hee/ponicle limit —>
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FIG. 2. Half-width at half maximum for Rgp(x,y)
given by Eq. (12) for the Fokker-Planck or Gaussian
model (——), and for the hydrodynamic part
(———)
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the condition one would expect for the existence of
hydrodynamics (i.e., that it is the slowest decaying
mode of the fluid), so quite generally it may be ex-
pected that the hydrodynamic part of R (x,y)
should dominate over the entire range of y for
which the hydrodynamic mode exists. To estimate
this range, py(y)~1/2y and p,,(y)~y, so that
pu(y)=p, (») at about y =1, as found in Sec. IL
These features of the simple two-pole model in
Eq. (15) are easily verified for the Fokker-Planck
or Gaussian model. The analytic structure of the
single relaxation-time model is considerably more
complex because of the branch cuts in the plasma
dispersion function, ¢(z). Since the hydrodynamic
mode is also more complex in this case it may ap-
pear that the discussion based on Eq. (15) might
not apply. However, there is a simple and reason-
ably accurate approximation for ¢(z) given by’

la|? 1 1
2ag |ala—z) a*(a*+z)

o(z)~ , (16)

where the real and imaginary parts of a are deter-
mined by the large z expansion of ¢(z). Use of Eq.
(16) in Eq. (8) leads to a two-pole representation
for R (x,y). Repeating the calculations of Sec. II
gives the results shown in Fig. 3. Although some
quantitative differences between Fig. 1 and 3 are
noticeable, the qualitative features are clearly
preserved by the two-pole representation.

The parameter y is a measure of the ratio of the
wavelength, A=2m/k, to the mean-free path,
I=vy7,. If the collision time is taken to be the re-
laxation time for the velocity autocorrelation func-
tion, 7, =2D /v3, then y=A/2xl. The limit for the
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FIG. 3. Same as Fig. 1, except with the two-pole ap-
proximation, Eq. (16).

applicability of hydrodynamics, y =1, corresponds
to wavelengths of the order of or smaller than the
mean-free path. At low or moderate densities, the
mean-free path is large compared to atomic dimen-
sions and it is perhaps not too surprising that hy-
drodynamics is applicable even at wavelengths
close to the mean-free path. However, at liquid
densities the mean-free path can be comparable to,
or smaller than, the atomic dimensions. Conse-
quently the condition y =1 corresponds to
wavelengths also of the order of atomic dimen-
sions. (For the condition of reference 1 this is
A~0.30, where o is the hard-shape diameter.)
This is a considerably more interesting result, al-
though some caution is required since neither the
Enskog model of Ref. 1, nor those discussed here
are reliable at such high densities.?
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